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Abstract— In this work a method to evaluate the perfor-
mance of autonomous patrolling systems is introduced based
on stochastic reachability with random sets. We consider set-
valued models with stochastic dynamics for multiple pan-tilt-
zoom (PTZ) cameras acting as pursuers and a single evader.
The problem of maximizing the probability that the evader
successfully completes an intrusion objective while avoiding
capture by the cameras is considered and posed as a stochastic
reach-avoid problem. The solution of the stochastic reach-avoid
problem is solved via dynamic programming where the optimal
value function is used as a quality indicator of each patrolling
strategy. A comparison between multiple patrolling strategies
is provided via simulation of a realistic patrolling scenario.

I. INTRODUCTION

The design of algorithms for dynamic patrolling and
exploration of an environment is an important subtask in real-
time autonomous surveillance [1]. The primary goal of many
patrolling tasks is the capture of unknown entities within the
environment. While many patrolling algorithms exist in the
literature, it is often necessary (and difficult) to choose a
patrolling algorithm that best satisfies the objectives of the
security task.

The exploration of surveillance objectives of PTZ cameras
including patrolling has recently been exploited in vari-
ous works, e.g. [2]–[8]. In [6], the problem of optimally
patrolling a one-dimensional perimeter with a network of
cameras was considered resulting in a distributed control
strategy based on local asynchronous communication. Op-
timal camera movement for the objective of minimizing the
time necessary to monitor an environment was addressed in
[5].In [3] a stochastic MPC approach to optimal patrolling
was considered and a target tracking algorithm based on
Min-Max and minimum time MPC was proposed. While the
main motivation of the prior works was the design of optimal
surveillance algorithms, the main motivation of this work is
the development of a framework for the systematic analysis
of the performance and high-level decisions of surveillance
systems employing such algorithms.

In the present work we consider the surveillance task of
dynamically patrolling a known environment. We consider
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the task in the form of a probabilistic pursuit-evasion game
[9]–[11] where the camera and evader objects are set-valued
and governed by stochastic processes. In contrast to prior
works where the focus is the optimality of the autonomous
patrolling algorithm given a set of assumptions regarding the
dynamical properties of the evader, in this work we consider
the problem of maximizing the probability that the evader
successfully completes the objective that the security system
is designed to prevent. In particular, we assume that the
patrolling algorithm is defined for the surveillance system
and that the evader has knowledge of this process. Recent
results in the theory of stochastic reachability (for discrete-
time stochastic hybrid systems (DTSHS)) and random sets
[12], [13] are then used to calculate optimal policies for the
evader given the objective and policy of the security system.
Hence, the worst case performance of the security system
(patrolling algorithm) is quantified and can be considered an
indicator of the quality of the security system.

To demonstrate the certification framework we consider
a surveillance scenario involving a single evader and two
cameras. In this scenario the evader objective is to exit
the surveilled area before being caught by the cameras.
This scenario can be considered equivalent to the task
of preventing an intrusion at an office building, or even
preventing the escape of an inmate from a prison. For
the sake of comparison, three patrolling algorithms for the
PTZ cameras are considered: a one-step greedy algorithm
[9], a one-step Nash algorithm [11], and a simple random-
walk. By solving the dynamic program associated with the
stochastic reachability framework considered, the patrolling
algorithms are ranked according to their ability to prevent a
knowledgeable evader from successfully completing its task.

II. STOCHASTIC REACHABILITY AND RANDOM SETS

Here we recall the theory of stochastic reachability for
DTSHS [12], [14] and stochastic reachability with random
sets [13], [15]. In particular, the results of this section can
be found in detail in the work [13].

A DTSHS H can be described as a Markov control
process with state space X , (compact) control space A, and
controlled transition probability function Q. Given a Markov
control policy µ ∈ Mm (where Mm denotes the set of all
admissible Markov control policies) and initial state x0 ∈ X ,
the execution {xk, k = 0, ..., N} is a time inhomogeneous
stochastic process defined on the canonical sample space
Ω = XN+1, endowed with its product σ−algebra B(Ω)
where B(·) denotes the Borel σ−algebra. The probability
measure Pµx0

is uniquely defined by the transition kernel
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Q, the Markov policy µ ∈ Mm, and the initial condition
x0 ∈ X (see [16]).

For k = 0, 1, 2, . . . , N , let Gk be a Borel-measurable
stochastic kernel on Y given Y , Gk : B(Y) × Y → [0, 1],
which assigns to each ξ ∈ Y a probability measure Gk(·|ξ)
on the Borel space (Y,B(Y)). That is, let Gk represent a col-
lection of probability measures on (Y,B(Y)) parameterized
by the elements of Y and indexed by time k. A discrete-time
time-inhomogeneous Markov process ξ = (ξk)k∈N0

taking
values in the Borel space Y is described by the stochastic
kernel Gk.

Definition 1: A parameterization of a discrete-time set-
valued stochastic process is a discrete-time Markov process
ξ = (ξk)k∈N0 with parameter space Y and transition prob-
ability function Gk : B(Y) × Y → [0, 1] together with a
function γ : Y → B(X) representing a stochastic (Borel)
set-valued evolution on the hybrid state space X (according
to the process ξ). Consequently, it holds that there exists a
Borel set K̄ ∈ B(X × Y) defined

K̄ = {(x, ξ) ∈ X × Y|x ∈ γ(ξ)}.
In the spirit of the theory of random closed sets [17], [18],
for all x ∈ X , ξk−1 ∈ Y , and k ∈ N, we define the following
covering function:

pγ(ξk)(x) = Pξk−1
{x ∈ γ(ξk)} = Eξk−1

[1γ(ξk)(x)]

=

∫
Y
1K̄(x, ξk)Gk(dξk|ξk−1).

For all x ∈ X and all ξk−1 ∈ Y , it follows that the covering
function pγ(ξk)(x) is Borel measurable and bounded between
0 and 1. Now consider the set valued maps γ1 : Y → B(X)
and γ2 : Y → B(X) where, for all ξ ∈ Y , γ1(ξ) ⊆ γ2(ξ). It
follows that pγ2(ξk)\γ1(ξk)(x) = pγ2(ξk)(x)− pγ1(ξk)(x).

A. Finite Horizon Reach-Avoid

Let Kk,K
′
k ∈ B(X), with Kk ⊆ K ′k for all k =

0, 1, . . . , N . Our goal is to evaluate the probability that the
execution of the Markov control process associated with the
Markov policy µ ∈Mm and the initial condition x0 will hit
Kk before hitting X \ K ′k during the time horizon N . Let
ξ = (ξk)k∈N0

with stochastic kernel Gk : B(Y) × Y →
[0, 1] together with the functions γ1 : Y → B(X) and
γ2 : Y → B(X) be a parameterization of a discrete-time
set-valued stochastic process. We assume that the initial
set parameter state ξ0 is known, hence γ1(ξ0) = K0 and
γ2(ξ0) = K ′0 is known, and γ1(ξk) = Kk and γ2(ξk) = K ′k
for k = 1, . . . , N is an execution of the stochastic set-
valued process. The probability that the system initialized at
x0 ∈ X , with control policy µ ∈ Mm and ξ0 ∈ Y , reaches
Kk while avoiding X \K ′k for all k = 0, 1, . . . , N is given
by

rµ(x0,ξ0) := Pµ(x0,ξ0){∃j ∈ [0, N ] : xj ∈ Kj ∧
∀i ∈ [0, j − 1] xi ∈ K ′i \Ki},

where ∧ denotes the logical AND, and we operate under
the assumption that the requirement on i is automatically
satisfied when x0 ∈ K0; subsequently we will use a similar

convention for products, i.e.
∏j
i=k (·) = 1 if k > j. Note that

while we assume knowledge of the initial state and initial
set parameter set, the consideration of a probabilistic initial
condition for each is straightforward.

As in [12], [14], rµ(x0,ξ0) can be expressed as the expecta-
tion

rµ(x0,ξ0) = Eµ(x0,ξ0)

 N∑
j=0

(
j−1∏
i=0

1K′i\Ki(xi)

)
1Kj (xj)

 .
In this work, as in [13], [15], we assume that the product

measure of the parametric process is equal to (or well approx-
imated by) the product measure of time-indexed independent
stochastic kernels, i.e. for N ∈ N

N∏
j=0

Gj(dξj |ξj−1) ≈
N∏
j=0

Gj(dξj).

Note that since the initial parameter state ξ0 of the random set
is assumed known, we define G0(dξ0|ξ0−1) = G0(dξ0) =
δξ0(dξ0).

For a DTSHS with independent set-valued reach and safe
sets (γ1(ξk) ⊆ γ2(ξk) almost surely), it can be shown that

rµ(x0,ξ0) = Eµx0

 N∑
j=0

(
j−1∏
i=0

pK′i\Ki(xi)

)
pKj (xj)

 .
The covering functions are defined

pKi(x) = E
[
1γ1(ξi)(x)

]
=

∫
Y
1γ1(ξi)(x)Gi(dξi),

pK′i(x) = E
[
1γ2(ξi)(x)

]
=

∫
Y
1γ2(ξi)(x)Gi(dξi),

pK′i\Ki(x) = pK′i(x)− pKi(x).

Let F denote the set of functions from X to R and define
the operator H : X ×A×F → R as

H(x, a, Z) :=

∫
X

Z(y)Q(dy|x, a). (2)

The following lemma shows that rµ(x0,ξ0) can be computed
via a backwards recursion.

Lemma 3: Fix a Markov policy µ = (µ0, µ1, ...µN−1) ∈
Mm. The functions V µk : X → [0, 1], k = 0, 1, . . . , N − 1
can be computed by the backward recursion:

V µk (x) = pKk(x) + pK′k\Kk(x)H(x, µk(x), V µk+1), (4)

initialized with V µN (x) = pKN (x), x ∈ X .
Definition 5: Let H be a Markov control process, ξ =

(ξk)k∈N0
a parametric stochastic process, Kk ∈ B(X),

K ′k ∈ B(X), with Kk = γ1(ξk),K ′k = γ2(ξk) and Kk ⊆ K ′k
almost surely for all k = 0, 1, 2, . . . , N . A Markov policy
µ∗ is a maximal reach-avoid policy if and only if rµ

∗

(x0,ξ0) =

supµ∈Mm
rµ(x0,ξ0), for all x0 ∈ X .

Theorem 6: Define V ∗k : X → [0, 1], k = 0, 1, ..., N , by
the backward recursion:

V ∗k (x) = sup
a∈A
{pKk(x) + pK′k\Kk(x)H(x, a, V ∗k+1)} (7)
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x ∈ X , initialized with V ∗N (x) = pKN (x), x ∈ X . Then,
V ∗0 (x0) = supµ∈Mm

rµ(x0,ξ0), x0 ∈ X and ξ0 ∈ Y . If µ∗k :

X → A, k ∈ [0, N − 1], is such that for all x ∈ X

µ∗k(x) = arg sup
a∈A
{pKk(x) + pK′k\Kk(x)H(x, a, V ∗k+1)} (8)

then µ∗ = (µ∗0, µ
∗
1, ..., µ

∗
N−1) is a maximal reach-avoid

policy.

III. PROBABILISTIC CERTIFICATION OF AUTONOMOUS
PATROLLING SYSTEMS

In this framework the set-valued evader is allowed to move
in a spatial frame XG ⊂ R2 (e.g. a prison yard or a building
courtyard). We denote by T ⊂ XG the target area for the
evader, i.e. the area in the spatial frame that the evader would
like to reach (e.g. entrance or exit area). The evader is set-
valued, denoted by O ∈ B(XG), where O is parameterized
by a set of parameters xe ∈ Xe, where Xe is the state space
of the evader parameterization. It follows that the evader set
and parametrization are constrained to remain in XG and Xe

respectively.
We consider m parametric models for the cameras with

state x and state space X , x ∈ X . Naturally, there exists
a mapping from the state of the camera parameterization
x to the set-valued camera view (defined as the field of
view (FOV)) L(j)(x) ∈ B(XG) in the general spatial frame
XG. In the general case, this function can be defined as a
measurable mapping L(j) : X → B(XG) , j ∈ {1, ...,m}.
We assume that the set-valued pursuers are independent and
can intersect. The parametrization of each camera x (ptz
configuration) is calculated via the patrolling strategy for
each k ∈ {0, ..., N}.

In the global spatial frame XG, the set S = {xG ∈ XG :
xG ∈ ∪jL(j)} comprises all states that intersect with the
set-valued region of one or more pursuers (equivalently the
union of the FOVs). S can be seen as the part of the space
that the cameras cover at some k ∈ {0, ..., N} for a given
x. Likewise, S1 = {xe ∈ Xe : O ∩ S = ∅} denotes the set
of states of the evader that are safe from camera detection.
Finally, the set ST = {xe ∈ Xe : O ∩ T 6= ∅} is the set of
evader states xe ∈ Xe leading to an intersection between the
evader and the target area (i.e. the set of states denoting the
success of the evader).

In the surveillance scenario considered above we assume
that the evader has prior knowledge of the patrolling strat-
egy. In many cases however, the strategy of the security
system contains stochastic components. Thus, even though
the evader knows the strategy of the pursuer, in the future
the evader (in these cases) may know only that x of each
camera j ∈ {1, ...,m} at each time k ∈ {0, ..., N} is
distributed according to the probability distribution provided
by the patrolling strategy. Thus, at each step in the future,
the question is not whether the evader with state xe will be
in the view of the camera, but what the probability is that
the evader in state xe will be in the view of the camera.

It follows that S and S1 are random sets according
to the distribution of the camera and evader parameters.

Further, the covering function pS(xG) defines the probability
that xG ∈ XG is in the view of at least one of the
cameras. Similarly, pS1

(xe) represents the probability that
the evader will be free of camera detection. Considering the
probabilistic sets detailed above, it is possible to formulate
the patrolling surveillance task as a reach-avoid problem by
using the stochastic reachability framework of Section II. In
particular, consider that the evader objective is to maximize
the probability of the evader state xe reaching ST at some
point during the finite time horizon k ∈ {0, ..., N} while
avoiding S1 for all k. It follows that the reach-avoid problem
can be formulated where the set S1 denotes the safe set
and ST denotes the target set. The optimal control policy
is obtained by solving the DP of Theorem 6 and the optimal
value function provides the probability (indicator) defining
the (worst-case) performance of the patrolling algorithm.

IV. PATROLLING STRATEGIES

A. Probabilistic pursuit-evasion game

The probabilistic framework for pursuit-evasion games
proposed in [9], [11] is here considered as possible patrolling
strategy. In [9] the authors provide a policy to control a set
of agents in the pursuit of evaders that do not try to actively
avoid detection. Such “greedy” policy directs the pursuers
to the locations that maximize the probability of finding the
evaders at the next time step. Conversely, in [11], a receding
horizon control policy in which the pursuers and the evaders
try to respectively maximize and minimize the probability
of capture at the next time instant is provided. It is assumed
that the evaders have access to pursuers information, i.e.,
the resulting game is nonzero-sum. The Nash solution to
the one-step nonzero-sum game is computed by solving an
equivalent zero-sum matrix game.

In our game we consider that pursuers are PTZ cameras.
Cameras pan and tilt take place in a two-dimensional grid.
Zoom is such that L(j)(x) has the same area for all x,
j ∈ 1, 2. Camera positions xj1, x

j
2 ∈ X,x

j
1 6= xj2, are adjacent

if camera j can move from xj1 to xj2 (and vice versa) in a
sampling time. A(j)(x) denotes the set of cells adjacent to
position x for camera j. Given an initial camera configuration
xj0 at time k, the subset of camera positions to which a
pursuer can move at time k + 1 is given by

U j(xj0) = {xj ∈ X : xj ∈ {xj0} ∪ A(j)(xj0)}

We consider the presence of a single evader that can take
place in a rectangular two dimensional grid of XG, see
Figure 1. We say that two distinct cells xG1 , xG2 ∈ XG are
adjacent if they share one side or one corner. The motion of
the evader is constrained in that it can remain where it is or
move to one of the adjacent cells.

Each pursuer (evader) collects information about XG at
discrete time instants k ∈ N0. Each pursuer is capable of
determining its current position and sensing all the cells that
are contained in L(x). Each measurement y(k) is given by
{v(k), e(k)} taking value in a measurement space Y , where
v(k) = ∪jL(j)(xj(k)) and e(k) the cell where the evader
is detected. We assume an evader captured if its current cell
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Fig. 1. Rectangular two dimensional grid of XG

is entirely contained in ∪jL(j). We let Yk the sequence of
measurements {y(1), · · · ,y(k)} ⊆ Y∗, where Y∗ is the set
of all finite sequences of Y .

Let pe(xG, k|Y(k)) be the posterior probability of the
evader being in cell xG at time k, given the measurement
history Yk. pe(xG, 0) is assumed uniform over XG. At
each k, given pe(xG, k|Y(k−1)) and the new measurement
y(k), pursuers recursively estimate pe(xG, k|Y(k)) by first
computing pe(xG, k|Y(k)) = α(1−βin)pe(xG, k|Y(k−1))
where α is a normalizing constant (see [9] for details) while
βin represents the percentage of cell xG inside ∪jL(j) .
Finally, in order to compute pe(xG, k + 1|Y(k)), a model
for the motion of the evader is needed. Here [9] and [11] are
different. In the following we try to give an overview of the
evader model used in [9] and [11] and their respective control
strategies while, at the same time, make the approaches
suitable for PTZ cameras.

1) Evader not avoiding detection [9]: A Markov model
for the motion of the evader is assumed. The model is
completely determined by the probability ρ ∈ [0, 1/8] that
the evader moves to one of the adjacent cells A(xG). The
map pe(xG, k + 1|Y(k)) is given by

(1−|A(xG)|ρ)pe(xG, k|Y(k))+ρ
∑

x̄G∈A(xG)

pe(xG, k|Y(k))

where |A(xG)| indicated the number of adjacent of xG. We
assume that any cell of XG can be reached by ∪jL(j) in finite
time k ≤ δ. Moreover, given a positive constant γ ≤ 1 and
any sequence Y(k) for which the evader was not captured,
we assume that the conditional probability of the evader
being at a cell xG(k) ∈ XG, xG /∈ ∪jL(j)(xj(k)), satisfies

pe(xG, k + 1|Y(k)) ≥ γpe(xG, k|Y(k − 1))

Under these assumptions, given δ, we look for the closest
(in terms of time steps) cell xG that satisfies

pe(xG, k + 1|Y(k)) ≥ γδ−m/nc
with m number of steps s.t. xG ∈ ∪jL(j) and nc number
of cells of grid XG. Given m and xG, the cameras apply
a navigation policy that achieves xG in m steps while
maximizing at the same time the probability of capturing
the evader at k + 1, i.e.

max
xj∈U(xj(k)),∀j

∑
xG∪jL(j)xj(k)

pe(xG, k + 1|Y(k))

2) Evader avoiding detection [11]: Here, at each time
instant, the players solve a static game where the pursuers
try to maximize the probability of catching the evader at
the next time step, while the evader tries to minimize such
probability. The game is nonzero-sum because of distinct
observations available to cameras and evader (y(k) and z(k)
respectively). In fact, we assume that, at every time instant
k, pursuers sense ∪jL(j) while the evader senses its current
position xG plus ∪jL(j), i.e. the evader can see what the
cameras are looking at. A solution to the game is given
by the Nash equilibrium [19] where each player selects an
action according to some probability distribution. In [11],
it is shown that the determination of a Nash equilibrium
for the nonzero-sum static game can be reduced to the
determination of a Nash equilibrium for a fictitious zero-sum
static game. The stochastic policies associated with the Nash
equilibrium can be obtained by solving a linear programming
(LP) problem (see [19] for details). In order to make the
approach suitable for PTZ cameras we have to consider that
pursuers sense a set of cells L(x) on the XG grid rather than
a single cell.

V. EVALUATION SCENARIO

Here we consider a realistic scenario based on common
security surveillance objectives. Consider an area patrolled
by two cameras where at an unknown time, an evader enters
and attempts to exit as fast as possible from the right side of
the area (see Figure 1) . As already mentioned, the evader
is aware of the probability distribution of the parameters x
at any given moment.

With this information, we solve the optimal control prob-
lem described in Section II and provide a probability of
successfully exiting the room (at a finite number of steps)
from any possible initial position of the evader, which
includes of course the entrance points. The horizon length
is chosen as the maximum length of time an evader has to
enter and exit.

The scenario we consider has two PTZ cameras with the
state in the camera space given by x = [θ, ψ, ζ]T , where θ,
ψ and ζ are respectively camera pan, tilt and zoom. In order
to compute cameras FOV L(j)(x), ∀j ∈ {1, ...,m}, we first
introduce the relation between optical center reference frame
(oc) and world reference system (w)[
xw
yw
zw

]
=

[
0
0
H

]
+Rθ

([
D
0
0

]
+Rψ

([
xoff
yoff
zoff

]
+

[
xoc
yoc
zoc

]))
where pw = [xw, yw, zw]T are the coordinates of a point
p in XG while poc = [xoc, yoc, zoc]

T are its coordi-
nates in the optical center reference frame (see Figure 2).
H,D, xoff , yoff , zoff are camera-specific parameters and
Rψ ,Rθ the relevant rotation matrices. Given a point in optical
center reference frame, its position in the image view frame
(im) is obtained as follows

xim = λ(ζ)
yoc
xoc

yim = −λ(ζ)
zoc
xoc

where λ(ζ) = λ1ζ is the focal length for a given level of
zoom ζ, while λ1 is the λ value for ζ = 1. In order to
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compute L(j)(x) (see Figure 2), we first calculate the coor-
dinates of the optical center in XG i.e. [x̄w, ȳw, z̄w]T .Given
x̃iim, ỹiim, i = 1, · · · , 4, positions of the vertexes of the FOV
in the camera image, we can compute their projection on
the ground plane, i.e. [x̃iw, ỹ

i
w, z̃

i
w]T . Note that the FOV is

located at −λ on Xoc in the optical center reference system.
In order to find the projection of the FOV vertices on

the ground plane, i.e. [x̃iPw , ỹiPw , z̃iPw ]T , we intersect the line
passing through [x̃iw ỹiw, z̃

i
w]T and [x̄w, ȳw, z̄w]T with the

ground plane Zw = 0.
The dynamics of the camera view over the time horizon

k ∈ {0, ..., N}, N ∈ N, are governed by the patrolling
strategy. The set-valued evader O ∈ B(XG), XG ⊂ B(R2),
is parameterized by its center [xe, ye]

T ∈ Xe, according to
the relation

O = {xG ∈ XG : (xG,1 − xe)2 + (xG,2 − ye)2 ≤ r2
e}

where O is a two-dimensional (compact) circle. The move-
ment of the evader in space is completely characterized
by the evolution of its parametric center. This is translated
via a probabilistic transition kernel Qe to the possible
positions of [xek+1

, yek+1
]T starting from [xek , yek ]T with

k ∈ {0, ..., N}.

VI. COMPUTATIONAL RESULTS

Here we consider m ∈ {1, 2} and a finite time horizon
of N = 100. The choice of the horizon is such as to allow
a considerable amount of time for the evader to exit the
patrolling area. We evaluate the strategies of Section IV
by solving a probabilistic reach-avoid problem with random
sets. The probability distribution of the ptz parameters along
the horizon is estimated via Monte Carlo simulation. In
each case, the stochastic reachability problem is solved via
dynamic programming based on the computational methods
of [20]. The result of the dynamic program is an optimal
control policy for the DTSHS that can be applied in open
loop (or receding horizon). Intuitively this is the optimal
strategy for the evader in order to maximize his probability
of successfully exiting the patrolled area.

The calibrated values of cameras set-up have been cal-
culated in an earlier study [21] and are: H(1) = 2.5,
H(2) = 2.5, D(1) = 0.124, D(2) = 0.125, x(1)

off =

0.1485, x(2)
off = −0.01, y(1)

off = −0.0275, y(2)
off = 0.0437,

z
(1)
off = 0.02, z(2)

off = 0.0917, λ(1)
1 , λ

(2)
1 are chosen to

keep a constant area for the FOV. The two cameras are
positioned at xw = 0, yw = 4.55 meters and xw = 0,
yw = 0 meters respectively. The state space bounds for
each camera are x

(1)
1,k =∈ [−π/2, 0], x(2)

1,k =∈ [0, π/2]

and x(1)
2,k, x

(2)
2,k =∈ [π/5.5, π/2]. The control inputs for both

cameras are bounded according to u1,k ∈ [−0.0288, 0.0288]
and u2,k ∈ [−0.0288, 0.0288] with units in radians.

The radius of the circular evader is re = 0.06 meters
while the stochastic kernel is a state transition matrix of
appropriate dimensions. The planar ground plane, is XG =
{[xw, yw] : xw ∈ [0, 2.52], yw ∈ [0, 4.56]} (in meters). For
computational purposes, XG has been discretized with a step
of 0.12 meters on both xw and yw while the camera state
has been discretized by 0.0288 radians.

A. Reaching the target set while avoiding the pursuers

Consider the problem of maximizing the probability that
the evader at some point during the finite time horizon k ∈
{0, ..., N} reaches the target set while avoiding both cameras
m ∈ {1, 2} at each prior time point. Then, for each k ∈
{0, ..., N} we define the sets:

Sk = S
(1)
k × S

(2)
k = {xek ∈ Xe : O(xek) ∩ T 6= ∅}×

{xek ∈ Xe : O(xek) ∩ L(j)
k = ∅, ∀j ∈ {1, 2}}.

The target set Kk = S
(1)
k comprises all evader states

for which there exists an intersection with the exit set T .
Hence, K ′k = S

(2)
k comprises all states where the evader is

not visible to any camera m ∈ {1, 2} at step k. Trivially,
S

(1)
k ⊆ S

(2)
k (Note that this holds always since camera

FOVs can never intersect the exit set T ). Thus, the patrolling
strategy has failed in its objective (equivalently the evader has
achieved the target) if there exists a time k ∈ {0, ..., N} such
that xek ∈ S

(1)
k and xej ∈ S

(2)
j for all j ∈ {0, ..., k − 1}.

This is posed as a probabilistic reach-avoid problem where
the objective is to maximize the probability of reaching S(1)

k

at some point over the time horizon while avoiding leaving
S

(2)
k at all prior time points. For all k ∈ {0, ..., N}, the

optimal control policy µ∗k(xG) and the value function V ∗k (xe)
for the patrolling area exit task are computed via dynamic
programming, where V ∗0 (xe) indicates the probability that
the evader set, initialized at xe at time k = 0, will reach the
exit at some point during the time interval while avoiding
the union of the camera FOVs at every prior step.

The initial positions of the cameras chosen for the example
are such that the respective FOVs are near the center of
the search space. For the strategies of Section IV that have
randomness associated with the evolution of the camera
state x, we have carried out several simulations to obtain
the probability density of x over the chosen horizon. In
the case of the probabilistic pursuit-evasion approach, this
would make no sense as all moves are made with probability
1. Figure 3(a) highlights the fact that the pursuit-evasion
approach (which is near deterministic in its evolution) is
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(a) Probabilistic pursuit-evasion
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(b) One-step Nash

Fig. 3. Value function provided by the solution to the dynamic program
for each patrolling strategy

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Entrance points

Pr
ob

ab
ilit

y o
f s

uc
ce

ss
ful

 ex
it

Probabilistic pursuit−evasion
Purely random
One−step Nash

Fig. 4. Probability that the evader successfully exits starting from any one
of the enter points (enumerated bottom to top - see Figure 1)

trivial for an evader to avoid if he is aware of the way it
is constructed. Thus, for most initial positions (x(m), y(m))
of the evader space (including the entrance points) there
is a probability near 1 (see Figure 4) that the evader will
succeed within N steps. The equivalent value function for
the stochastic one-step Nash approach is presented in Figure
3(b). It is more effective since the evader has very low
probability of successfully avoiding the camera and reaching
the exit area. Figure 4 clearly illustrates this fact by showing
the probability of success for the evader initialized at the
entrance points. For the sake of completeness, the results of
applying a purely random walk as patrolling strategy are also
shown in Figure 3(b).

VII. CONCLUSION

In this work a method of certifying camera-based au-
tonomous patrolling strategies based on the theory stochas-
tic reachability and random sets was presented. For three
patrolling strategies, we solved via dynamic programming
the problem of maximizing the probability of an evader
successfully exiting an area patrolled by active cameras.
The systematic method for quantitative analysis of stochastic

strategies was shown to provide a valuable indication of
patrolling quality under specified objectives. Future work
includes utilization of the proposed certification process in
order to design more efficient patrolling strategies.
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