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Abstract— One of the popular dynamics on complex networks
is the epidemic spreading. An epidemic model describes how
infections spread throughout a network. Among the compart-
mental models used to describe epidemics, the Susceptible-
Infected-Susceptible (SIS) model has been widely used. In the
SIS model, each node can be susceptible, become infected with
a given infection rate, and become again susceptible with a
given curing rate. In this paper, we add a new compartment
to the classic SIS model to account for human response to
epidemic spread. In our model, each individual can be infected,
susceptible, or alert. Susceptible individuals can become alert
with an alerting rate if infected individuals exist in their
neighborhood. Due to a newly adopted cautious behavior, an
individual in the alert state is less probable to become infected.
The problem is modeled as a continuous-time Markov process
on a generic graph and then formulated as a set of ordinary
differential equations. The model is then studied using results
from spectral graph theory and center manifold theorem.
We analytically show that our model exhibits two distinct
thresholds in the dynamics of epidemic spread. Below the first
threshold, infection dies out exponentially. Beyond the second
threshold, infection persists in the steady state. Between the
two thresholds, infection spreads at the first stage but then
dies out asymptotically as the result of increased alertness in
the network. Finally, simulations are provided to support our
findings.

I. INTRODUCTION

Modeling human reactions to the spread of infectious

disease is an important topic in current epidemiology [1],

and has recently attracted a substantial attention [2]–[8].

The challenges in this topic concern not only how to model

human reactions to the presence of epidemics, but also

how these reactions affect the spread of the disease itself.

In general, human response to an epidemic spread can be

categorized in three main types: (1) Change in the system

state. For example, in a vaccination scenario individuals go

directly from susceptible state to recovered without going

through infected state. (2) Change in system parameters as

the result of an adopted cautious behavior. For example, as in

[7], individuals might choose to use masks, therefore, have

a smaller infection rate parameter. (3) Change in the contact

topology. For example, due to the perception of a serious

danger, individuals reduce or change their contacts with other

people who can potentially be infectious [2].

Epidemic modeling has a rich history. In [9] an epidemic

model on a homogenous network was studied. Later on,

results for heterogeneous networks were reported in [10].

Pastor-Satorras et. al. [11] studied epidemic spreading in
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scale free networks, showing that in these networks the epi-

demic threshold vanishes with consequent concerns for the

robustness of many real complex systems. Wang et. al. [12]

provided the first result for a non-synthetic contact topology,

and studied the epidemic spread dynamic on a generic graph.

Through a local analysis of a mean-field discrete model, it

was shown that the epidemic threshold is directly related to

the inverse of the spectral radius of the adjacency matrix of

the contact graph. More detailed proof was provided in [13].

Ganash et. al. [14] proved the same result without any mean-

field approximations. A continuous-time epidemic model

was studied by Van Mieghem et. al. [15], where a set of

ordinary differential equations was extracted through mean-

field approximation of a continuous time Markov process.

The relation between the epidemic threshold and the spectral

radius was rigorously proved and further insights about the

steady state infection probabilities were analytically derived.

Preciado and Jadbabaie [16] studied the epidemic spread on

geometric random networks and then investigated [17] the

epidemic threshold on graphs with respect to the network

structural information.

A good review on the existing results studying the interac-

tion of the epidemic spreading and the human behavior can

be found in [2]. Poletti et. al. [18] developed a population-

based model where susceptible individuals could choose

between two behaviors in response to presence of infection.

Funk et. al. [4] showed that awareness of individuals about

the presence of a disease can help reducing the size of the

epidemic outbreak. In their paper, awareness and disease

have interconnected dynamics. Theodorakopoulos et. al. [8]

formulated the problem so that individuals could make

decision based on the perception of the epidemic size. Perra

et. al. [19] considered the case where individuals go to a

”feared” state when they sense infection. Since most of the

existing results are for population-based models, they are

suitable for a society of well-mixed individuals. To the best

of the authors’ knowledge, individual-based results have not

been reported for this problem so far.

The contribution of this paper is two-fold: (1) Unlike most

of the previous results, no homogeneity assumption is made

on the contact network and the human-disease interaction in

this paper is modeled on a generic contact graph. (2) We

show through analytical approaches that two distinct critical

values exist for the infection strength. The two are explicitly

computed. To the authors’ knowledge the existence of two

distinct thresholds is reported for the first time in this paper,

providing a fundamental progress on previous results.

The rest of the paper is organized as follows. Section II is

devoted to the problem formulation and model derivations.
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Stability analysis results of the model are provided in Section

III. Finally, results are examined through numerical simula-

tions in Section IV.

II. MODEL DEVELOPMENT

In this section, the N-intertwined SIS model developed in

[15] is reviewed briefly. The SAIS spreading model is then

introduced as the basis for the future developments in this

study.

A. N-Intertwined SIS Model for Epidemic Spread

Van Mieghem et. al. [15] derived a set of ordinary dif-

ferential equations, called the N-intertwined model, which

represents the time evolution of the probability of infection

for each individual. In this model, a network of N individuals

is considered where each individual is represented by a

node and the contact topology is represented by a graph G.

A disease in this model is characterized by infection rate

β ∈ R
+ and curing rate δ ∈ R

+. The N-intertwined model

describes the time evolution of the infection probability of

the i-th individual, denoted by pi ∈ [0, 1], as

ṗi = β(1− pi)
∑
j∈Ni

aijpj − δpi, i ∈ {1, ..., N}, (1)

where aij > 0 if individual j can potentially infect individual

i, i.e. j ∈ Ni, otherwise aij = 0.

Proposition 1: Consider the N-intertwined model (1). Ini-

tial infection will die out exponentially if the infection

strength τ � β
δ satisfies

τ � β

δ
≤ 1

ρ(A)
, (2)

where ρ(A) is the spectral radius of the adjacency matrix

A = [aij ] ∈ R
N×N of the contact graph.

Remark 1: The value τc � 1
ρ(A) is usually referred to as

the epidemic threshold. For any infection strength τ > τc,

infection will persist in the steady state. The following result

discusses the steady state values for infection probabilities.

Proposition 2: If the infection strength is above the epi-

demic threshold, the steady state values of the infection

probabilities, denoted by pssi for the i-th individual, is the

non-trivial solution of the following set of equations

β

δ

∑
j∈Ni

aijp
ss
j =

pssi
1− pssi

, i ∈ {1, ..., N}. (3)

B. SAIS Spreading Model

In this paper, we have built our modeling based on the N-

intertwined model. Specifically, we add a new compartment

to the classic SIS model for epidemic spread modeling

to propose a Susceptible-Alert-Infected-Susceptible (SAIS)

model. The contact topology in this formulation is considered

as a generic graph. Each node is allowed to be in one of the

three states ”S: susceptible”, ”I: infected”, and ”A: alert”.

A susceptible individual becomes infected by the infection

rate β times the number of its infected neighbors. An infected

individual recovers back to the susceptible state by the curing
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Fig. 1. Stochastic compartmental transition graph for an individual with
only one infected neighbor.

rate δ. An individual can observe the states of its neighbors.

A susceptible individual might go to the alert state if sur-

rounded by infected individuals. Specifically, a susceptible

node becomes alert with the alerting rate κ ∈ R
+ times the

number of infected neighbors. An alert individual can get

infected in a process similar to a susceptible individual but

with a smaller infection rate 0 ≤ βa < β. We assume that

transition from an alert individual to a susceptible state is

much slower than other transitions. Hence, in our modeling

setup, an alert individual never goes back directly to the

susceptible state. The stochastic compartmental transitions

of a node with one single infected neighbor are depicted in

Fig. 1.

For each node i ∈ {1, ..., N}, define a random variable

Xi : {S, I, A} → {0, 1, 2}. Denote Xt
i the value of Xi at

time t for node i. The epidemic spread dynamics is modeled

as the following continuous-time Markov process

P (Xt+Δt
i = 1|Xt

i = 0,Xt) = βΔtY t
i + o(Δt),

P (Xt+Δt
i = 0|Xt

i = 1,Xt) = δΔt+ o(Δt),

P (Xt+Δt
i = 2|Xt

i = 0,Xt) = κΔtY t
i + o(Δt),

P (Xt+Δt
i = 1|Xt

i = 2,Xt) = βaΔtY t
i + o(Δt), (4)

for i ∈ {1, ..., N} and Y t
i �

∑
j∈Ni

aij1{Xt
j=1}. In (4),

P (·) denotes probability, Xt � {Xt
i , i = 1, ..., N} is the

joint state of the network, Δt > 0 is a time step, and the

indicator function 1{X} is one if X is true and zero otherwise.

A function f(Δt) is said to be o(Δt) if limΔt→0
f(Δt)
Δt = 0.

A common approach for studying a continuous-time

Markov process is to derive the corresponding Kolmogorov

forward (backward) differential equations (see [20]). As can

be seen from the above equations, the conditional transition

probabilities of a node are expressed in terms of the current

state of its neighboring nodes. Therefore, each state of

the Kolmogorov differential equations corresponding to the

Markov process (4) will be the probability of being in a

specific joint state. In this case, we will end up with a set

of first order ordinary differential equations of the order 3N .

Hence, the analysis will become dramatically complicated

as the network size grows. Using a proper mean-field-like

approximation (cf. [15] and [17]), it is possible to express

the transition probabilities in terms of infection probabilities
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of the neighbors. Specifically, the term 1{Xt
j=1} is replaced

with E[1{Xt
j=1}] in (4). Hence, the following new stochastic

process is obtained:

P (Xt+Δt
i = 1|Xt

i = 0,Xt) = βΔtE[Y t
i ] + o(Δt),

P (Xt+Δt
i = 0|Xt

i = 1,Xt) = δΔt+ o(Δt),

P (Xt+Δt
i = 2|Xt

i = 0,Xt) = κΔtE[Y t
i ] + o(Δt),

P (Xt+Δt
i = 1|Xt

i = 2,Xt) = βaΔtE[Y t
i ] + o(Δt). (5)

Define a new state xi � [si, pi, qi]
T , where si, pi, and

qi denote the probabilities of individual i to be susceptible,

infected, and alert, respectively. According to (5), the time

evolution of xi can be described by the following differential

equations

ẋi = ΘT
i xi, i ∈ {1, ..., N}, (6)

where

Θi �

⎡
⎣ −δ 0 δ
βayi −βayi 0
βyi κyi −(β + κ)yi

⎤
⎦ (7)

is the infinitesimal transition matrix and yi �
∑

j∈Ni
aijpj .

One property of the dynamic system (6) is that si+pi+qi is

a preserved quantity. Hence, the states si, pi, and qi are not

independent. Omitting si in (6), the SAIS spreading model

is obtained as:

ṗi = β(1− pi − qi)
∑
j∈Ni

aijpj + βaqi
∑
j∈Ni

aijpj − δpi,

(8)

q̇i = κ(1− pi − qi)
∑
j∈Ni

aijpj − βaqi
∑
j∈Ni

aijpj , (9)

for i ∈ {1, ..., N}.

III. ANALYSIS OF SAIS SPREADING MODEL

In this section, the SAIS spreading model (8) and (9)

derived in the previous section is analyzed.

A. Comparison between SAIS and SIS

In this section, the SAIS model and the SIS model are

compared with respect to the infection probabilities of the

individuals. Specifically, we are interested to compare pi(t),
the response of (8) and (9), with infection probability p′i(t)
in the N-intertwined SIS model, which is the solution of the

system

ṗ′i = β(1− p′i)
∑
j∈Ni

aijp
′
j − δp′i. (10)

The following theorem shows that alertness decreases the

probability of infection for each individual.

Theorem 1: Starting with the same initial conditions

pi(t0) = p′i(t0), i = {1, ..., N}, the infection probabilities

of individuals in SIS model (10) always dominate those of

the SAIS model (8) and (9), i.e.,

pi(t) ≤ p′i(t), i = {1, ..., N} ∀t ∈ [t0,∞). (11)

Proof: Rewrite the equation (8) as

ṗi = β(1−pi)
∑
j∈Ni

aijpj−δpi−(β−βa)qi
∑
j∈Ni

aijpj . (12)

Starting with the same initial conditions pi(t0) = p′i(t0) for

i ∈ {1, ..., N}, it is concluded that

pi(t0) = p′i(t0) ⇒ ṗi(t0) ≤ ṗ′i(t0), (13)

since (β−βa)qi(t0)
∑

j∈Ni
aijpj(t0) is a non-negative term

having βa < β by definition. According to (13), there exists

tf > t0 so that

pi(t) ≤ p′i(t), i ∈ {1, ..., N} ∀t ∈ [t0, tf ]. (14)

The theorem is proved if we show that inequality (14) holds

for every tf ∈ (t0,∞). Assume that there exists t1 > t0, so

that (14) holds for tf = t1 but it is not true for any tf > t1.

Obviously, at t = t1,

∃i ∈ {1, ..., N} s.t. pi(t1) = p′i(t1) and ṗi(t1) > ṗ′i(t1).
(15)

In the subsequent arguments, it is shown that no such t1
exists. From (12), ṗi(t1) is found to satisfy

ṗi(t1) = β(1− pi(t1))
∑
j∈Ni

aijpj(t1)

− (β − βa)qi(t1)
∑
j∈Ni

aijpj(t1)− δpi(t1)

≤ β(1− pi(t1))
∑
j∈Ni

aijpj(t1)− δpi(t1)

= β(1− p′i(t1))
∑
j∈Ni

aijpj(t1)− δp′i(t1), (16)

according to (15) and the fact that (β−βa)qi(t1)
∑

aijpj(t1)
is a non-negative term. Based on (14), ∀j ∈ {1, ..., N} we

have pj(t1) ≤ p′j(t1). Therefore, the inequality (16) is further

simplified as

ṗi(t1) ≤ β(1− p′i(t1))
∑
j∈Ni

aijp
′
j(t1)− δp′i(t1) = ṗ′i(t1).

(17)

Having ṗi(t1) ≤ ṗ′i(t1) contradicts (15). Hence, no such t1
exists so that (15) is true. As a result, the inequality (14)

holds for every tf ∈ (t0,∞). This completes the proof.

B. Exponential Epidemic Die-Out

Theorem 2: Consider the SAIS spreading model (8) and

(9). Assume that the infection strength satisfies

τ =
β

δ
<

1

ρ(A)
. (18)

Then, initial infections will die out exponentially.

Proof: The solution of pi(t) was proved in Theorem

1 to be upper-bounded by p′i(t). According to Proposition

1, the N-intertwined model (10) is exponentially stable if

(18) is satisfied. As a consequence, pi(t) in (12) is also

exponentially stable if (18) is satisfied.
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C. Asymptotically Epidemic Die-Out

According to (9),

qei =
1− pi

1 + βa

κ

, i ∈ {1, ..., N}, (19)

is an equilibrium for (9). To facilitate the subsequent analy-

sis, define a new state ri as

ri � qi − qei = qi − 1− pi

1 + βa

κ

. (20)

Substituting qi = ri+
1

1+ βa
κ

− pi

1+ βa
κ

from (20) in (8) and (9),

the derivatives ṗi and ṙi in the new coordinate are derived

as

ṗi = {β
βa

κ

1 + βa

κ

+ βa
1

1 + βa

κ

}
∑
j∈Ni

aijpj

− {β +
β + βa

1 + βa

κ

}pi
∑
j∈Ni

aijpj

− (β − βa)ri
∑
j∈Ni

aijpj − δpi, (21)

ṙi = −κ(1 +
βa

κ
)ri

∑
j∈Ni

aijpj . (22)

To facilitate the subsequent analysis, define

p � [p1, ..., pN ]T ∈ R
N , r � [r1, ..., rN ]T ∈ R

N . (23)

According to (21) and (22) and the definitions (23), the

followings are true

ṗ = (βeffA− δI)p+G1(p, r), (24)

ṙ = 0r+G2(p, r), (25)

where 0 is a matrix or vector of appropriate dimensions,

βeff � β
βa

κ

1 + βa

κ

+ βa
1

1 + βa

κ

, (26)

and

Gk(·) � [gk,1(·), ..., gk,N (·)]T , (27)

for k ∈ {1, 2} with

g1,i(p, r) � −{β +
β + βa

1 + βa

κ

}pi
∑
j∈Ni

aijpj

− (β − βa)ri
∑
j∈Ni

aijpj , (28)

g2,i(p, r) � −κ(1 +
βa

κ
)ri

∑
j∈Ni

aijpj . (29)

If we linearize the system (24) and (25) at the origin,

the resulting system has N zero eigenvalues. Therefore,

linearization technique fails to investigate the stability prop-

erties of (24) and (25). In the following arguments, we show

that center manifold theory can be employed here.

The eigenvalues of matrix (βeffA−δI) are βeffλi−δ, i ∈
{1, ...N}, where λi’s are the eigenvalues of the adjacency

matrix A. Therefore, assuming that

βeff

δ
<

1

ρ(A)
, (30)

the matrix (βeffA − δI) is Hurwitz (i.e., a matrix that all

of its eigenvalues have negative real parts). In addition, the

two nonlinear functions G1 and G2 defined in (27) satisfy

Gk(0,0) = 0, ∇Gk(0,0) = 0, (31)

for k ∈ {1, 2}, where ∇ is the gradient operator. The center

manifold theorem (see [21] for more details) suggests that

there exists a function H(·) : RN → R
N where the dynamics

(24) and (25) can be determined by

˙̂r = G2(H(r̂), r̂). (32)

Differential equation (32) can be written in terms of its

entries as

˙̂ri = −κ(1 +
βa

κ
)r̂i

∑
j∈Ni

aijhj(r̂), (33)

for i ∈ {1, ..., N}, where hi(·) is the i-th component of

H(·) � [h1(·), ..., hN (·)]T .
Remark 2: Usually, it is not feasible to find hi(·) explic-

itly. However, we know that each function hi(·) is necessarily

non-negative since the probability pi is non-negative.

Lemma 1: The trajectories of (33) will asymptotically

converge to the set defined by

Ω = {r̂ ∈ R
N |r̂i

∑
j∈Ni

aijhj(r̂) = 0, i = 1, ..., N}. (34)

Proof: Define a continuously differentiable function V
as

V � 1

2
r̂T r̂. (35)

Taking the derivative of V with respect to time, we have

V̇ =
N∑
i=1

r̂i ˙̂ri = −κ(1 +
βa

κ
)

N∑
i=1

⎛
⎝r̂2i

∑
j∈Ni

aijhj(r̂)

⎞
⎠ .

(36)

It can be seen that the time derivative V̇ is negative semi-

definite according to Remark 2. According to the LaSalle’s

invariance theorem (see [21]) the trajectories of (33) will

asymptotically converge to the set V̇ ≡ 0, i.e., Ω in (34).

Theorem 3: Consider the SAIS spreading model (8) and

(9). Assume that the infection strength satisfies (30) where

βeff is defined in (26). Small initial infections die out

asymptotically as t → ∞.

Proof: Since the infection strength satisfies (30), the

matrix (βeffA− δI) is Hurwitz. According to the property

(31) of G1(p, r), the system

ṗ = (βeffA− δI)p+G1(p,0),

which is system (24) with r = 0, is exponentially stable. In

addition, according to Lemma 1, r̂i
∑

j∈Ni
aijhj(r̂) → ∞

as t → ∞. Therefore, the term ri
∑

aijpj in (21) can be
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considered as a vanishing disturbance for (24). Therefore,

pi → 0 asymptotically as t → ∞.

Remark 3: From Theorem 2, the first epidemic threshold

is

τ1c =
1

ρ(A)
, (37)

which is equal to the epidemic threshold in the N-intertwined

SIS epidemic model. If the infection rate βa is such that

βa

δ
<

1

ρ(A)
, (38)

the ratio
βeff

δ can be larger or smaller than 1
ρ(A) , depending

on the value of β. Therefore, if (38) holds, Theorem 3

suggests that there exists another epidemic threshold τ2c .

Using the definition of βeff in (26), the condition (30) in

Theorem 3 can be expressed as

βeff

δ
=

β

δ

βa

κ

1 + βa

κ

+
βa

δ

1

1 + βa

κ

≤ 1

ρ(A)
, (39)

which is equivalent to

β

δ
≤ 1

ρ(A)
+

κ

βa
(

1

ρ(A)
− βa

δ
). (40)

From (40), the second epidemic threshold τ2c is

τ2c = τ1c +
κ

βa
(

1

ρ(A)
− βa

δ
). (41)

Notice that, according to (38), τ2c > τ1c .

D. Epidemic Persistence in the Steady State

The steady state is studied by letting the time derivatives

ṗi and q̇i equal to zero, namely,

0 = β(1− pssi − qssi )yssi + βaq
ss
i yssi − δpssi , (42)

0 = κ(1− pssi − qssi )yssi − βaq
ss
i yssi , (43)

where yssi �
∑

j∈Ni
aijp

ss
j .

From (43), it is inferred that

qssi
∑

aijp
ss
j =

1− pssi
1 + βa

κ

∑
aijp

ss
j . (44)

Now, substitute for qssi
∑

aijp
ss
j terms in (42) using (44)

to get(
β

βa

κ

1 + βa

κ

+ βa
1

1 + βa

κ

)
(1− pssi )

∑
aijp

ss
j − δpssi = 0.

(45)

Theorem 4: Consider the SAIS spreading model (8) and

(9). The steady state values of the infection probability of

each individual in the SAIS model is similar to those of

the N-intertwined SIS epidemic model (1) with an effective

infection rate βeff .

Proof: Based on the definition of βeff in (26), the

equation (45) is simplified to

βeff (1− pssi )
∑

aijp
ss
j − δpssi = 0,
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Fig. 2. The infected population fraction in Example 1. (a) SIS model. (b)
SAIS model. (c) SIS model with reduced infection rate βeff .

which can be expressed as

βeff

δ

∑
aijp

ss
j =

pssi
1− pssi

. (46)

Comparing (46) with (3) from the Proposition 2, it is

observed that the steady state values of the infection proba-

bilities in an SAIS epidemic network is equal to those of a

SIS epidemic network with effective infection rate βeff .

IV. SIMULATION RESULTS

In order to examine the analytical results developed for

the SAIS spreading model, three examples are provided in

this section. In all of the simulations, the curing rate is fixed

at δ = 1 so that the dimensionless time t̄ = δt is the same

as the simulation time.

Example 1: We consider an arbitrary contact graph with

11 nodes and 16 links. For this network, the spectral radius is

found to be ρ(A) = 3.1385. For the simulation purpose, three

nodes are initialized in the infected state while others are all

susceptible. In Fig. 2, three trajectories of the total infection

fraction p̄(t) = 1
N

∑N
i=1 pi(t) are plotted. For all the three,

κ = 0.1 and βa = 0.1. The trajectories (a) and (b) correspond

to the N-intertwined SIS model 1 and the SAIS spreading

model (8) and (9), respectively, with β = 2. Trajectory (c)

is the solution of the SIS model with the infection rate βeff

defined in (26).

As is expected from Theorem 1, the infected fraction in

SIS model always dominates the SAIS model. In addition,

as proved in Theorem 4, the steady state infection fraction

in the SAIS is equal to that of the SIS model with the

effective infection rate βeff . In Fig. 2, it can be observed

that the infection probabilities in the SAIS model spread

similar to the SIS model at the first stage. Then, the size

of the epidemics is reduced due to increased alertness in the

network.

Example 2: In this example, for the same network in the

previous example, (1) the steady state value of the infected

fraction and (2) the maximum value of the infected fraction

are plotted as a function of the infection strength τ = β/δ.

The simulation parameters are chosen as κ = 1, βa = 0.1.
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Fig. 3. The maximum infected fraction (blue line) and the steady state
value for the infected fraction (red line) in Example 2.

Since βa/δ = 0.1 < 1/ρ(A) = 0.3186, there exists two

distinct thresholds τ1c and τ2c presented in (37) and (41),

respectively, as discussed in Remark 3. Simulation results

for this example are shown in Fig. 3. As is observed in

Fig. 3, the steady state values of the infected fraction p̄ is

zero before the second epidemic threshold τ2c . In addition,

the maximum of the infected fraction is equal to the initial

infected fraction before τ1c , because before τ1c , the epidemics

dies out exponentially; as stated in Theorem 2. Between the

two thresholds, maxt p̄(t) is greater than p̄(0) but steady

state value p̄ss = 0. Therefore, in this region the epidemic

spreads at the first stage but then completely dies out as

a result of increased alertness. After the second threshold,

p̄ss < maxt p̄(t), i.e., alertness reduced the infection size.

Example 3: Consider an epidemic network where the

contact graph is an Erdos-Reyni random graph with N =
320 nodes and connection probability p = 0.2. The initial

infected population is %2 of the whole population. The sim-

ulation parameters are β = 0.03, κ = 0.05. Three trajectories

(a), (b), and (c) are presented in Fig. 4 corresponding to

βa = β, βa = 0.02, βa = 0.01. For the sake of evaluating the

model development in Section II, a Monte-Carlo simulation

is also provided for each trajectory, shown in Fig. 4 in blue.

As can be seen, there is a reasonable agreement between the

proposed model (8) and (9) and the Markov process (4). It

can be observed that lowering βa reduces the steady state

infection probability. For a sufficiently small value of βa

infection is mitigated totally at the steady state.
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