
  

  

Abstract—Mill load (ML) estimation plays a major role in 
improving the grinding production rate (GPR) and the product 
quality of the grinding process. The ML parameters, such as 
mineral to ball volume ratio (MBVR), pulp density (PD) and 
charge volume ratio (CVR), reflect the load inside the ball mill 
accurately. The relative amplitudes of the high-dimensional 
frequency spectrum of shell vibration signals contain the 
information about the ML parameters. In this paper, a kernel 
principal component analysis (KPCA) based multi-spectral 
segments feature extraction and genetic algorithm (GA) based 
Combinatorial optimization method is proposed to estimate the 
ML parameters. Spectral peak clustering algorithm based 
knowledge is first used to partition the spectrum into several 
segments with their physical meaning. Then, the spectral 
principal components (PCs) of different segments are extracted 
using KPCA. The candidate input features are serial 
combinated with mill power. At last, GA with Akaike’s 
information criteria (AIC) is used to select the input features 
and the parameters for the least square-support vector 
machine (LS-SVM) simultaneously. Experimental results show 
that the proposed approach has higher accuracy and better 
predictive performance than the other normal approaches. 

I. INTRODUCTION 
lthough wet ball mills have been used widely in many 
grinding processes, they are often operated at low 

grinding production rates (GPR) [1]. One of the reasons is 
the lack of reliable on-line sensors for the mill load (ML) [2]. 
The mechanical grinding of the ball mill produces strong 
vibration and acoustic signals which are periodic over a 
given time interval. In the time domain, useful vibration and 
acoustical signals are buried in wide-band random noise [3]. 
The power spectral densities (PSD) of these signals contain 
information which is directly related to the operating state of 
grinding [3]. Most existing studies focus on the ML 
parameters of the dry ball mill [4], few on the wet ball mill 
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are reported. Partial least squares (PLS) and principal 
component regression (PCR) models are used to estimate 
pulp density (PD) and particle size [3]. The characteristic 
frequency sub-bands of the axis vibration and mill acoustical 
signals are used to construct these soft sensor models. 
However, the axis signal is disturbed by the transfer system. 
Some studies show that the acoustic signals contain more 
information of operating parameters than the axis vibration 
signal, but the acoustic signals have usually crosstalk with 
adjacent mills [5].  

Recently studies show that the on-contact vibration 
system has at least twice the resolution of the traditional 
acoustical signal system [ 6 ]. The studies of the shell 
vibration signal for semi-autogenous (SAG) mill show that 
the shell vibration is a good indicator of the PD and viscosity 
[7]. A genetic algorithm-partial least squares (GA-PLS) 
approach has been proposed to select the characteristic 
frequency sub-bands for different ML parameters based on 
the PSD of the shell vibration signal [8]. However, it is 
difficult to interpret the physical meaning of the selected 
sub-bands and can lead to information loss because of some 
unselected sub-bands.  

The optimal number of features for classification and 
regression depends on the training data. The key problem to 
construct a model via high-dimensional spectrum data is the 
“the Hughes phenomenon” and the “curse of 
dimensionality” [ 9 ]. When a structure vibration is 
transformed into a frequency spectrum, the modes of 
vibration and the large cyclical excitation forces are 
evidenced by peaks in the spectrum [10]. Experimental 
results of the shell vibration spectrum verify this theory [8]. 
Therefore, another soft sensor approach is proposed based 
on the multi-spectral segments principal component analysis 
(PCA) and support vector machines (SVM) [11]. However, 
the partition of the spectral segments is manual, PCA cannot 
extract nonlinear features, and SVM has to solve a quadratic 
program (QP) problem. Moreover, although the shell 
vibration is more sensitive than the shell acoustical and mill 
power signals, studies show that these signals are mainly 
related to specific parameters. For example, shell vibration 
relates to PD [12], shell acoustics relates to mineral to ball 
volume ratio (MBVR) [13], and mill power relates to charge 
volume ratio (CVR) [14]. Different spectral segments of the 
same signal contain redundant and complementary 
information of ML parameters, and principal components 
(PCs) do not take into account the correlation between inputs 
and outputs [15]. Although the first several PCs might be 
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able to properly explain the frequency spectrum, they may 
have less correlation with the ML parameters. When the 
frequency spectrum PCs with higher prediction performance 
and lower correlation is used to construct soft sensor models, 
they can cause worse prediction performance [16]. Studies 
show that the input feature subsets influence the appropriate 
model parameters and vice versa, especially in SVM based 
modeling [17].  

In this paper, a novel soft sensor method based on spectral 
peak clustering, kernel PCA (KPCA), GA and least 
square-support vector machine (LS-SVM) is proposed to 
estimate the ML parameters. The spectral peak clustering 
algorithm is first used to partition the spectrum into several 
segments with different physical meaning. Then, the spectral 
kernel PCs (KPCs) of different segments are extracted using 
KPCA, which are combined with mill power, they are the 
candidate input features. Finally, GA with the Akaike’s 
information criterion (AIC) is used to optimize the input 
features and parameters of LS-SVM simultaneously. A 
successful application is demonstrated on the grinding 
process of a laboratory-scale wet ball mill. 

II.  SOFT SENSING APPROACH FOR ML PARAMETERS 
Based on the analysis of the previous section, we use 

KPCA based multi-spectral segments feature extraction and 
GA based Combinatorial optimization to estimate the ML 
parameters. The approach consists of data processing, 
spectral segment partition, nonlinear spectral feature 
extraction, combinatorial optimization for input features, 
and parameters of soft sensor models. The structure is 
illustrated in Fig. 1. In Fig. 1, superscripts t  and f  
represent the time domain. Subscripts V , A and I  represent 
shell vibration, acoustic and mill power signals, respectively. 

},,{ t
I

t
A

t
V xxxxorg ′=  are the original signals; 

},,{ t
I

f
A

f
V xxpro xx= represent the signals after data processing; 

},,,,{
VD

f
V

f
V1

f
V xxx d

and },,,,{
AD

f
A

f
A1

f
A xxx d   represent the 

frequency spectral segments; },,,,{
VD

f
V

f
V1

f
V ttt d and 

},,,,{
AD

f
A

f
A1

f
A ttt d  represent the nonlinear spectral features 

of each segment; 
],,,,,,,,,,[ t

ID
f

A
f

A1
f

AD
f

V
f

V1
f

V AV
xdd ′′′′′′′= ttttttx  represents 

the optimized input features.  c and γ represent the 
optimized parameters of soft sensor models. 
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real and estimates values of ML parameters, respectively. 

 

A. Spectral Segments Partition 
In order to avoid the arbitrariness of manual partition and 

realize the automatic partition, a spectral peak clustering 
approach is employed. The local peaks of the spectrum are 
obtained with the method in [18,19]. The definitions of the 
mass mB and centroid cB for the local peaks are: 









=

=

∑∑

∑

==

=

2

1

2

1

2

1

2f2f

f

)()(

,

n

nn
n

n

nn
nc

n

nn
nm

xxnB

xB
                  (1) 

where 1n , 2n  denote the frequency range of the local peak 
and cn is the central frequency of the local peak. The local 
peak can be denoted with parameters >< cmc BBnnn ,,,, 21 . 
The local peaks are treated as samples to be clustered, which 
will be clustered into several peak classes under some 
criteria. One peak class is one mode of the spectrum, i.e., a 
spectral segment. The peak class is represented with 
parameters },,,{

21 cm BBnn CCCC . The distance between the 

peak class and the local peak is defined as [19]:   
2)(),(

cm BcBm CBCBCBD −= .                       (2) 

The modified spectral peak clustering algorithm is 
described as follows:  
1) Specify the number of the peak class CN . Specify the 
collection of local peaks },...,2,1,{ Bz NzBB == , where  

BN is the number of local peaks and 

},,,,{ 21 zczmzczzZ BBnnnB =  is the zth  local peak. 
2) Specify the range of the peak class, in which search the 
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ŷ

Fresher ore

Fresh water

Recycle pulp

Balls

Disturbs

Experimental design and 
calculation

y

Compound 
optimization 

for 
Input features 

and 
parameters 
of models

Spectral 
segments 
partition

Data processing
t
Vx

t
Ax

t
Ix′ t

Ix

f
Vx

d
f
Vx

1
f
Vx...

...
VD

f
Vx

f
Ax

d
f
Vx

1
f
Vx...

...
VD

f
Vx

d
f
Vt

1
f
Vt...

...
VD

f
Vt

d
f
At

1
f
At...

...
VD

f
At

t
Ix′

d
f

Vt′
1

f
Vt′...

...
VD

f
Vt′

d
f

At′
1

f
At′...

...
VD

f
At′

c γ
 

 
Fig. 1. Structure of the proposed soft sensor method for ML parameters 
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local peak with maximum mass as the initial peak class. All 
the peak classes are arranged with the ascending order of the 
frequency. This is represented as },...,2,1,{ cr NrCC == , 

where },,,{
21 cm rBrBrnrnr CCCCC =  is the rth  peak class. 

3) Calculate the centroid distance (
crBzc CB − ) of zth  local 

peak to every initial peak class. Then determine the relative 
location of the zth local peak to peak class.  

4) If the zth local peak is in the left the first peak class, 
then the local peak is combined into the first peak class. 

5) If the zth local peak is in the middle of two initial peak 
classes, then calculate the distance between the local peak and 
the neighboring two peak classes with (5). Combine the local 
peak to the neighboring peak class with a large value, and 
then obtain a new peak class. 

6) If the zth  local peak is in the right of the last peak class, 
then the local peak is combined into the last peak class. 

7) Recalculate the mass
mBC and centroid 

cBC for every 

peak class. Repeat step 4) to step 6) until all the local peaks 
are grouped into one of the peak classes. 

By the above algorithm, the frequent spectrum can be 
grouped into several segments, which can be rewritten as: 
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where d
f
Vx  and d

f
Ax  are the dth spectral segments  of 

vibration and acoustical spectrum, respectively; VD and AD  
are the numbers of the spectral segments. 

A. Nonlinear Spectral Features Extraction 
The objective is to find the projected nonlinear spectral 

features with maximum variance in a kernel induced feature 
space. Assume the number of the training samples is L . First, 
maps the spectral segments L

llVd 1
f }){( =x and L
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higher dimensional space; i.e. mapping 
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respectively. Then a linear PCA algorithm is performed. At 
last we can obtain a nonlinear PCA in the original input space 
[xx].  

For illustration, the extraction of spectral KPCs is derived 
for f

Vdx . Instead of an explicit nonlinear mapping, the kernel 
trick is used; i.e. 
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where I is an L-dimensional identity matrix and L1 represent 
the vectors whose elements are ones, with length L.  KPCA 
circumvents the KPC by a dual eigendecomposition problem 
for kernel Gram matrix vvv
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The extracted nonlinear spectral features, namely score 

vectors, of d
f
Vx  and d

f
Ax can be represent as: 
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where, maxAdh is the largest numbers of the KPC for d
f
Ax . The 

values of the maxV dh  and maxAdh is decided by the thresh value 
of the contribution ratio of the KPCs. At last, the extracted 
features for f

Vx  and f
Ax  are given as follows: 







==

==

AD
f
A

f
A1

f
A

f
A

VD
f
V

f
V1

f
V

f
V

D,,1],,,[

D,,1],,,[

A

V

d

d

d

d

tttt

tttt              (8). 

B. GA-based Combinatorial Optimization  
The extracted nonlinear features of vibration and 

acoustical spectrum combined with mill power are used as the 
candidate input features, which are represented as:  

],,[ t
I

f
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f
Vall xttx =                                                (9) 

The least square-support vector machines (LS-SVM) 
simplifies the QP problem to solve a set of linear equations by 
changing the loss function in SVM to a sum of squared errors 
[xxi]. Therefore, the LS-SVM algorithm with the RBF kernel 
functions is used to build the nonlinear models for ML 
parameters. As different ML parameters are related to 
different spectral features, it is necessary for different 
LS-SVM models to select different inputs. At the same time, 
the selection of input features is a problem of multi-source 
information fusion. Proper fusion can improve the prediction 
and robustness of soft-sensor models. GA is a promising 
alternative to conventional heuristic methods, which can deal 
with large search spaces efficiently and is not prone to local 
optimal solutions. The simultaneous selection of the input 
features and LS-SVM parameters is considered as a 
combinatorial optimization problem, which can be solved by 
GA and other intelligent optimization algorithms.  

We define eaf  as the parameter for GA to select, which is 
represented as:  
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are the parameters of vibration spectrum, acoustical spectrum 
and mill power respectively; dfV  and dfA are the numbers of 
KPCs for dth  spectral segment.  

Here, we denote the regularization parameter and the 
radius of the RBF as c  and γ , respectively. The objective of 
the Combinatorial optimization is to select eaf , c  and γ by 
minimizing the error between the output of the LS-SVM 
model  ŷ  and the true value y . In order to improve the 
prediction accuracy of the soft sensor model, Akaike’s 
information criteria (AIC) is used as the fitness function of 
GA, which is represented as: 
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where valL  is the number of the test samples and p  is the 
number of the selected input features. 

The selected input features of the training samples can be 
represented as: 
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Denoting the new sample as z , the resulting prediction 
models for ML parameters based on LS-SVM is: 
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III. LABORATORY EXPERIMENT TEST 

A. Experiment System 
The experiments are performed on a laboratory scale ball 

mill (XMQL-420×450). The vibration signal is picked up by 
an accelerometer located on the middle of the shell, and the 
acoustic signal and the mill power are also recorded. In order 
to find the impact of every possible load and operating 
parameters on the shell vibration at different grinding 
conditions, several assumptions on the mill operating 
conditions are made. Due to limited space, experimental 
detail is described in [8] and omitted here. 

B. Application Results 
The following parameters are used to calculate the PSD 

using the Welch’s method: the data length is 32,768, the 
section number is 32 and the overlap fraction length is 512. 
The detail of the PSD for different grinding conditions is 
given in [8]. The curves of the vibration frequency spectrum 
for building models are shown in Fig.2. 
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Fig.2. Curves of the vibration frequency spectrum for building models 

 
 

TABLE I 
PERCENT VARIANCE CAPTURED BY PLS ALGORITHM 
Vibration spectrum Acoustic spectrum Mill power  LV#
X-Block Y-Block X-Block Y-Block X-Block Y-Block

1 94.99 10.66 51.48 57.30 100 45.79
2 1.94 51.17 12.19 30.06 NaN NaN
3 0.69 16.83 5.50 8.16 NaN NaN

M
B
V
R 4 0.14 13.98 4.89 2.81 NaN NaN

1 95.14 46.22 12.91 70.71 100 0.93
2 1.27 34.74 47.82 7.76 NaN NaN
3 1.07 10.26 7.66 13.80 NaN NaN

P
D

4 1.51 1.65 8.12 3.28 NaN NaN
1 95.11 36.09 52.19 41.82 100 34.56
2 1.87 36.97 8.30 35.81 NaN NaN
3 0.91 8.96 5.43 13.35 NaN NaN

C
V
R

4 0.94 7.85 6.57 4.37 NaN NaN
 

 
Because the PLS algorithm aims to maximize covariance 

between the input and output data using a few latent variables 
(LVs), it is used to analyze the relationships between the full 
frequency spectrum, mill power and ML parameters. The 
statistical results are shown in Table I. 
Based on TABLE I, the percent variance captured by the 1st 
LV shows that the vibration frequency spectrum has the 
largest correlation with PD, 95.14% to 46.22%; the acoustical 
frequency spectrum has the largest correlation with MBVR, 
51.48% to 57.30%; the mill power also has the largest 
correlation with MBVR, 45.79%. It is shown that the 
information fusion and feature selection are necessary to 
construct the effective ML parameters models. 

Fig. 2 shows that we can partition the vibration frequency 
spectrum into at least three segments. The vibration spectrum 
is composed of 60 small peaks. Using the proposed spectral 
peak clustering algorithm, the vibration spectrum is 
partitioned into four segments, which are 102-2385Hz 
(Vibration Low Frequency, VLF), 2385-4122Hz (Vibration 
Medium Frequency, VMF), 4122-7227Hz (Vibration High 
Frequency, VHF) and 7600-11000Hz (7227-11000Hz, 
Vibration High-high  Frequency, VHHF), respectively. Using 
the same steps, the acoustical frequency spectrum is 
partitioned into three segments, which are 1-1071Hz 
(Acoustical Low Frequency, ALF), 1071-1688Hz 
(Acoustical Medium Frequency, AMF) and 1688-2073Hz 
(Acoustic High Frequency, AHF), respectively. 
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TABLE II 
CONTRIBUTION RATIOS OF KPCS FOR DIFFERENT SPECTRAL SEGMENTS 

KPC # Signals Spectral 
segments 1 2 3 4 5 

VLF 88.26 5.271 3.023 1.704 0.0696
VMF 98.31 1.162 0.0244 0.0137 0.0046
VHF 99.80 0.114 0.029 0.015 0.010Vibration 

VHHF 99.85 0.0798 0.0335 0.0098 0.0079
ALF 85.20 7.278 3.558 1.290 1.199
AMF 90.02 4.645 2.015 1.352 0.0895Acoustic 
AHF 87.23 7.804 1.782 1.375 0.0598

    

 
The results in TABLE II show that the variances captured 

by KPCA with the same RBF kernel for different spectral 
segments are different. It is necessary to select different KPCs 
in different spectral segments for construct effective ML 
parameters soft sensor models. 

In this paper, the initial numbers of the KPCs are selected 
as 6, 4, 2, 2, 8, 8 and 8 for VLF, VMF, VHF, VHHF, ALF, 
AMF and AHF, respectively. These spectral features are 
serial combination with mill power as the candidate features 
with (12). The length of bit strings for encoding c , γ  and eaf  
are 20, 20 and 19 respectively. After encoding the candidate 
input features and LS-SVM parameters, the Combinatorial 
optimization based on GA is made. Considering the random 
initialization problem of GA’s population, the simulation is 
running at least 20 times.  

For comparison, the soft sensor models of different 
approaches and data sets are built simultaneously. The 
numbers of the LVs for PCR and PLS algorithm are decided 
with leave-one-out cross validation method. The prediction 
results and statistical parameters are listed in TABLE III, in 
which RMSSE is the root mean square relative error of the 
testing data set. The real and estimated curves with PLS, PCR 
and the proposed method are shown in Fig. 3~ Fig. 5. 

The models based on GA-PLS have better prediction 
accuracy than PCR and PLS, but the former has the longest 
training time. The results show that it is important to select 
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Fig. 3. Prediction result of the MBVR 
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Fig. 4. Prediction results of the PD 
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Fig. 5. Prediction results of the CVR 

different input features for different ML parameters, and the 
sensitivity of the ML parameters to the frequency spectral 
segments and mill power are different. For example, the eaf  

TABLE III 
PERFORMANCE ESTIMATION OF DIFFERENT MODELING  

 Appr 
oach Data setsa Parametersb RMSSE

PCR V+A+I Number of LVs:6 0.2471
PLS V+A+I Number of LVs: 4 0.2546

GAPLS V+A+I Number of LVs:8 0.2502
PCAv {(42825,450),(4,1,2,1),(#,#,#),(#)} 0.1767

KPCAV {(28225, 536),(2,3,0,1),(#,#,#),(#)} 0.2128
PCAA {(31507, 327),(#,#,#),(1,2,2),(#)} 0.1808
KPCA {(46855, 520),(#,#,#),( 1,1,3),(#)} 0.1811

I+PCAVA {(21758, 596),(2,1,0,1),(2,1,0),(1)} 0.1637

M 
B 
V 
R This 

paper 

I+KPCAVA {(26406, 398),(1,1,0,2),(2,2,0),(0)} 0.1325
PCR V+A+I Number of LVs: 6 0.1922
PLS V+A+I Number of LVs: 4 0.1479

GAPLS V+A+I Number of LVs:12 0.1365
PCAv {(42825, 450),(4,1,2,1),(#,#,#),(#)} 0.1401

KPCAV {(38948, 454),(1,1,2,2), (#,#,#),(#)} 0.07995
PCAA {(49123, 415),(#,#,#),(3,3,5),(#)} 0.1486
KPCAA {(49846, 300), (#,#,#),( 1,1,0), (#)} 0.2241

I+PCAVA {(48482, 301),(1,3,0,0),(1,2,0),(0)} 0.1123

P 
D This 

paper 

I+KPCAVA {(20946, 426),(2,1,0,2),(1,1,2),(0)} 0.07249
PCR V+A+I Number of LVs: 6 0.2184
PLS V+A+I Number of LVs: 7 0.1826

GAPLS V+A+I Number of LVs: 5 0.1598
PCAv {(44677, 365),(7,1,0,0), (#,#,#),(#)} 0.1793

KPCAV {(49767, 468),(7,1,0,0),(#,#,#),(#)} 0.1491
PCAA {(27968, 597),(#,#,#),(3,3,2),(#)} 0.1985

KPCAA {(49312, 321),(#,#,#) (2,3,0), (#)} 0.2534
I+PCAVA {(20268, 563),(1,4,0,0),(1,2,0),(0)} 0.1343

C 
V 
R This 

paper 

I+KPCAVA {(42870, 461),(1,4,0,0),(1,1,0),(0)} 0.1187
a The subscript ‘V’, ‘A’ and ‘I’ indicates the shell vibration , acoustical and 
mill power signals respectively. 
b The parameters are defined as {( c , γ ), ( V1f , V2f , V3f , V4f ), 

( A1f , A2f , A3f ),( If )},which are the parameters of the LS-SVM models, 
the numbers of the spectral PCs of the vibration and acoustical spectrum, the 
status of mill power respectively. ‘#’ indicates that the value of the 
parameters is not included in the soft sensor model. 
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for MBVR, PD and CVR are {(1,1,0,2),(2,2,0),(0)}, 
{(2,1,0,2),(1,1,2),(0)} and {(1,4,0,0),(1,1,0),(0)} respectively. 
The results based on different data set also shows that only 
vibration or acoustical spectrum is insufficient to model all 
the ML parameters satisfactorily. The vibration spectrum has 
the highest sensitivity with the PD soft sensor model, the 
RMSSE of which is 0.07995, but for the proposed approach, 
the RMSSE is 0.07249. The results consist with the 
mechanism analysis, which also shows the superiority of shell 
vibration in modeling the ML parameters. But the 
contribution of mill power is not as important as in the 
industry-scale ball mill, the reason maybe come from the 
laboratory-scale ball mill which is too small to reflect the ML. 

IV. CONCLUSIONS  
In this paper, a soft sensor approach for estimating the wet 

ball mill load based on FFT, Clustering, KPCA, GA, and 
LS-SVM is proposed. This novel approach possesses the 
following characteristics:  

1) Features of the frequency spectrum are extracted;  
2) Frequency spectrum is partitioned into segments with 

physical meaning automatically;  
3) The number of nonlinear KPCs for the spectral segments 

is specified in advance;  
4) Information fusion is achieved in multi-source sensors 

effectively  
5) Input features and the LS-SVM parameters are 

optimized simultaneously. 
This approach is successfully applied to a laboratory-scale 

grinding process with designed experiments, which produce 
better predictive performance.  
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