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Abstract— A new formulation of continuous-time nonlinear
model predictive control (NMPC) is developed which accounts
for dynamics associated with minimization of the optimal con-
trol problem. In doing so, it is shown that the stability of NMPC
can be maintained for fast processes in which the computation
time is significant with respect to the process dynamics. Our
framework generalizes recent results for piecewise constant
NMPC of continuous-time processes.

Index Terms— nonlinear model predictive control, real-time
optimization, optimal control, piecewise constant control

I. INTRODUCTION

Model predictive control (MPC) is a control approach in
which the current control move is obtained by repeatedly
solving online a finite horizon, open-loop optimal control
problem. The unprecedented industrial success of MPC ap-
proaches based on linear, discrete-time process models mo-
tivates the development of predictive control approaches for
systems which exhibit significant nonlinearities (i.e. NMPC).

Typical approaches to NMPC of continuous-time plants
fall into two categories. Discrete-time approaches treat both
the control decisions and plant dynamics as evolving in
discrete time. While computationally appealing, this as-
sumes knowledge of an exact plant difference equation,
which is typically unavailable. Furthermore, important inter-
sampling behaviour such as constraint violation can be
missed. Continuous-time approaches, in which both the con-
trol decisions and plant dynamics evolve continuously, are of
theoretical interest only as their optimization is over arbitrary
input trajectories u(t), which is computationally intractable.

More recently, the control of continuous-time plants by
sampled-data controllers has been studied. Fontes [1] used
ideas from [2] to describe the closed-loop dynamics when
the optimal continuous-time input trajectory is implemented
in piecewise-constant (PWC), sampled-data manner. Simi-
larly, [3] proposes implementing the continuous-time input
trajectory in a sampled-data manner, without the zero-order
hold. Unlike these works, the approach of [4] performs the
optimization itself over the class of PWC control moves,
resulting in a more tractable search.

An issue which has received little, if any, attention in the
literature is the impact on closed-loop stability of input delay
associated with computation time for the optimal control
problem. Traditional MPC literature assumes the calculated
input is implemented instantaneously following state/output
sampling. For fast or high-dimensional processes, this com-
putational delay may become significant with respect to
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the process dynamics. Recent work involving suboptimal
solutions ( [5], [6]) attempt to minimize this delay by early
termination of the minimization calculation, at the expense
of failing to achieve the true minimum.

In contrast to the above, our approach allows for the
minimization calculation to proceed throughout the entire
sampling interval, rather than restricting it to terminate within
a small subinterval of the controller period. We choose
to view the optimal PWC control trajectory as a set of
unknown parameters which can be identified in real time,
using continuous-time adaptive control techniques. The input
is continuously updated as these parameter estimates evolve,
and thus the resulting closed-loop control action is piecewise
continuous, but not necessarily piecewise constant. While
existing approaches such as [4] are encompassed as a special
case of our framework, the main contribution of this work
is to show that stability can be preserved even when the
minimization dynamics evolve in a comparable timescale to
the process.

This paper is organized as follows. In Section II we
describe the problem framework and relevant assumptions,
while Section III establishes preliminary results on constraint
handling and piecewise constant control. Section IV contains
the main results for the general MPC framework we propose,
while Section V outlines similarities and differences to stan-
dard MPC approaches. Section VI contains a brief simulation
example, and proofs are contained in the appendix.

II. PROBLEM STATEMENT AND ASSUMPTIONS

In this paper, we will use the notation S̊ to denote the open
interior of a closed set S, and ∂S for the boundary S \ S̊. A
function f(·) will be described as being Cm+ if it is Cm,
with all derivatives of order m yielding locally Lipschitz
functions. A continuous function γ : [0,∞) → R≥0 will be
considered class K if it is strictly increasing from γ(0) = 0,
and class K∞ if it is furthermore radially unbounded. Finally,
the notation ‖·‖F denotes a Frobenius matrix norm.

We consider the continuous time optimal control problem

min
u(·)

J∞ =
∫ ∞

t0

L(x, u) dτ (1)

s.t. ẋ = f(x, u) (2)

(x, u) ∈ X × U, ∀t ≥ t0 (3)

The mapping L : X × U → R≥0 is assumed to be at least
C1+, and to satisfy γL(‖x, u‖) ≤ L(x, u) ≤ γU (‖x, u‖),
with γL, γH ∈ K∞. The dynamics f : X × U → R

n are
also assumed C1+, and satisfy f(0, 0) = 0. The assumed
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differentiability is primarily for convenience; with additional
computational expense, results could be reposed using gener-
alized gradients with L and f being C0+. The sets X ⊆ R

n

and U ⊆ R
m are closed, convex, and satisfy X̊ 	= ∅.

For online calculation, (1) is approximated at time t by

Jrh(x(·), u(·)) =
∫ t+T

t

L(x, u) dτ + W (x(t + T )) (4)

x(t + T ) ∈ Xf (5)

where the horizon length T is potentially variable. The
penalty W : Xf → R≥0 is C1+ on the convex terminal
set Xf ⊆ X, and satisfies γWL(‖x‖) ≤ W (x) ≤ γWU (‖x‖)
for γWL, γWU ∈ K. The interior X̊f is assumed nonempty.

We begin by defining κ(x, Tκ) to be a known family
(parameterized by Tκ) of PWC, locally Lipschitz feedbacks
κ : Xf × R≥0 → R

m. The sampling period Tκ is specified
by a known, locally Lipschitz function δ : Xf → R≥0 which
is lower bounded by some class K function γδ(‖x‖), and
uniformly upper bounded by some constant Mδ > 0 for all
x ∈ Xf . Starting from (ti, xi) ∈ R×Xf , we denote by xκδ(t)
the closed-loop solution to ẋ = f(x, κδ(xi)) on the interval
t ∈ [ti, ti + δ(xi)], where κδ(xi) � k(xi, δ(xi)).

We will focus on stabilization of x to a target set Σ, which
we assume to be of the form Σ = {x : W (x) ≤ cΣ} with
cΣ ≥ 0, with inner approximations given by

Σε = {x : W (x) ≤ (cΣ − ε)} ⊂ Σ

for any ε > 0. If ε > cΣ, then Σε ≡ ∅. The following
assumption is thus adapted from [7].

Assumption 1: Let Σ ⊂ Xf denote the target set. The
functions κ(·, ·), δ(·), W (·) and the set Xf satisfy

A1.1) Xf ⊂ X̊, Xf closed, 0 ∈ Σ ⊂ X̊f .
A1.2) Σ compact, Σ = {x : W (x) ≤ cΣ} , cΣ ≥ 0.
A1.3) κδ(x) ∈ U for all x ∈ Xf .
A1.4) X̊f is positive invariant under (2) with u = κδ(x)
A1.5) For ε > 0 sufficiently small, ∃ γ(·) ∈ K such that for

all x ∈ Xf \ Σ̊ε,

W (x′) − W (x)+
∫ t′

t

L(xκδ , κδ(xκδ)) dτ ≤ −γ(‖x‖)
(6)

where t′ � t + δ(x), and x′ � xκδ(t′).
Remark 1: Using set stabilization provides greater flex-

ibility in designing κδ(x) by allowing for practically-
stabilizing methods (see [2], [8] and references therein). The
(potentially) variable period Tκ = δ(x) is motivated by the
observation in [2] that faster switching near the origin allows
closer convergence using a practical-stabilizer.

III. PRELIMINARY RESULTS

A. Incorporation of State Constraints

Due to the continuous-time nature of the closed-loop state
trajectories, the constraint x ∈ X effectively represent an
infinite collection of (pointwise in time) constraints which
must be imposed on the minimization in (1). Since the
combinatorial complexity of active-set approaches tend to

scale poorly, interior-point methods provide a much more
straightforward approach to constraint enforcement. To this
end, we assume that appropriately selected barrier functions
Bx and Bf are defined on the sets X and Xf , respectively.
For our purposes, a barrier function B : S → R≥0 ∪ {∞}
on a convex set S is deemed “appropriate” if it is suffi-
ciently differentiable on the open, convex set S̊, and satisfies
lims→∂S B(s) = ∞. We refer the reader to [9] for more
rigorous insight into the selection of suitable barriers.

Following [10], we employ a method of gradient-
recentering to center the barriers about the origin. For any
general barrier function B(s) we define

Bo(s) = B(s) − B(0) −∇B(0)T s. (7)

The state constraints are incorporated into the design by
augmenting the functions L(·, u) and W (·) as

La(x, u) = L(x, u) + µBo
x(x) (8)

W a(xf ) = W (xf ) + µfBo
f (xf ) (9)

with weighting constants µ, µf > 0.
Assumption 2: The barriers Bx(·), Bf (·), and weightings

µ, µf are chosen to satisfy

µf

[
Bo

f (x′)−Bo
f (x)

]
+ µ

∫ t′

t

Bo
x(xκδ(τ)) dτ ≤ γ(‖x‖) (10)

or equivalently,

W a(x′) − W a(x)+
∫ t′

t

La(xκδ , κδ(xκδ)) dτ ≤ 0 (11)

∀x ∈ X̊f \ Σ̊ε, where x′, t′ and ε are from Assumption 1.
In general, selection of Bx, Bf such that (10) can be

satisfied is not obvious. However, we show in the full version
of this paper that there exists µ∗ > 0 such that (10) is
satisfied for all µ, µf ∈ (0, µ∗] if i) Σ̊ 	= ∅, ii) Xf is of the
form {x : W (x) ≤ b}, and iii) Bf is chosen as Bf � B̃f◦W ,
with B̃f a barrier for the scalar interval W ∈ (−∞, b].

B. Piecewise Constant Control Parameterizations

The primary motivation for using piecewise constant
control trajectories in NMPC is the reduction of the op-
timal control problem to a finite-dimensional NLP. The
discretization of the input trajectory is therefore motivated by
computational, rather than physical, considerations. In most
applications, sensor and actuator data are updated at rates
significantly faster than the process or controller dynamics,
and can be reasonably treated as continuous-time signals.

Let N denote the (constant) number of PWC control
moves (per scalar input) by which the input trajectory will be
parameterized. The PWC control parameters are contained in
the matrix Θ ∈ R

m×N , which has an associated vector of
“switching times” tθ � {tθi : i = 1, . . . N} ∈ R

N satisfying
0 ≤ ti+1−ti ≤ Mδ, ∀i = {1, . . . N − 1}. The pair (Θ, tθ)
specify the input trajectory u = v(t, tθ,Θ) as

vi(t,Θ, tθ) =

⎧⎪⎨
⎪⎩

Θi1 t ≤ tθ1
Θij t ∈ (tθj−1, tθj ], j = 2 . . . N

0 otherwise

(12)
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for i = {1, . . . m}. For the remainder of this work, we will
denote by θ a vector containing the mN elements of Θ. With
minor abuse of notation, we will refer to (12) by v(t, θ, tθ).

Definition 1: A control parameterization refers to any pair
of the form (θ, tθ) ∈ R

(mN) × R
N .

Let (t0, x0) ∈ R × X̊ be an arbitrary initial condition for
(2), and let (θ, tθ) be an arbitrary, constant control parame-
terization satisfying t0 ≤ tθ1. We denote the resulting solution
(in the classical sense) to (2) and (12) by xp(t, t0, x0, θ, t

θ)
and up(t, t0, x0, θ, t

θ), defined over subintervals of [t0, tθN ].
The superscript stands for “prediction”, since these solutions
will be applicable only for the NMPC prediction model. At
times we will condense this notation to xp(t), up(t).

Definition 2: A control parameterization (θ, tθ) of length
N is feasible if, ∀t ∈ [t0, tθN ], the solution xp(t, t0, x0, θ, t

θ),
up(t, t0, x0, θ, t

θ) exists and satisfies xp(t) ∈ X̊, up(t) ∈ U,
xp(tθN ) ∈ X̊f . Let ΦN (t0, x0) ⊆ R

(mN)× R
N denote the set

of all such feasible control parameterizations.
Throughout this paper, we interpret θ ∈ U

N ⊆ R
mN to

mean that ∀i ∈ {1, . . . , N}, the control vectors given by Θ ei

(with ei ∈ R
N elementary basis vectors) satisfy (Θ ei) ∈ U.

Lemma 1: Let X 0 ⊆ X̊ denote the set of initial states
x0 for which there exists piecewise-continuous open-loop
trajectories x(t), u(t) solving (2), defined on some interval
t ∈ [t0, tf ], and satisfying x(t) ∈ X̊, u(t) ∈ U and x(tf ) ∈
X̊f . Then, for every (t0, x0) ∈ R×X 0, there exists N∗(x0)
such that ΦN (t0, x0) has positive Lebesgue measure in U

N×
R

N for all N ≥ N∗(x0).

IV. GENERALIZED CONTINUOUS-TIME MPC DESIGN

A. Description of Algorithm

Let (t0, x0) ∈ R×X 0 denote an arbitrary initial condition
for (2). Below we outline the steps involved in calculat-
ing our MPC controller. It will be useful to define z �
[xT , θT , tθ

T ]T , the vector of closed-loop states.
For ε chosen according to A1.5, we define the following

smoothed indicator-type function for Σ:

ρ(x) �

⎧⎪⎨
⎪⎩

1 x 	∈ Σ̊
ρ0(W (x)) x ∈ Σ \ Σε

0 x ∈ Σε

(13)

where ρ0 : (cΣ − ε, cΣ) → (0, 1) is a C1 monotonic

function satisfying limW→c−Σ

{
ρ0,

dρ0
dW

}
= {1, 0} and

limW→(cΣ−ε)+

{
ρ0,

dρ0
dW

}
= {0, 0}. We then use the fol-

lowing modified version of (4) as our cost function:

J(t, z) =
∫ tθ

N

t

La
ρ(xp(τ, t, z), up(τ, t, z)) dτ

+ W a
ρ (xp(tθN , t, z)) (14)

La
ρ(x, u) = ρ(x)La(x, u)

W a
ρ (x) = ρ(x)W a(x)

where J(t, z) ≡ J(t, x, θ, tθ). Since W is not necessarily a
Lyapunov function inside Σε, this will prevent the minimiza-
tion of J from compromising the forward invariance of Σε

achieved under κδ(x).

Step 1: Parameterization Initialization
As is a common starting point for many numerical NMPC ap-
proaches, the first step in our procedure requires initialization
of the control parameterization to any known value (θ, tθ)0
in the feasible set ΦN (t0, x0), which has positive Lebesgue
measure (for sufficiently large N ) by Lemma 1. If the PWC
stabilizer κδ(x) is globally stabilizing, then (θ, tθ)0 can be
determined by solving (2) under u = κδ(x). Otherwise, a
dual programming program could be solved to identify a
feasible initial control parameterization.

Step 2: Continuous Flow under Dynamic Feedback
At any instant t ∈ [t0, tθ1], we assume that we can “in-
stantaneously” compute the model prediction xp(τ, t, z(t)),
up(τ, t, z(t)) solving (2), (12) over the interval τ ∈ [t, tθN ].
Since the parameterization (θ, tθ) is constant with respect to
τ , the predicted up(τ, t, z(t)) is PWC. Using this prediction
we calculate the receding-horizon cost (14).

Since this step only deals with the interval t ∈ [t0, tθ1], we
will (with admitted abuse of notation) rewrite (12) as simply
ui = vi(θ) � Θi1, i ∈ {1, . . . m}. The closed-loop dynamics
(w.r.t ordinary time t) are therefore written as

ż =

⎡
⎣ ẋ

θ̇
ṫθ

⎤
⎦ =

⎡
⎣ f(x, v(θ))

Ψ(t, z)
0N×1

⎤
⎦ (15)

in which θ evolves as a dynamic controller state.
Criterion 1: The update law Ψ(t, z) must be chosen to

ensure the following:

C1.1) 〈∇θJ, Ψ(t, z) 〉 ≤ 0
C1.2) (θ(t), tθ(t)) ∈ ΦN (t, x(t)), ∀t ∈ [t0, tθ1], where θ(t)

and x(t) denote solutions to (15).
C1.3) Ψ(t, z) is continuous w.r.t t, and locally Lipschitz w.r.t

z, for all (θ, tθ) ∈ ΦN (t, x).
The term ∇θJ is the gradient of (14) with respect to θ, the
calculation of which is discussed in the full version of this
paper. Examples of update laws satisfying Criterion 1 are
discussed in section V.

Step 3: Discrete Transitions at Switching Times
At the completion of step 2, when t = tθ1, the controller
states (θ, tθ) are updated by the following jump mapping

⎡
⎣x+

θ+

tθ+

⎤
⎦=

⎡
⎢⎢⎣

x
Υ(t, z)[

0N−1 IN−1

0 0T
N−1

]
tθ+

[
0N−1

tθN +δ(xp(tθN , θ, tθ))

]
⎤
⎥⎥⎦ (16)

where the notation z+ denotes the post-jump values, still at
the same value of time t (while the state tθ1 has meanwhile
been redefined by (16)). The function δ(·) is the same as that
in Assumption 1.

Criterion 2: The jump mapping Υ(t, z) is chosen to en-
sure the following:

C2.1) J(t, z+) − J(t, z) ≤ 0
C2.2) (θ+, tθ+) ∈ ΦN (t, x)
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Step 4: Iteration of Steps 2 and 3
From criterion C2.2, the post-jump values (θ+, tθ+)
constitute a feasible control parameterization for the
current state (t, x), and thus satisfy the conditions of the
initialization in step 1. The procedure thus repeats back to
step 2, with appropriate redefinition of (t0, x0).

B. A Meaningful Notion of Closed-Loop Solutions

The feedback control resulting from the above algorithm is
a dynamic, time-varying control law which is is set-valued
at the switching times. The notion of a “solution” to (2)
is unclear, since neither classical nor “sample-and-hold” [2]
solutions apply, while Filippov solutions are too general to be
of use. Instead, since the z dynamics exhibit both continuous
and discrete transitions, we will adopt our notion of solution
from the hybrid system literature.

If we augment z to include time as an additional state (i.e.
za � [zT , π]T , π0 = t0, π̇ = 1, π+ = π), then (15) has the
form ża = F (za) on the flow domain

SF �
{
za : π ≤ tθ1 and (θ, tθ) ∈ ΦN (π, x)

}⊂R
n+mN+N+1

Likewise, (16) has the form z+
a = H(za) on the jump domain

SH �
{
za : π ≥ tθ1 and (θ, tθ) ∈ ΦN (π, x)

}⊂R
n+mN+N+1

The hybrid dynamics of za are therefore of the form dis-
cussed in [11], [12]. We follow the notation of [11] when
we explicitly denote a solution za(t, k) as evolving over both
ordinary time t and event time k, jointly referred to as hybrid
time. Since from (16) we have that x(t, k +1) = x(t, k), we
will write x(t) ≡ x(t, k) with the understanding that x(t)
is still a component of the hybrid-time trajectory za(t, k).
Existence and uniqueness of the hybrid time solution za(t, k)
follows from [12, Theorem III.1] and [12, Lemma III.2]
respectively.

C. Main Result

We are now ready to present the main result of this paper.
While the theorem itself may appear to be a straightforward
consequence of Criteria 1 and 2, the usefulness of its gen-
erality will become apparent in section V when we provide
examples of Ψ(t, z) and Υ(t, z) meeting these criteria.

Theorem 1: Let κδ(·), W (·), Xf be chosen to satisfy
Assumption 1 for given Σ, and let Bx, Bf , µ, µf satisfy
Assumption 2. For any initial conditions (t0, x0) ∈ R × X 0

of (2), and any initial feasible parameterization (θ, tθ)0 ∈
ΦN (t0, x0), the set x ∈ Σ is asymptotically stabilized by
the algorithm of Section IV-A. Furthermore, the resulting
trajectories satisfy all input, state, and terminal constraints.

V. FLOW AND JUMP MAPPINGS Ψ AND Υ
As shown in Theorem 1, asymptotic convergence to x ∈ Σ

is guaranteed as long as Ψ(t, z) and Υ(t, z) do not cause
increases in J(t, z). Of course, since the initial control
parameterization was assumed to be feasible, this is no real
surprise. Our interest is in the ability of both Ψ and Υ to
improve upon the initial control parameterization. To this
end, we will look at each mapping individually.

A. Decrease by Υ: The Standard MPC Approach

The primary difference between our approach and the
“standard” NMPC literature is the time-varying nature of
our control parameterization vector θ. However, if we make
the following choices for Ψ and Υ

Ψ(t, z) ≡ 0 (17)

Υ(t, z) = arg min
θ+∈UN

J(t, x, θ+, tθ+) (18)

then the resulting trajectories will be identical to those gen-
erated by standard approaches to MPC using PWC controls.

Criterion 1 is trivial, while Criterion C2.1 follows from

J(t, z+)−J(t, z) =
∫ tθ+

N

t

La
ρ(xp(τ, t, z+), up(τ, t, z+)) dτ

−
∫ tθ

N

t

La
ρ(xp(τ, t, z), up(τ, t, z)) dτ

+ W a
ρ (xp(tθ

+

N , t, z+)) − W a
ρ (xp(tθN , t, z))

≤
∫ tθ+

N

tθ
N

La
ρ(xp(τ, tθN , z̄), up(τ, tθN , z̄)) dτ

+ W a
ρ (xp(tθ

+

N , tθN , z̄)) − W a
ρ (xp

f )

≤ ρ(xp
f )

[∫ tθ+
N

tθ
N

La(xp(τ, tθN , z̄), up(τ, tθN , z̄)) dτ

+W a(xp(tθ
+

N , tθN , z̄)) − W a(xp
f )
]

≤ 0 (19)

where xp
f � xp(tθN , t, z), and z̄ � [xp

f , θ+, tθ+]. Criterion
C2.2 follows from C2.1 and the fact that J(t, z+) →
∞ continuously as xp(tf ) → ∂Xf or any point xp(τ)
approaches ∂X. The input constraint is enforced by the
indicated minimization.

While the theoretical merit of this approach is well estab-
lished in the literature, it requires the assumption that the
mapping Υ(t, z) is instantaneous. This mapping involves a
potentially difficult minimization in which every iteration of
the nonlinear program involves solving prediction trajectories
xp(τ) and up(τ), evaluating J(t, x, θ+, tθ+), and solving all
sensitivity equations necessary to calculate ∇θ+J (used in
descent-based NLP’s).

B. Decrease by Ψ: A New Approach to MPC

Our main goal in this work is to demonstrate that min-
imization of J(t, z) can be performed in a manner which
more realistically accounts for the dynamics associated with
asymptotic convergence of an NLP. In this approach, the
burden of minimization is carried by Ψ, which allows Υ
to be simplified to an explicit, optimization-free expression.
The simplest choice for Υ is

Υ(t, z) := Θ+
i,j =

{
Θi,j+1 j ∈ {1, . . . N−1}(
κδ

(
xp(tθN , t, z)

))
i

j = N

∀i ∈ {1, . . . m} (20)

Satisfaction of criterion C2 follows from (19) and the asso-
ciated arguments of the previous section.
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A general descent-type continuous time update law Ψ(t, z)
can be described as

Ψ(t, z) = Proj
{
ϑ(t, z), Γ(t, z), θ, U

N
}

(21)

ϑ(t, z) = −kθΓ(t, z)∇θJ

where Γ : R × X × ΦN (t, x) → MmN
>0 is a locally

Lipschitz function, MmN
>0 is the space of positive definite

square matrices of size mN , and kθ > 0 is a constant.
The gain kθ controls the rate of descent, while Γ(t, z) is the
variable metric used to select the descent direction. Possible
examples include Γ(t, z) = I (steepest descent), Γ(t, z) =[∇2

θθJ +
(∥∥∇2

θθJ
∥∥

F
+ εJ

)
I
]−1

(Newton’s Method with
trust region), or any number of other choices based on
descent direction-based NLP methods.

The Proj{·, ·, ·, ·} operator is a locally Lipschitz parameter
projection, discussed in [13], [14] in the context of nonlinear
adaptive control, which ensures that each of the N columns
of Θ satisfy Θi ∈ U. For constraint sets U with smooth
boundary ∂U and Ů 	= ∅, one standard definition is:

Proj {ϑ, Γ, s, S}�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϑ
s ∈ S̊r

or vT
⊥ ϑ ≤ 0(

I − c(s)Γ v⊥vT
⊥

vT
⊥Γv⊥

)
ϑ

s ∈ S \ S̊r

and vT
⊥ϑ > 0

c(s) = min
{

1,
r − ε

r

}
, r > 0 (22)

where Sε, ε ∈ [0, r], denotes a family of closed inner
approximations to S strictly satisfying Sε ⊂ Sε′ for ε > ε′,
and where ∂Sε continuously approaches ∂S as ε → 0+. The
vector v⊥ is outward normal to Sε, with ε ≡ ε(s) the level
curve satisfying s ∈ ∂Sε. As an obvious extension of [14,
Lemma E.1], we assert (without proof) the following:

Assertion 1: i) Proj{ϑ, Γ, s, S} is locally Lipschitz in all
of its arguments. ii) The solution to ṡ = Proj{ϑ, Γ, s, S}
from s0 ∈ S satisfies s(t) ∈ S, for all t ≥ 0. iii)
ϑT Γ−1Proj{ϑ, Γ, s, S} ≤ ϑT Γ−1ϑ.

Assertion 1.iii and the positive-definiteness of Γ(t, z)
imply that (21) satisfies criterion C1.1. By Assertion 1.ii,
the resulting control v(t,Θ, tθ) from (12) satisfies the input
constraints. Condition C1.2 follows from the fact that C1.1
ensures J̇ < 0 (see proof of Theorem 1), and that J(t, z) →
∞ continuously as xp(tf ) → ∂Xf or any point xp(τ) → ∂X.

VI. SIMULATION EXAMPLE

To illustrate the concept of real-time optimization pro-
posed in this work, we consider a simple nonlinear example
from [15],

ẋ1 = x2 + (0.5 + 0.5x1)u
ẋ2 = x1 + (0.5 − 2x2)u

with definitions U = [−2, 2] and L(x, u) = 0.5 ‖x‖2 + u2.
The PWC local stabilizer was designed using the exact

discretization of the linearized process for a constant switch-
ing interval of δ = 0.5, yielding the feedback κ(x) =

[0.1402, 0.1402]x. The terminal penalty

W (x) = xT

[
3.6988 2.8287
2.8287 3.6988

]
x

was obtained from a Lyapunov equation, and the correspond-
ing terminal region Xf = {x : W (x) ≤ 0.141} was enforced
using a logarithmic barrier.

The system was simulated from x0 = [−0.683, −0.864],
using several different controllers. The four “real-time” (RT-)
controllers are based on section V-A, using a simple steepest
descent choice for Γ. For comparison, the “standard” (S)
controller is based on section V-B. Controller parameters and
their accumulated costs

∫∞
0

L(x, u)dτ are given in Table I.

TABLE I

CONTROLLER PARAMETERS AND PERFORMANCE

name Υ Ψ Γ δ N kθ cost
RT-1 (20) (21) - 0.5 3 0 6.329
RT-2 (20) (21) I 0.5 3 1 5.134
RT-3 (20) (21) I 0.5 3 10 4.822
RT-4 (20) (21) I 0.5 3 100 4.800

S (18) (17) - 0.5 3 - 4.807
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Fig. 1. Closed-loop response of different controllers

It can be seen from the results in Figure 1 that all five
controllers stabilize the origin, and that as kθ is increased the
trajectories of the RT controllers approach very close to that
attained by the standard MPC controller. In fact, controller
RT-4 marginally outperforms controller S, due to the fact that
the input is recomputed throughout the switching interval.

VII. CONCLUSIONS

In this work, we have proposed a framework for
continuous-time MPC in which the dynamics associated with
the NLP incorporated into the controller design, and allowed
to evolve in the same timescale as the process dynamics
without compromising closed-loop stability. By allowing for
stabilization to a set, a broad range of design methods for
the piecewise constant local stabilizer is permitted. While
our result only guarantees local improvement of an initial
feasible input trajectory, this limitation is shared by most
other implementable approaches such as those using SQP’s.
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APPENDIX

A. Proof of Lemma 1

Let xo(t), uo(t) be a specific open-loop trajectory satis-
fying the stated conditions, for a particular x0 ∈ X 0. Let
S be any compact set satisfying xo(t) ∈ S̊, ∀t ∈ [t0, tf ]
and S ⊂ X̊, and define dS = min(s, t)∈∂S×[t0,tf ] ‖s − xo(t)‖.
Likewise, let xo(tf ) ∈ Sf ⊂ X̊f and define dSf

=
mins∈∂Sf

‖s − xo(tf )‖. Finally, define d � min{dS, dSf
}.

Let w(t) denote the solution to the perturbed system

ẇ = f(w, uo(t)) + g(t, w, θ, tθ), w(t0) = x0

where g(t, w, θ, tθ) � f(w, v(t, θ), tθ) − f(w, uo(t)) for an
(as-yet unspecified) parameterization (θ, tθ). Define Mg ≡
Mg(θ, tθ) �

∫ tf

t0
‖g(τ, w(τ))‖ dτ , and let Kx be the Lip-

schitz constant of f(x, u) w.r.t. x ∈ S, uniformly for u ∈ U
o,

a compact subset of U such that uo(t) ∈ U
o,∀t ∈ [t0, tf ].

Using the Gronwall-Bellman inequality [14, Lemma B11]

‖xo(t) − w(t)‖ ≤
∫ tf

t0

‖f(xo, uo) − f(w, uo)‖ dτ + Mg

≤
∫ tf

t0

Kx ‖xo(τ) − w(τ)‖ dτ + Mg

≤ Mg exp[Kx(tf − t0)]

from which the result follows if it can be shown that the set of
parameterizations satisfying Mg ≤ d exp[Kx(t0− tf )] � Md

has positive measure.
Let Nd denote the number of discontinuities in uo(t)

on t ∈ [t0, tf ], and assume N � Nd. Let (θ, tθ) be a
corresponding parameterization such that θ is defined by
Θi,j = limt→(tθ

j )+ uo
i (t), and tθN = tf . Define πd to be the

(disjoint) set of intervals of the form (tθi−1, tθi ] containing
the discontinuities. Likewise, define π � [t0, tf ] \ πd, and
let dt � maxi

∣∣tθi − tθi−1

∣∣. Then

Mg ≤
∫

π

∥∥g(τ, w, θ, tθ)
∥∥ dτ +

∫
πd

∥∥g(τ, w, θ, tθ)
∥∥ dτ

≤(tf − t0)min
{
Mf ,

(
Ku sup

τ∈π

∥∥uo(τ) − v(τ, θ, tθ)
∥∥)}

+ NddtMf (23)

where Mf � max(x,u1,u2)∈S×Uo×Uo ‖f(x, u1) − f(x, u2)‖,
and Ku is the Lipschitz constant of f(x, u) w.r.t u, on the
set (x, u) ∈ S × U

o. By the continuity of uo(t) on t ∈
π, the supremum in (23) approaches zero continuously as
dt → 0, which implies that Mg ≤ Md follows for sufficiently
small dt. If Mg < Md, then the conclusion holds for small
perturbations in θ or tθ in directions feasible w.r.t. U

N .

B. Proof of Theorem 1

Using the cost (14), we will use a hybrid systems Invari-
ance Principle [12, Theorem IV.1] requiring nonincrease of
Jk(t) � J(t, z(t, k)) under both flow and jump dynamics.
Ordinary-time Evolution
By standard arguments, C1.3 guarantees z(t, k) exists and is

continuous on some nonzero subinterval of [tθi , tθi+1], with
constant k. Using J̇k to denote d

dtJk(t), from (14)

J̇k = ∇tJ + 〈∇xJ, f(x(t, k), u(t, k))〉 + 〈∇θJ, θ̇〉
where u(t, k) � v(t, θ(t, k), tθ(k)). From (14) it follows
∇tJ = 〈∇xJ, f(x(t, k), u(t, k))〉 − La

ρ(x(t, k), u(t, k)), so

J̇k = −La
ρ(x(t, k), u(t, k)) + 〈∇θJ, θ̇〉

≤ −L(x(t, k), u(t, k)) + 〈∇θJ, θ̇〉, ∀x ∈ X \ Σ̊

≤ −γL(‖x(t, k), u(t, k)‖), ∀x ∈ X \ Σ̊ (24)

where the second inequality follows from C1.1. From (13),
the first line of (24) implies that J̇k ≤ 0 when x ∈ Σ̊.
Event-time Evolution
Defining S �

{
za : (θ, tθ) ∈ ΦN (π, x)

}
as the set of feasi-

ble states, we have SH = S \ S̊F , guaranteeing that H(za)
is defined whenever continuous flows are not. Criterion C2.1
then directly gives that Jk+1(t) ≤ Jk(t) under mapping H .

From [12, Theorem IV.1], the above implies that za con-
verges asymptotically to the invariant set M = {za : Jk+1−
Jk = 0 under H(·)} ∪ {za : J̇k = 0 under F (·)}. With
dom{H} and rng{H} disjoint, (24) gives za ∈ M =⇒
x ∈ Σ. Feasibility follows directly from C1.1 and C2.2.
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