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Abstract— We study a stochastic system consisting of multi-
ple decentralized control agents who allocate shared system
resources in response to requests that arrive stochastically
over time. Decentralized agents in our system maximize their
own objectives subject to potentially mis-specified models of
the way in which system resources are consumed by other
agents in the system. We introduce the notion of a transfer
price, which is a contract that describes the way in which
decentralized agents compensate other agents in the system for
using shared resources whenever they satisfy a request. We
characterize transfer prices under which there is no efficiency
loss relative to the optimal system-wide expected revenue when
it is managed by a fully-knowledgeable centralized controller.
We also show that optimality of these contracts is insensitive to
mis-specification by each of the agents of the behavior of other
agents in the system.

I. INTRODUCTION

In this paper we study a system consisting of multiple
decentralized control agents. Each decentralized controller
can be thought of as a sales agent who receives requests
for products under his/her management from customers who
arrive stochastically over time. For each request, the selling
agent needs to decide whether it should be accepted or
rejected. If a request is rejected, the customer departs.
If a request is accepted, the agent receives income from
the customer in return for the requested product which is
manufactured using inventory from a pool of raw materials
that are shared by all selling agents in the system. The cost
of raw materials is paid for by the sales agent accepting
the request, whose accept/reject decision is made by solving
a (decentralized) stochastic optimal control problem, where
the goal is to maximize income from accepted requests
net the cost of raw materials. The optimal behavior of the
decentralized agents and the resulting performance of the
aggregate system depends on price of these raw materials,
which is described by a transfer price contract. The goal
of this paper is to understand how transfer prices should
be chosen (i.e. how raw materials should be priced) so as to
maximize the net revenue of the overall system. One example
of a system where this problem arises is an airline alliance
where multiple airlines (selling agents) share raw materials
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(single leg flights) which are packaged and sold as itineraries
(products) to customers that arrive stochastically over time.

Several lines of related work are important to mention.
Firstly, though the topic of resource allocation is classical
(see for example Arrow, Hurwitz and Uzawa [8]), our paper
is one of the few that addresses this problem in a stochastic
and dynamic setting. Our paper is also related to a line of
work on decentralized decision making and control dating
back to the papers of Marshak [11], Arrow and Hurwicz
[2], Radner [13] in the economics literature, as well as
Witsenhausen [18], Ho [6] and others [9], [16] in the systems
and control literature (see also the survey paper [7], [12],
and the recent papers [1], [3], [14], [15]). From a high
level, this literature is concerned with systems in which
relevant information is not in the hands of a single centralized
decision maker and key distinction is what is meant by
information. In [7], [9], [14], [16], [18] different agents see
different functions of the aggregate system state (or noisy
observations of some subset of it) and the primary concern
is describing the aggregate system performance when each
agent’s policy is constrained to being a function of their
observation. In contrast, we assume in this paper that each
agent observes the full system state (i.e. system resources)
but only knows a subset of the system structure/model pa-
rameters (for example, each agent only knows the probability
that a product in his/her portfolio is requested but not the
probability that other agents will receive a request). See also
[10] for related results for a continuous time two-agent single
server queueing system. Finally, we also mention the work
on decentralized control as related to the management of
airline alliances (see [4], [17]. We note, however, that [4] is
for deterministic systems while [17] analyzes various transfer
contracts but do not address the issue of optimality.

The outline of the paper is as follows. We discuss central-
ized control of the resource allocation problem in Section
II. The decentralized problem in formulated in Section III
where stochastic models assumped by each agent, the notion
of transfer contracts, and the control problem that each
agent solves are introduced. Optimal transfer contracts are
characterized in Section IV. One interesting and surprising
feature of the optimal contracts is that centralized efficiency
can be achieved even if decentralized agents mis-specify
the behavior of other agents in their models. Decentralized
synthesis of optimal contracts through a message passing
algorithm is presented in Section V and convergence of this
algorithm is discussed in Section VI. An example related to
optimal control of airline alliances is presented in Section
VI-B.
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Due to limitations of space, proofs of some of the results
have been removed. The interested reader is referred to[5].

II. CENTRALIZED CONTROL

Consider a stochastic system consisting of a set of agents
I , a set of resources L , and a set of bundles J . A bundle
j ∈J uses one or more resources, denoted by a requirement
vector A j (where al j = 1 if resource l is required, and
zero otherwise), and generates revenue r j. There is a finite
horizon, T = {1, ...,T}. Demand d̃ jt for bundle j arrives
randomly over time, and at each time t, we assume there
is at most one request where q jt is the probability that the
request is for bundle j:

P(d̃ jt = 1, d̃ j′t = 0,∀ j′ 6= j) = q jt ,∀ j ∈J .

In each time period, there are |J |+ 1 possible events,
including the possibility of no arrival. It follows that ∑ j q jt ≤
1.

Suppose there is a single centralized agent who makes the
accept or reject decisions for each request. A request for
bundle j is accepted if µ jt = 1 and rejected if µ jt = 0. The
set of feasible decisions at time t depends on the available
remaining capacities xt ,

U (xt) = {µ(t) ∈ {0,1}|J | : A jµ jt ≤ xt}.

The centralized decision maker’s objective is to maximize
expected revenue subject to resource constraints:

(C)



maxE

{
T

∑
t=1

∑
j∈J

r jµ jt d̃ jt

}
subject to:

xt+1 = xt − ∑
j∈J

A jµ jt d̃ jt , ∀t,µ jt ∈U (xt).

. (1)

The dynamic programming equation for (C) is
V (t,x) =

max
µ(t)∈U (x)

E
{

∑
j∈J

r jµ jt d̃ jt +V (t +1,xt+1)
∣∣∣ xt = x

}
,

V (T +1,x) = 0.

Defining

∆V (t +1,x,A j) , V (t +1,x)−V (t +1,x−A j),

it is easy to show that the dynamic programming equations
can be written as

V (t,x) =
max
µ(t)

∑
j∈J

q jt µ jt

[
r j−∆V (t +1,x,A j)

]
+V (t +1,x),

V (T +1,x) = 0.

(2)

And it follows that the optimal centralized policy is

µ
∗
jt(x) =

{
1 lf r j ≥ ∆V (t +1,x,A j),

0 otherwise.
. (3)

In particular a request for bundle j is only accepted if the
generated revenue r j is no less than the future opportunity

cost ∆V (t + 1,x,A j) of the resources that would be con-
sumed.

Observe that in formulating problem (1), it is implicitly
assumed that the centralized decision maker knows all rele-
vant system parameters including the demand probability for
each bundle. In many applications, knowledgeable decision
makers such as this do not exist. Rather, it is more commonly
the case that there are many agents where each manages
a subset of the bundles, is knowledgable about the arrival
statistics of his/her own bundles but not those of others,
and is interested in maximizing his/her own revenue. In
such situations, it is not possible to formulate the centralized
problem (1).

III. DECENTRALIZED CONTROL

We now consider the resource allocation problem (1)
in a decentralized setting. There are several elements that
distinguish the decentralized problem from the centralized
case. Firstly, the system consists of multiple agents where
each agent i is responsible for the accept/reject decisions
for a subset of bundles Ji from the pool J and knows
the arrival probabilities for items in his/her bundle but not
necessarily those in the items in bundles managed by other
agents. We note, however, that each agent may attempt to
model the demand probabilities for other items managed by
other agents but may incorrectly specify these probabilities.
Secondly, each agent acts in his/her own self interests and
maximizes his/her own objective conditional on local and
possibly mis-specified model.

In this section, we formulate agent level dynamics and
agent level objectives. We also introduce the notion of
transfer contracts which define revenue sharing between
agents in the system whenever resources are consumed.
Intuitively, revenue sharing imposes a charge on agents who
use shared resources which compensates other agents for the
loss of these resources. We address two questions: (i) do there
exist transfer contracts under which decentralized control can
achieve centralized efficiency, and (ii) what is the impact of
model mis-specification by local agents on the efficiency of
the integrated system.

A. Stochastic model for Agent i

In this section, we formulate stochastic models for each
of the decentralized agents. We assume the following:

(A1) Agent i makes accept/reject decisions for the subset of
bundles Ji ⊆J ;

(A2) All agents can observe the remaining inventory at time
t, xt . Inventory is depleted whenever any agent receives
and accepts a request.

(A3) Agent i knows the probability q jt that an item j ∈Ji
from his/her bundle will be requested at time t (i.e. q jt =
1) but may not know the request probabilities for items
that are managed by other agents or their accept/reject
policies. Nevertheless, Agent i may attempt to model the
demand for items managed by other agents and their
accept/reject policies, but both may be mis-specified.
Specifically, if Ji′ is the set of bundles managed by
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Agent i′ (i′ 6= i), then Agent i may specify the probability
q
′
jt that Agent i′ receives a request (i.e. d̃

′
jt = 1 for

items j ∈Ji′ ) and the accept/reject policy µ
′
jt of Agent

i′. However, both q
′
jt and µ

′
jt may be mis-specified in

that they differ from the true demand probabilities and
the actual accept/reject policy which are only known
accurately by Agent i′.

Under these assumptions, each agent has a model in which
the accept/reject decisions for bundles in his/her portfolio is
the decision variable, the probability that he/she receives a
request for an item in his/her bundle is accurately specified,
but the probability that other agents receive requests and
their accept/reject decisions are potentially mis-specified. It
follows that Agent i adopts a demand model

xt+1 = xt − ∑
j∈Ji

A jµ jt d̃ jt −∑
i′ 6=i

∑
j∈Ji′

A jµ
′
jt d̃
′
jt , t = 1, · · · , T (4)

B. Transfer contracts and revenue sharing

In this section, we introduce the notion of revenue sharing
and transfer contracts, which play an important role in
coordinating the decentralized system.

A transfer contract is a set of functions Ri, i′(t, x, A j)
defined for every pair of agents i and i′, time t, inventory
level x, and bundle resources A j. The function Ri, i′(t, x, A j)
specifies the revenue that is transferred by Agent i to i′ if
Agent i receives a request for resources A j at time t when
the inventory level xt = x and accepts the request. That is,
selling item j ∈Ji costs Agent i

∑
i′ 6=i

Ri,i′(t,x,A j)

of which the quantity Ri,i′(t,x,A j) is sent to Agent i′.
Conversely, the sale of item j ∈Ji′ by Agent i′ (i′ 6= i)
brings revenue Ri′, i(t, x, A j) to Agent i. Transfer contracts
Ri, i′(t, x, A j) define a charge that is levied on Agent i by
Agent i′ for using the quantity A j of shared inventory. The
net impact of transfer contracts is to modify the objective
functions and influence the accept/reject policies of each
of the agents who are now subject to additional costs and
income sources through revenue sharing.

C. Decentralized control

For a given set of revenue transfer contracts, Agent i solves

(Ci)



max
ui(t)

E
T

∑
t=1

{
∑

j∈Ji

[
r j−∑

i′ 6=i
Ri,i′(t,x,A j)

]
µ jt d̃ jt

+ ∑
i′ 6=i

∑
j∈Ji′

Ri′,i(t,x,A j)µ
′
jt d̃
′
jt

}
subject to:

xt+1 = xt −∑ j∈Ji A jµ jt d̃ jt −∑i′ 6=i ∑ j∈Ji′
A jµ

′
jt d̃
′
jt ,

µ jt ∈U (x).

(5)

The objective function consists of two terms. The quantity

r j−∑
i′ 6=i

Ri,i′(t, x, A j)

is the net revenue received by Agent i when he/she accepts a
request for one unit of bundle j ∈Ji. It consists of income
r j from the sale net the cash transfers to the other agents. The
probability of this event µ jtq jt is assumed to be accurately
specified for items j in the bundle Ji that it is managing. In
the second term, Ri′,i(t,x,A j) is the income that is transferred
to Agent i from Agent i′, as defined by the revenue sharing
rule, whenever Agent i′ makes a sale. From the perspective
of Agent i, the probability that this event occurs, µ

′
jtq
′
jt , may

be erroneously specified.
Defining

∆Vi(t +1,x,A j) , Vi(t +1,x)−Vi(t +1,x−A j),

we can write the dynamic programming equation for Agent
i as,

Vi(t,x;R)
= max

ui(t)
∑

j∈Ji

q jt µ jt

[
r j−∑

i′ 6=i
Ri,i′(t,x,A j)

−∆Vi(t +1,x,A j)
]
+ ∑

i′ 6=i
∑

j∈Ji′

q
′
jt µ
′
jt

[
Ri′,i(t,x,A j)

−∆Vi(t +1,x,A j)
]
+Vi(t +1,x),

Vi(T +1,x;R) = 0.

(6)

As in Agent i’s original problem formulation (5) the probabil-
ity q

′
jt µ
′
jt that another Agent i′ uses the quantity A j of shared

resources by allocating a bundle j ∈Ji′ it is managing may
be mis-specified.

D. Weak duality

Given a contract R, each agent formulates a potentially
mis-specified stochastic control problem (5) for an optimal
accept/reject policy µ∗i (t) = {µ∗jt(t),∀ j ∈ Ji}. The inte-
grated system is operated under these decentralized policies.
Observing that revenue transfers are between agents remain
internal to the system, it follows that the expected system
revenue under optimal decentralized policies for any arbitrary
contract is dominated by the optimal revenue generated by
the centralized decision maker (1). More formally, if µ∗i (t) is
the optimal policy for Agent i under some revenue transfer
contract R and let

V̂ (t,x;R) , E
T

∑
s=t

∑
j∈J

r jµ
∗
jsd̃ js

subject to:
xs+1 = xs− ∑

j∈J
A jµ

∗
jsd̃ jt , ∀ t ≤ s≤ T,

xt = x

denotes the system revenue under decentralized policies, then
the following relationship between the expected revenue for
the system under decentralized control and the value function
for the centralized agent holds.

Proposition 3.1 (Weak Duality): Let R denote an arbitrary
transfer contract and µ∗i (t) denote the optimal policy for
Agent i (i ∈I ) under R.Then

V̂ (t,x;R)≤V (t,x), ∀t,x. (7)
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where V (t, x) is the value function for the centralized agent
(1).
Two questions are immediate:

1) Can contracts R be found under which decentralized
agents achieve centralized efficiency, and

2) What is the impact of model mis-specification?

IV. OPTIMAL TRANSFER CONTRACTS

We begin by deriving conditions using heuristic arguments
that optimal contracts should satisfy. Existence of contracts
satisfying these conditions and the optimality of these con-
tracts will then be established.

A. Optimality conditions: Conjecture

Let R be an arbitrary sharing contract and

V1(t,x;R), · · · , VI (t,x;R) (8)

denote the value functions for each agent obtained by solving
the decentralized problems (5) under R, namely Vi(t, x; R) is
Agent i’s valuation of the shared inventory x at time t.

The contract R defines cash transfers that take place
whenever inventory is consumed by one of the agents. In
particular, we see from (5) that when bundle j ∈ Ji is
allocated by Agent i and inventory A j is consumed, that
revenue Ri, i′(t, x; A j) is transferred from Agent i to Agent
i′. Intuitively, Agent i compensates Agent i′ the amount
Ri, i′(t, x; A j) for consuming A j of the shared resources.

In this light, it is therefore natural to expect that optimal
contracts R should be such that the compensation received
by Agent i′ matches its valuation of the resources that were
just consumed

Ri,i′(t,x,A j) , Vi′(t +1,x;R)−Vi′(t +1,x−A j;R). (9)

It is natural to conjecture that optimal contracts R should
satisfy the coupled nonlinear system of equations (8)-(9).

Several issues need to be resolved. Firstly, there is the
question of existence. It is by no means clear that a contract R
can be found for which the system (8)-(9) is satisfied, and this
needs to be established for any further discussion to make
sense. Secondly, if existence can be shown, establishing
optimality could be slippery because agent dynamics in each
of the decentralized problems (5) may be mis-specified,
and mis-specification may adversely affect the efficiency
of decentralized policies. Finally, there is the question of
computing the optimal contracts. Ideally, we would like
to construct optimal contracts without decentralized agents
having to share information about their own models (e.g. re-
quest probabilities) and without having to solve a centralized
problem.

B. Solution of conjectured equations

Let

Ri,i′(t, x, A j) , Vi′(t +1, x)−Vi′(t +1, x−A j)
= ∆Vi′(t, x, A j), (10)

where Vi(t, x) is the solution of the recursive equations
Vi(t, x) =
max

µi
∑

j∈Ji

q jt µ jt

[
r j−∆V (t +1,x,A j)

]
+Vi(t +1,x),

Vi(T +1, x) = 0.

(11)

Observe that V (t, x) on the RHS of (11) is the value function
of the centralized problem (1). Note that the system (10)-(11)
gives an explicit construction of the contract R; the recursions
(11) are solved for Vi(t, x) from which the contracts (10) are
constructed. In this section, we show that the contract (10)-
(11) satisfies the conditions (8)-(9).

The following preliminary result is required.
Proposition 4.1: Let V (t, x) denote the value function for

the centralized problem (1) and V1(t, x), · · · , V|I |(t, x) be
defined in (11). Then

V (t,x) = ∑
i∈I

Vi(t,x).

We skip the detailed proof. The main idea is to exploit
the separable structure of the objective function, and apply
backward induction argument (see [5]).

We show that (10) is a solution of the system of equations
(8)-(9) by showing that the solution Vi(t, x) of (11) is the
value function for the decentralized problem (5) under the
contract (10)-(11). To see this, observe (by Proposition 4.1)
that

∆V (t +1,x,A j) = ∑
i′ 6=i

∆Vi′(t,x,A j)+∆Vi(t +1,x,A j).

This implies that (11) is equivalent to

Vi(t,x) = max
µi

∑
j∈Ji

q jt µ jt

[
r j−∑

i′ 6=i
∆Vi′(t,x,A j)

−∆Vi(t +1,x,A j)
]
+Vi(t +1,x).

When the contract R is given by (10)-(11), this equation can
be written as

Vi(t,x) = max
ui

∑
j∈Ji

q jt µ jt

[
r j−∑

i′ 6=i
Ri, i′(t, x, A j)

−∆Vi(t +1, x, A j)
]
+ ∑

i′ 6=i
∑

j∈Ji′

q
′
jt µ
′
jt

[
Ri′, i(t, x, A j)

−∆Vi(t +1, x, A j)
]
+Vi(t +1, x),

Vi(T +1, x) = 0.

(12)

Observing that this is nothing but the dynamic programming
equation for the decentralized problem (5) under contract
(10)-(11), we can now say the following:
• The solution Vi(t, x) of (11) equals the value function

for the decentralized problem for Agent i under the
contract (10)-(11). It follows that the contract (10)-(11)
is a solution of the system of equations (8)-(9).

• The maximizer in the RHS of (11) is also the maximizer
in the RHS of the dynamic programming equation (12)
under contract (10)-(11). It follows that the maximizer
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in (11) defines the optimal accept/reject decision for
Agent i under the contract (10)-(11).

• Under transfer contract (10)-(11), the second term in
(12) is always zero. It follows that the value function of
the decentralized problem (5) as well as the associated
optimal accept/reject policy do not depend on Agent
i’s specification of the demand probabilities q′jt or the
accept/reject decisions µ ′jt of Agents i′ 6= i.

We summarize these observations as follows.
Proposition 4.2: Let the transfer contract R be defined by

(10)-(11). Then R is a solution of the system of equations
(8)-(9). Under this contract, the value function of Agent i’s
problem (5) is also the solution of (11) and the optimal
accept/reject policy for Agent i is

µ
∗
jt =

{
1, if r j ≥ ∆V (t +1,x,A j),
0, otherwise.

=

 1, if r j ≥ ∑
i′ 6=i

Ri,i′(t,x,A j)+∆Vi(t +1,x,A j),

0, otherwise.

Both the value function Vi(t, x) and the optimal policy µ∗i (t)
are independent of Agent i’s specification of the request
probabilities q′jt and the accept/reject policies µ ′jt of other
agents in his/her model (5).

C. Verification of optimality

Proposition 4.2 tells us that the contract defined in (10)-
(11) satisfies the conditions (8)-(9), and that the value
functions of the decentralized agents under this contract are
independent of mis-specification of the request probabilities
and accept/reject policies of other agents. In this section, we
show that these contracts are optimal in that they achieve
equality in (7), and that the decentralized accept/reject poli-
cies are optimal for the integrated system.

Theorem 4.1 (Strong duality): Let R and V1(t, x), · · · ,
V|I |(t, x) denote the solution of the system (10)-(11) and
µ∗i (t) denote the optimal accept/reject policy for Agent i’s
problem (5) under this contract. Then

1) R solves the system of equations (8)-(9) and Vi(t, x)
equals the value function for Agent i’s problem (5)
under this contract.

2) The collection of decentralized policies
{µ∗1 (t), · · · ,µ∗|I |(t)} under contract (10)-(11) is
optimal for the centralized problem (1) and the system
profit under these decentralized policies equals the
optimal profit for the centralized agent;

3) The value function for Agent i and his/her associ-
ated optimal policy µ∗i (t) are independent of his/her
assumptions of the demand probabilities and ac-
cept/reject policies of the other agents i′ 6= i in the
decentralized model (5).

The interested reader can refer to [5] for a detailed proof.
We have already noted that the transfer contract R specifies

a price for the shared resource as a function of time and
the current inventory level, which relates them to Lagrange
multipliers/shadow prices in classical resource allocation

problems. From this perspective it is notable that existence
of an optimal contract and strong duality does not require
convexity in the original problem. (Indeed, our proof of
existence is constructive does not use convex analysis but
works with the dynamic programming equations associated
with the problem).

V. DECENTRALIZED SYNTHESIS OF TRANSFER
CONTRACTS

Theorem 4.1 characterizes transfer contracts under which
decentralized agents optimally choose the centrally optimal
policies. We now turn to the question of computing these
contracts. One approach is to solve the system of equations
(10)-(11) directly, but this can only be done if the demand
probabilities q jt of all agents and the value function of the
centralized problem V (t, x) are known. This is problematic
because agents with sufficient information to solve the cen-
tralized problem typically do not exist (this was one of the
motivations for studying the decentralized problem). Alter-
natively, the presence of an agent with the information and
capability to solve for the optimal contracts through (10)-(11)
directly would actually render decentralized control, and our
need to compute the optimal transfer contract, unnecessary.
So we refine our question as follows: can the optimal contract
be found without an all knowing/centralized agent having
to solve the centralized problem, and without decentralized
agents having to reveal private model information to other
agents?

The following algorithm is motivated by these consid-
erations and can be viewed as an iterative approach to
solving the implicit system of equations (8)-(9). (Recall from
Theorem 4.1 that the optimal contract is a solution of this
system). In each iteration, decentralized agents solve their
optimization problems (5) conditional on some suboptimal
transfer contract. These contracts are then updated locally by
each of the agents and exchanged, and the process repeats.
While it is natural to ask whether the algorithm converges
and whether the limiting contract is the optimal contract
described in Theorem 4.1, which we address in the next
section, it is important to recognize that the algorithm can
be implemented without an all knowing centralized agent
and does not require individual agents to exchange private
information about request probabilities; all that is exchanged
are updated transfer contracts and the algorithm allows for
the possibility that the decentralized problems may be mis-
specified.

Algorithm 5.1:
• Initialize: Set k = 1, and R1

i,i′(t,x,A j) = 0.
• Step 1: Given k, and Rk

i,i′(t,x,A j)
– Each agent solves his/her own decentralized prob-

lem (5) and computes his/her value function
V k

i (t,x) = Vi(t, x; Rk) by solving (6);
– Stop if a satisfactory level of precision has been

reached,

sup
i,t,x

∣∣∣V k
i (t,x)−V k−1

i (t,x)
∣∣∣≤ ε;
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otherwise, each agent updates his/her transfer con-
tract,

Rk+1
i′,i (t,x,A j) = V k

i (t +1,x)−V k
i (t +1,x−A j).

– Each agent communicate the updated transfer con-
tract Rk+1

i′,i (t,x,A j) to other agents.

• Step 2: Set k to k +1 and return to Step 1.
We now address the issue of convergence.

VI. CONVERGENCE OF DECENTRALIZED ALGORITHM

Transfer contracts R specify prices that are paid by agents
when consuming shared resources and as such are related
to Lagrange multipliers/shadow prices in classical resource
allocation problems. In this light, Algorithm 5.1 is analogous
to a dual type approach for updating prices. We now present
results that guarantee convergence of the Algorithm 5.1 to
the optimal contract. As in Theorem 4.1 convexity is not
required to guarantee convergence, and convergence is robust
to agent-level mis-specification of the demand probabilities
of other agents.

A. Statement of main results

Theorem 6.1: Let Vi(t,x) be the value function for Agent
i’s decentralized problem (6), given the optimal contract (10),
and the sequence of {V k

i (t,x)} be computed by Algorithm
5.1. Then {V k

i (t,x)} converges strongly to Vi(t,x), namely

lim
k→∞
‖V k

i (t,x)−Vi(t,x)‖= 0, ∀i ∈I .

Suppose µk
i (t) is the optimal policy for Agent i obtained

in the kth iteration, and let
V̂ k(t,x) , E

T

∑
s=t

∑
i∈I

∑
j∈Ji

r jµ
k
jsd̃ js

subject to:
xs+1 = xs− ∑

i∈I
∑

j∈Ji

A jµ
k
jsd̃ js, ∀ t ≤ s≤ T,

xt = x

(13)

denotes the system profit under the joint policy {µk
i (t), i ∈

I } obtained from the kth iteration of Algorithm 5.1. The
following result guarantees convergence of V̂ k(t,x) to the
value function V (t,x) of the centralized agent.

Theorem 6.2: There exist constants C,M > 0 such that

‖V̂ k(t,x)−V (t,x)‖ ≤ C(MT )k+1

M(k +1)!
, ∀k ≥ 1.

It follows that

lim
k→∞
‖V̂ k(t,x)−V (t,x)‖= 0.

The basic idea of the proof is to show that the iteration in
5.1 is a contraction mapping. Due to limitation of space, we
skip the detailed proof here, and interested reader can refer
to [5].

Fig. 1. A three-airline alliance (with three legs and five itineraries)

Fig. 2. Convergence of Algorithm 5.1

B. Numerical example

We now illustrate our solution approach with a concrete
example from airline alliance revenue management. Figure
1 shows an airline alliance consisting of three agents (airline
1/2/3). The alliance has three resources (flight-leg A/B/C),
and markets five bundles (itinerary A/B/C/AB/BC). The
arrival probability for itineraries are set such that the network
has an overall load factor of 1.33, where the load factor
α is defined as the ratio between expected arrival and the
initial inventory, α = ∑l jt q jt al j

∑l xl1
. Lastly the planning horizon

has T = 30 periods.

Convergence

Figure 2 shows the convergence of Algorithm 5.1, both in
terms of error 1 that is evaluated under sup-norm over the
entire state space, as well as error 2 that is evaluated only at
the initial time and state (t, x) = (1, 10). Figure 3 shows the
decomposition of the the centrally optimal value functions
into three individual airlines’ value functions (note that the
value functions decrease monotonically over time).

Transfer contracts and the impact of network topology

Note that our example has a special network structure, such
that some airlines are directly connected (e.g. airline-1 and
-2), while some are only indirectly connected (e.g. airline-1
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Fig. 3. Central V (t,x) vs individual airlines V1(t,x),V2(t,x),V3(t,x)

and -3 via -2). We would like to examine the dependence
of the revenue transfers on the underlying network topology.
We define a first-order transfer as a payment to a directly
connected partner (e.g. airline-1 to -2), and a second-order
transfer as a payment to an indirectly connected partner (e.g.
airline-1 to -3).

Table I shows the break-down of the net revenue transfer R
into first and second order transfers from a simulated sample
path of the demand and revenue realization. For example,
when airline-3 makes the first sale, $32 is transferred to
airline-2 (first order), while -$15 is transferred to airline-
1 (second order). The most surprising feature is that revenue
transfers can take on negative values, meaning that having
less inventory can be sometimes beneficial for some airline.
For example, airline-1 is always willing to subsidize the
sale by taking a negative revenue transfer whenever airline-3
makes a sale (which is second order since airline-1 and -3 are
only indirectly connected). The reason is that when airline-3
makes a sale of itinerary C, airline-2 will have less opportu-
nity to sell itinerary BC, thus increasing the opportunity for
airline-1 to sell itinerary AB. Clearly, network topology can
have a strong impact on the distribution of revenue transfer,
and one should exploit such structural properties in designing
practical transfer schemes.

Selling Airline R 1st order R 2nd order R
3 17 32 -15
1 -13 -18 5
2 22 68 -46
3 41 64 -23
3 45 64 -19
2 237 54 183
1 93 120 -27

TABLE I
DECOMPOSED REVENUE TRANSFER FROM A SIMULATED SAMPLE PATH

VII. CONCLUSION

We study a general class of stochastic dynamic resource allo-
cation problems in the decentralized setting, and we characterize
a mechanism that is able to coordinate local agents in making
centrally optimal decisions. The coordination mechanism consists
of a set of transfer contracts that specify prices that each agent

need to compensate other agents for the shared resources being
consumed. We further derive an iterative algorithm that shows how
these transfer contracts can be computed without having agents to
reveal their private demand functions and that convergence can be
guaranteed without assumptions of convexity.
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