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Abstract— Multi-robot formation problem has received in-
creasing attention due to its wide applications such as surveil-
lances and various services. To illustrate a novel framework
on optimal multi-robot formation given in our previous work,
which aims to answer the long-term ignored fundamental
problem of describing the formation and clarifying optimal for-
mation rigorously in a mathematical manner, as a preliminary
case study, various cases of the simplest optimal line formation
of three robots, i.e. minimax travel-distance line formation
problems, where each robot admits to move with the same
constant speed along any chosen direction and the three-robot
team aims to row on a straight line with the minimum maximal
travel distance, are investigated in this note. Such problems look
like very easy to resolve, however, to our surprise, mathematical
results for these cases established with geometric analysis and
inequalities have shown the non-trivialness of the most simple
optimal line formation problem. Extensive simulations have
also been conducted and briefly reported in this contribution,
and these experimental results are found to coincide with the
established theoretical results.

I. INTRODUCTION

In the past decades, multi-robot systems have received
increasing attention in the research community due to their
wide applications and academic challenges, especially, multi-
robot systems can be regarded as important background of
multi-agent systems [1], which are often used to model
the so-called complex systems [2]. For multi-robot systems,
or generally multi-agent systems, which consist of many
individual agents, one challenging big academic problem,
which has been extensively addressed in the literatures from
various different aspects, is to investigate the intrinsic rela-
tionship between the individuals and the whole, i.e. whether
individual behaviors can result in some global properties,
such as stability [3], consensus [4], synchronization [5],
formation [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], and so on. In many applications of multiple robots
such as cleaning, mine sweeping, security patrols, and so on,
robot formation plays one important and basic role in sense
that the robots in a team are usually controlled as a whole to
follow required formations to accomplish tasks with satisfied
overall performance.

Many different issues about robot formation and for-
mation control, e.g. safety in formation, stability of the
formation, etc., have been extensively studied in the liter-
ature, some of which have been briefly surveyed in [18] by
Y.Q.Chen and Z.M.Wang.

Despite of existing extensive studies and increasing
research interests on formation control, we notice that the
following two fundamental problems are seldom exactly
addressed and discussed in a mathematical manner: How to
define a formation? How to define the ‘optimal’ formation?
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Motivated by the above questions and many practical de-
mands for efficient robot formation, in our previous work
[19], some preliminary basic concepts related to robot forma-
tion have been mathematically defined and a new framework
of general optimal formation problem has been introduced
to lay a solid foundation for future research on multi-robot
optimal formation.

In this paper, under the established framework of robot
formation, the minimax travel-distance optimal line forma-
tion problem is discussed for several typical cases with
mathematical results presented for the optimal solutions. As
a preliminary study, this paper will focus on several cases
of optimal line formation of a three-robot group, where the
desired formations are raw line formation, fixed-slope line
formation, and ordered line formation, respectively, since
line formation is a typical class of frequently demanded
formations and can serve as a basis to investigate more
general formations of multiple robots.

Roughly speaking, the more the constraint conditions of
a desired formation are imposed, the smaller the formation
set meeting the requirement is. In almost all interested cases,
the formation set usually consist of infinite many possible
formations, hence generally it is difficult to figure out the
optimal one and require great amount of computation efforts
to seek the optimal formation process involving dynamics
of all robots. For the optimal line formation problems con-
sidered in this contribution, instead of blind search for the
optimal solution, geometrical method is skillfully adopted
here to analytically solve these problems. Note that although
the line formation looks like very simple and easy to solve,
our nontrivial analysis to several typical case studies with
geometrical arguments as well as trigonometric inequalities
has shown that, generally speaking, solving the optimal
formation problem is far from obvious and very challenging
in terms of technical difficulties involved and computation
complexity.

For clarity, contributions of this paper are highlighted as
follows:

• The minimax travel-distance raw line formation of
three-robot group is analytically discussed, with detailed
mathematical proofs.

• Optimal solutions to the minimax travel-distance fixed-
angle line formation problem and ordered line formation
problem of three-robot group are also presented, whose
nontrivial proofs are omitted here to save space.

• Simulation results have verified our theoretical results
for three-robot line formation and these preliminary case
studies have obvious practical background and potential
applications, which may serve as a basis for discussing
more general optimal formation problems.
The remainder of this paper is organized as follows: first,

for convenience of readers, some preliminary mathematical
concepts related with robot formation are given in Section
II as well as our general framework of optimal multi-robot
formation; then, mathematical results on optimal three-robot
line formation problems for three typical cases are rigorously
presented in Section III, as well as some simulation results
given in Section IV which verify our theoretical results;
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finally, we conclude this paper in Section V with several
concluding remarks.

II. PRELIMINARIES: CONCEPTS AND FRAMEWORK

For brevity and convenience, we sketch some prelim-
inary concepts and the framework of optimal multi-robot
formation, which is detailedly discussed in our previous work
[19].

A. Preliminary Concepts

Definition 2.1: Suppose that the robot moves in one
subset Ω of the whole euclidean space Rm, where m is
usually taken as 2 or 3 in practical life. Here Ω ⊆ Rm is
called free space of the robot. If Ω = Rm, then we say that
the robot is moving unconstrainedly.

Definition 2.2: Any mapping f : S → R1 is called a
scalar function of group status. Any mapping f : S → Rd

is called a vector function of group status.
Given a function f of group status, and suppose that

robot Ri move to Pi(t) at time t (i = 1, 2, · · · , n), then
f(S(t)) is in fact a value depending on all robots’ positions.
For convenience, we use d(P,Q) to denote the distance
between points P and Q in euclidean space Rm. That is
to say, in case of m = 2,

d(P,Q)
∆
=

√

(xP − xQ)2 + (yP − yQ)2

where (xP , yP ) and (xQ, yQ) are coordinates of points P
and Q, respectively. In case of m = 2, we also use α(P,Q)
to denote the slope angle of vector ~PQ, which can be defined
by

α(P,Q)
∆
= arctan(xQ − xP , yQ − yP )

where arctan(x, y) ∈ R[2π] denotes the arctangent angle in
the correct quadrant determined by the coordination (x, y).
Function dij(·) : S → R1 is defined by

dij(S(t))
∆
= d(Pi(t), Pj(t))

Besides, we need the follow notations:

αi(S(t);Q)
∆
= α(Q,Pi(t))

αij(S(t))
∆
= α(Pi(t), Pj(t))

βij(S(t);Q)
∆
= α(Q,Pj(t))− α(Q,Pi(t))

βikj(S(t))
∆
= α(Pk(t), Pj(t))− α(Pk(t), Pi(t))

Definition 2.3: For a group of robots R1, R2, · · · , Rn,
suppose that the group status S(t) ∈ Ωn is determined by a
time-dependent mapping Gt : S ×Θ:

S(t) = Gt(S(0), θ), θ ∈ ΘG

where S(0) is the initial group status of robots, and θ ∈ ΘG

is a vector holding parameters of the robots motion. Then
we say that Gt is a group motion model of the robots and θ
is called the motion parameter vector of the robots.

Definition 2.4: For a group of robots R1, R2, · · · , Rn,
suppose that all robots share the same motion model, that is
to say, each robot’s position Pi(t) ∈ Ω at time t is determined
by a time-dependent mapping Ft : Ω×Θ:

Pi(t) = Ft(Pi(0), θi), θi ∈ Θ

where Θ is a common set of parameter vectors for all robots
and Pi(0) is the initial position of Robot Ri. In this case, Ft

is a homogeneous motion model of the robots and θi ∈ Θ is
the motion parameter of Robot Ri.

Definition 2.5: For a group of robots R1, R2, · · · , Rn,
suppose that all robots share the same motion model and
each robot will not move any longer once stop at certain
time instant, that is to say, each robot’s position Pi(t) ∈ Ω
at time t is determined by a mapping F : R× Ω×Θ such
that

Pi(t) =

{

F (t;Pi(0), θi), if 0 ≤ t ≤ Ti

F (Ti;Pi(0), θi), if t ≥ Ti

where Θ is a common set of parameter vectors for all robots
and Pi(0) is the initial position of Robot Ri. In this case, F is
called a truncatable homogeneous motion model of the robots
and θi ∈ Θ is the motion parameter of Robot Ri. Note that
the truncation time (or termination time) Ti generally may
be dependent of θi.

B. What is a formation?

Definition 2.6: For a group of robots R1, R2, · · · , Rn, a
prescribed formation set F is essentially a set of group status
which satisfy certain specific constraints. Mathematically
speaking, suppose that

g1, g2, · · · , gp, h1, h2, · · · , hq : S → R
are several given functions of group status, then the set

F =
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is called a formation set, which is defined by equality
constraints gj(S) = 0 (j = 1, 2, · · · , p) and inequality
constraints hj(S) ≥ 0 (j = 1, 2, · · · , q). And any element of
F is called a desired formation.

C. What is optimal formation?

Definition 2.7: Mathematically speaking, a formation
process P is an indexed collection {S(t), t ≥ 0} of group
status S(t), ending with or approaching to a desired forma-
tion. Intuitively speaking, a formation process is the whole
process of a group of robots starting from their initial group
status until they formulate a desired formation.

Definition 2.8: Given a formation set F and a formation
process P = {S(t), t ≥ 0}, let

dclose(t)
∆
= inf

SF∈F
d(S(t), SF )

where d(S(t), SF ) denotes the distance between group status
S(t) and SF , which will be discussed later and which
intuitively measures the degree of closeness to the desired
formation.

Definition 2.9: Let S = (P1, P2, · · · , Pn) ∈ Ωn and
S′ = (P ′

1, P
′
2, · · · , P ′

n) ∈ Ωn be two group status. Then the
distance between S and S′ can be defined as

d(S, S′)
∆
= max(d(P1, P

′
1), d(P2, P

′
2), · · · , d(Pn, P

′
n))
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where d(Pi, P
′
i ) denotes the euclidean distance between

point Pi and P ′
i in Rm. It is easy to verify that

d(S, S) = 0; d(S, S′) = d(S′, S); d(S, S′) = 0 iff S = S′

and the triangular inequality

d(S, S′) + d(S′, S′′) ≥ d(S, S′′)

holds for any group status S, S′, S′′ ∈ Ωn. Hence d(·, ·)
defines a distance well in Ωn.

Definition 2.10: Any scalar function I(P) of a forma-
tion process P can be regarded as a performance index
of the formation process, which presents a criterion for
quantitatively evaluating the formation process.

Example 2.1: For a finite-time formation process P , let
Di denotes the total travel distance of Robot Ri from initial
time to termination time Ti. Maximum travel distance D is
defined as

D
∆
= max(D1, D2, · · · , Dn)

Obviously, D is a scalar determined by the formation pro-
cess, hence, maximum travel distance D(P) can be regarded
as a performance index of the formation process P .

Definition 2.11: Given a formation set F , a perfor-
mance index I(·), a group motion model Gt, and a set P of
formation processes (following the specified motion model)
starting from initial group status S0, then the purpose of
general optimal formation problem is to find an optimal
formation process Popt which minimizes the performance
index I(P), i.e.

Popt = argmin
P∈P

I(P)

And

I∗
∆
= I(Popt)

is called the optimal performance index of this optimal
formation problem.

When we consider parametric motion models and for-
mation processes, the optimal formation process is indeed to
find the optimal formation parameters θ∗ ∈ Θ such that

θ∗ = argmin
θ∈Θ

I(S0; Θ)

where

I(S0; θ)
∆
= I(P(S0; θ))

is essentially determined by the initial group status as well as
the motion parameters θ ∈ Θ, and consequently the optimal
performance index is

I∗ = I(S0; θ).
Definition 2.12: In Definition 2.11, if the performance

index is taken as the maximum travel distance D(P) given
in Example 2.1, then the optimal formation problem is
called minimax travel-distance optimal formation problem,
or simply minimax travel-distance formation problem.

The formulation of optimal formation problems looks
like very simple from Definition 2.11, however, from this
contribution, we can see that such a class of formation
problems are generally very nontrivial even for the most sim-
ple problems of three-robot optimal line formations. Based
on the concepts given above, we are ready to present the
minimax travel-distance three-robot line formation problem.

III. MINIMAX TRAVEL-DISTANCE THREE-ROBOT LINE

FORMATION

A. Considered Line Formations

In this paper, we focus on the following three typical
line formations.

Definition 3.1: (Raw) Line Formation: A (raw) line
formation refers to the group status such that all robots are
exactly located on the same straight line. Such a formation
set can be mathematically defined by

F = {S|βijk(S) = 0, ∀1 ≤ i < j < k ≤ n}
or, explicitly, the constraints in the plane can be reduced to

(x1 − x2)(y1 − yi)− (x1 − xi)(y1 − y2) = 0, i = 3, 4, . . . , n

where (xi, yi) denotes the desired position of Robot Ri.
In many situations, the desired line formation needs

more additional constraints, some of which have been de-
scribed in [19], here we consider only fixed-slope line
formation and ordered line formation.

Definition 3.2: Fixed-Slope Line Formation: Suppose
that all robots are expected to follow a line with certain slope
κF = tan γF , where γF is the desired slope angle. Then,
the formation set can be mathematically defined by

F = {S ∈ S|αij(S) = κF , ∀1 ≤ i < j < k ≤ n}
Definition 3.3: Ordered Line Formation: Suppose that

all robots are expected to follow a line with specified
alignment order

R1 → R2 → . . . → Rn

Then, the formation set can be mathematically defined by

F = {S ∈ S| βjik(S) = 0, dik(S)− dij(S) ≥ 0,
∀1 ≤ i < j < k ≤ n} (1)

As a starting point, we only consider optimal line
formation of a three-robot group, which is the most simple
case and may play a basic role for understanding optimal
formation of more robots since a group of many robots may
be divided in sub-groups with no more than three robots,
which may help to seek global optimal formation by divide-
and-conquer strategy.

B. Notations For Analysis

As to the performance index, we consider the maximal
travel-distance D(P), which intuitively reflects maximal cost
for robots to reach a desired formation. For robots moving
with the same speed, this performance index will be propor-
tional to the formation time, hence solving minimax travel-
distance line formation problem is equivalent to solving
minimum time line formation problem. For the three typical
desired line formations given in Definitions 3.1—3.3, we
are ready to investigate the corresponding minimax travel-
distance three-robot line formation with any initial group
status S(0), and we will present its optimal solution by
stating explicitly the desired target position of each robot and
the optimal performance index, i.e., maximal travel distance,
will be analytically figured out. For the line formation
problems considered here, the optimal formation process can
be generated as follows:

1) Compute every robot’s optimal target position in the
optimal formation, then we can get the set F∗ of
desired optimal formations and the corresponding op-
timal formation parameters θ∗.

2) Robots go straight to their optimal target position in
a constant speed, and stop after reaching their optimal
target position.
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3) Once the last robot reaches its optimal target position,
the minimax travel-distance formation has formed.

To facilitate our theoretical analysis, we need to in-
troduce some notations first, which are given below as
illustrated in Fig.1:

1) Three robots are denoted by R1, R2, and R3, re-
spectively. Initially, three robots usually constitute a
triangle, whose vertices are also named as Ri (i =
1, 2, 3) without confusion.

2) Let f ∈ F denote any straight line, i.e. one possible
desired formation, then the so-called optimal line for-
mation problem is in fact to determine an optimal line
f∗ such that three robots can locate on the line f∗ by
moving for some time.

3) For simplicity and convenience, let

di(f)
∆
= di(S(0), f)

be the initial distance between Ri and f for any given
desired straight line f .

4) Let

l1 = d23(S(0)), l2 = d13(S(0)), l3 = d12(S(0))

be each two robots’ initial distance.
5) Let

h1 = d1(S(0), R2R3)

h2 = d2(S(0), R1R3)

h3 = d3(S(0), R1R2)

where

R2R3, R1R3, R1R2

are the lines on which each two robots are located.

With the notations above, given a line f , there will be
a set {d1(f), d2(f), d3(f)}. Let

Dmax(f) = max{d1(f), d2(f), d3(f)}
Therefore, to obtain the minimax travel-distance D∗, we
should find a line f∗ such that

D∗ = min
f∈F

Dmax(f) = Dmax(f
∗)

which consequently determines the optimal formation param-
eters θ∗ for three robots, in the way that the robots should
go to the desired line with the shortest path, as indicated
by di(f), i = 1, 2, 3. Next, we give our conclusions of the
optimal problems.

C. (Raw) Line Formation

Theorem 3.1: For a three-robot group with any initial
group status S(0), if their desired formation is raw line
formation given in Definition 3.1, then

(i) The minimax travel-distance D∗ can be explicitly given
by

D∗ =
1

2
hmin

where hmin is defined as

hmin

∆
= min{h1, h2, h3}

(ii) The corresponding optimal formation f∗ is the perpen-
dicular bisector of the shortest altitude of the triangle
R1R2R3.

(a) (b) (c)

(d) (e)

Fig. 1. The situation of the relationship of the triangle’s vertex and the line
f

Remark 3.1: Raw line formation is the most basic line
formation, which contains least constraints in the formation
set F , hence the corresponding formation set F is much
larger than other line formations.
Proof. According to the relative position relation between the
line f and the triangle, we can divide all possible situations
into five cases:

1) The line f does not intersect with the triangle, as
shown in Fig.1(a);

2) The line f passes only a vertex of the triangle, as
shown in Fig.1(b);

3) An side of the triangle is on the line f , as shown in
Fig.1(c);

4) The line f passes a vertex of the triangle and intersects
with an side of the triangle, as shown in Fig.1(d);

5) The line f intersects with two sides of the triangle, as
shown in Fig.1(e).

To establish Theorem 3.1, we need only to discuss five
cases shown in Fig. 1(a)—Fig. 1(e), respectively, and show
that the lower bound hmin

2
of Dmax can be achieved in certain

case, while in other cases we must have Dmax > hmin

2
. The

key idea is to adopt the following basic relationship among
the heights hi, side lengths li and angles ∠Ri (i = 1, 2, 3):







h1 = l3 sin∠R2 = l2 sin∠R3

h2 = l3 sin∠R1

h3 = l2 sinα
(2)

{

d2 = l3 sinα
d3 = l2 sin(α+ ∠R1) = l2 sinβ

(3)

where β = π − α − ∠R1. Since the proof details are
rather involved, we omit them to save space due to the page
limitation.

D. Fixed-Slope Line Formation

Theorem 3.2: For a three-robot group with any initial
group status S(0), if their desired formation is fixed-slope
line formation given in Definition 3.2, suppose that the
desired slope angle is γ w.r.t. the line R2R3, as shown in
Fig. 2, then

(i) The minimax travel-distance D∗ is

D∗ =
1

2
max{l3 sin(∠R2 − γ), l2 sin(∠R3 + γ)}.
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(ii) The corresponding optimal formation f∗ is the line with
specified slope angle passing the midpoint of the side
R1R2 if

l3 sin(∠R2 − γ) ≥ l2 sin(∠R3 + γ),

or R1R3 if

l3 sin(∠R2 − γ) ≤ l2 sin(∠R3 + γ).

There are two optimal formations when

l3 sin(∠R2 − γ) = l2 sin(∠R3 + γ).

Fig. 2. The relationship of li, di, and ∠Ri (i = 1, 2, 3) in optimal fixed-
slope line formation problem

Remark 3.2: We can show that the optimal value D∗ in
this theorem will not be smaller than 1

2
hmin, which is the

optimal value obtained in Theorem 3.1. This non-obvious
fact is intuitive since fixed-slope line formation adds some
constraints to the raw line formation.

E. Ordered Line Formation

In this formation, three robots aim to form a straight line
with a fixed order, say

R1 → R2 → R3

without loss of generality. That is to say, robot R2 should
be in the middle of the other two robots. In this paper, we
suppose that any two robots can gather at the same place.

Theorem 3.3: For a three-robot group with any initial
group status S(0), if their desired formation is ordered line
formation given in Definition 3.3, then

(i) The minimax travel-distance D∗ is

D∗ =

{

h2

2
if max{∠R1,∠R3} < π

2
1

2
min{R1R2, R2R3} if max{∠R1,∠R3} ≥ π

2

(ii) If

max{∠R1,∠R3} <
π

2

then the corresponding optimal formation f∗ is the
perpendicular bisector of the altitude of the side R1R3;
otherwise, the corresponding optimal formation f∗ is
the shorter one side among sides R1R2 and R2R3.

IV. SIMULATION RESULTS

In last section, we have presented three conclusions
about minimax travel-distance three-robot line formation
problems. We will make some simulation experiments to
clearly verify these conclusions in this section.

In the plane, the initial positions of three robots can be
arbitrarily set to make them form different types of triangles.
After setting the initial groups status, we may use the
theoretical results given in last section to calculate optimal
D∗ and the corresponding optimal desired line formation f∗.
To verify the validness of the theoretical results, for other
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Fig. 3. The case of line formation problem

arbitrarily chosen line f , whose equation can be expressed
in the two-dimensional Cartesian coordinate system with two
parameters k and b as follows

y = kx+ b,

we can calculate the maximal distance Dmax(f) =
max{d1(f), d2(f), d3(f)}, and then check whether
Dmax(f) ≥ D∗. By changing the parameters k and b in
a large range, we need only verify that Dmax(f) ≥ D∗

always hold.
a) Raw Line Formation: The three robots’ initial

positions are R1(30, 30), R2(60, 60), and R3(80, 30), re-
spectively. Then, we can calculate the length of three sides
as follows

l1 = 10
√
13

l2 = 50

l3 = 30
√
2

Obviously, l2 is the longest side. Then from Theorem 3.1, we
know that the line f∗ is the triangle’s median line and passes
the point (45, 45) and the point (70, 45). Consequently, we
obtain that the line f∗ has parameters K = 0 and b = 45,
i.e. the line f∗ can be described by

y = 45

Then we know that distance D∗ is 15. Finally we get the
result shown in Fig.3(a), where the thick solid line is line f∗,
and the big points denote the robots’ positions in the optimal
formation, and the dotted lines denote the robots’ moving
paths from their initial position to the optimal formation.

Next, we will calculate maximal distance Dmax between
three robots and an arbitrary line f . The slope K of the line
f varies from -40 to 100 by a step of 1.4, and for each
certain K, we change b from -20 to 100 by a step of 1.2.
For every line f corresponding to each parameter pair (K, b),
we calculate the distances d1, d2, d3 and Dmax, whose values
are plotted vs. K and b in Fig.3(b). As shown in Fig.3(b), X
axis denotes the value b, Y axis denotes the value k, and Z
axis denotes the value Dmax. As is seen, the big black point
is D∗, and it is the same as our theoretical result, which
verifies the validity of the theoretical analysis.

b) Fixed-Slope Line Formation: The results of the
fixed-slope line formation problem of three-robot group are
shown in Fig.4(a) and Fig.4(b). The three robots’ initial
positions are still (30, 30), (60, 60), and (80, 30). And we
fix the slope of desired formation as

k = 0.5

In Fig.4(a), it is shown that the line f∗ is

y = 0.5x+ 10
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Fig. 4. The case of fixed-slope line formation problem
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Fig. 5. The case of ordered line formation problem

which is obtained from Theorem 3.2.
Fig.4(b) depicts the distance Dmax between three robots

and an arbitrary line f , and we use similar method to change
the line f by changing the parameter b. As is shown in
Fig.4(b), X axis denotes the value b, and Y axis denotes
the value Dmax. The optimal formation is the same with
the theoretical result given by Theorem 3.2, which shows
consistence between the theory and the experiments.

c) Ordered Line Formation: The results of ordered
line formation problem of three-robot group are shown in
Fig.5(a) and Fig.5(b). We just do experiments in the case
of the angle ∠R2 < π

2
, because it has the same conclu-

sion with the raw line formation problem when the angle
∠R2 ≥ π

2
. Firstly, we set the three robots’ initial positions

as R1(30, 30), R2(60, 60), R3(50, 30). And we suppose that
the desired robot order is R1 → R2 → R3. That is to say,
R2 must be in the middle of the R2 and R3. Next, we obtain
the optimal formation f∗ from Theorem 3.3, which is shown
in Fig.5(a). As we can see, f∗ is the line given by

y = 0.6x+ 12

Fig.5(b) depicts the distance Dmax for each f which is
changed in a similar way with the method above. And it
verifies the validness of the theoretical analysis.

V. CONCLUSION

To illustrate the mathematical framework of optimal
multi-robot formation introduced in our previous work [19],
this paper focuses on the most simple cases of three-robot
line formations where the robots moving with the same speed
are expected to row on one straight line with the minimum
maximal travel-distance so that the formation can be for-
mulated in the most efficient way. Non-trivial mathematical
results to the optimal solutions for these problems have
been presented, which illustrate some challenges in solving
such optimal formation problems. The theoretical results
are also verified through extensive simulation results, which
validify correctness of the established mathematical results
and indicate alternative approaches to find the solutions
of more general optimal formation problems due to the
mathematical difficulties involved.

As a starting point in this direction, more work need
to be done in the future to address the more challenging
problems for more robots, more formation shapes, more for-
mation cases, more formation indices, more motion models,
and so on. And even for three-robot minimum-time formation
problems, there are some remaining challenging problems,
for example, the geometric methods in this contribution may
not be suitable to the cases where the robots have different
speeds. And currently we do not consider more challeng-
ing optimal/sub-optimal decentralized formation algorithms,
which need more investigations in the future.
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