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Abstract— For a class of hybrid systems given in terms of
constrained differential and difference equations/inclusions, we
define control Lyapunov functions, and study their existence
when compact sets are asymptotically stable as well as the
stabilizability properties guaranteed when they exist. Recent
converse Lyapunov theorems for the class of hybrid systems
under study enable us to assert that asymptotic stabilizability
of a compact set implies the existence of a smooth control
Lyapunov function. When control Lyapunov functions are
available, conditions for the existence of continuous state-
feedback control laws, both providing practical and global

stabilizability properties, are provided.

I. INTRODUCTION

Control Lyapunov functions have been instrumental in the

study of nonlinear control systems as they reveal the feasibil-

ity of control design through Lyapunov inequalities. In fact,

the existence of control Lyapunov functions is directly linked

to the problem of stabilizability of and controllability to a

set. Pioneering work by Artstein in [1] established that, for

continuous-time systems, the existence of a smooth control

Lyapunov function is equivalent to stabilizability of the ori-

gin with relaxed controls. This stabilizability result, known as

Artstein’s theorem, was made explicit in [2], where a general

formula for the construction of stabilizing state-feedback

laws was proposed. This construction is known as Sontag’s

formula. Motivated by pointwise minimum norm control

laws, an optimal stabilizing state-feedback construction was

proposed in [3]. The importance of these constructions is

that, under boundedness conditions, they provide robustness

to input uncertainties [3], [4]. This has enabled the authors

in [5] to apply the domination redesign technique; see also

[6]. Further constructions of state-feedback laws were also

given in [7] when Lipschitz control Lyapunov functions are

available and in [8] for nonaffine systems with polynomial

structure.

Control Lyapunov functions provide a link between sta-

bilizability and asymptotic controllability to the origin for

nonlinear systems, which is the property that for every point

in the state space there exist a control signal steering the state

to zero. In [9], through the construction of a nonsmooth con-

trol Lyapunov function, the authors show that every asymp-

totically controllable to the origin continuous-time system

can be globally stabilized by a (discontinuous) feedback law;

see also [10]. Further results on existence and equivalences

between nonsmooth control Lyapunov functions and asymp-

totic controllability appeared in [7], [11], [12], [13]. Results
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about asymptotic controllability to general closed sets, rather

than the origin, were given in [14] for continuous-time

time-invariant systems, in [15] for continuous-time time-

varying systems, and in [16] for discrete-time systems. In

particular, the approach in [14], [16] consists of recasting the

continuous-time and discrete-time problem as a differential

and difference inclusion, respectively, and then applying a

weak converse Lyapunov theorem [17]. Constructions of

control Lyapunov functions have been proposed for discrete-

time and hybrid systems in [18].

In this paper, we consider control Lyapunov functions for

hybrid systems given in terms of constrained differential and

difference inclusions with inputs modeled as

H

{
ẋ ∈ F (x, uc) (x, uc) ∈ C

x+ ∈ G(x, ud) (x, ud) ∈ D,
(1)

where (C,F,D,G) defines the data of the hybrid system; see

Section II-B for more details. We address two questions: 1)

existence of control Lyapunov functions when an asymptotic

stability property holds, and 2) existence of continuous state-

feedback asymptotically stabilizing laws when a control

Lyapunov function is available. To establish the former, we

exploit recent results on robustness of hybrid systems in [19]

(see also [20]), which, under mild regularity conditions of

the hybrid system data, enabled the generation of converse

Lyapunov theorems in [21], [22] for hybrid systems with

asymptotically stable compact sets. In Section IV, we show

that for the class of hybrid systems considered, asymptotic

stabilizability of a compact set implies the existence of a

control Lyapunov function with respect to the said compact

set.

The second result is in Section V and pertains to the ex-

istence of stabilizing state-feedback laws for hybrid systems

when a control Lyapunov function is available. Due to the

interest in hybrid systems of stabilizing subsets of the state

space (rather than simply the origin – see [20] for a discus-

sion), we determine under what conditions on the data of

the hybrid system there exist continuous state-feedback laws

asymptotically stabilizing a given compact set of the state

space. The derived conditions reveal key properties under

which such control laws exist and are expected to guide the

modeling and systematic design of feedback laws for hybrid

systems with inputs. The reason of insisting on continuous

feedback laws is that, when using such feedbacks to control

hybrid systems with regular data, results on robustness of

stability in [19] can be applied to the closed-loop system.

Inspired by [3] and [8], the results here are derived using a

selection theorem due to Michael [23] and the definition of a
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regulation map that appropriately incorporate the continuous

and discrete dynamics. Our results also cover the discrete-

time case, for which, to the best of the author’s knowledge,

results on existence of continuous stabilizers do not seem

available in the literature.

II. PRELIMINARIES

A. Notation

R
n denotes n-dimensional Euclidean space, R denotes the

real numbers. R≥0 denotes the nonnegative real numbers,

i.e., R≥0 = [0,∞). N denotes the natural numbers including

0, i.e., N = {0, 1, . . .}. B denotes the closed unit ball in

a Euclidean space. Given a set K , K denotes its closure.

Given a vector x ∈ R
n, |x| denotes the Euclidean vector

norm. Given a set K ⊂ R
n and a point x ∈ R

n, |x|K :=
infy∈K |x − y|. A function α : R≥0 → R≥0 is said to

belong to class-K∞ if it is continuous, zero at zero, strictly

increasing, and unbounded.

B. Hybrid Systems

A hybrid system H is modeled as (1), where R
n is the

space for the state x, Uc ⊂ R
mc and Ud ⊂ R

md are convex

sets defining the space for the inputs uc and ud, respectively,

as well as the space U ⊂ R
m for the input u = [u⊤

c u⊤
d ]

⊤, the

set C ⊂ R
n×Uc is the flow set, the function F : Rn×R

mc ⇉

R
n is the flow map, the set D ⊂ R

n × Ud is the jump set,

and G : Rn × R
md ⇉ R

n is the jump map.

The data of the hybrid system H is given by (C,F,D,G).

Definition 2.1 (hybrid time domain): A set E ⊂ R≥0×N

is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.

Solutions to hybrid systems H will be given in terms of

hybrid arcs and hybrid inputs. These are parameterized by

pairs (t, j), where t is the ordinary-time component and j is

the discrete-time component that keeps track of the number

of jumps.

Definition 2.2 (hybrid arc and input): A function x :
domx → R

n is a hybrid arc if domx is a hybrid time

domain and, for each j ∈ N, the function t 7→ x(t, j) is

absolutely continuous on the interval {t : (t, j) ∈ domx }.

A function u : domu → U is a hybrid input if domu is

a hybrid time domain and, for each j ∈ N, the function

t 7→ u(t, j) is Lebesgue measurable and locally essentially

bounded on the interval {t : (t, j) ∈ domu }.

With the definitions of hybrid time domain, and hybrid arc

and input in Definitions 2.1 and 2.2, respectively, we define

a concept of solution for hybrid systems H.1

1For simplicity, we will drop the dependence on inputs on elements of
the data (C, F,D,G) that are input independent.

Definition 2.3 (solution): Given hybrid inputs uc :
domuc → Uc, ud : domud → Ud defining u and an initial

condition ξ, a hybrid arc φ : domφ → R
n defines a solution

pair (φ, u) to the hybrid system H if the following conditions

hold:

(S0) (ξ, uc(0, 0)) ∈ C or (ξ, ud(0, 0)) ∈ D, and

domφ = domu;

(S1) For each j ∈ N such that Ij :=
{t : (t, j) ∈ dom(φ, u) } has nonempty interior

int(Ij), we have

(φ(t, j), uc(t, j)) ∈ C for all t ∈ int(Ij),

and, for almost all t ∈ Ij , we have

d

dt
φ(t, j) ∈ F (φ(t, j), uc(t, j));

(S2) For each (t, j) ∈ dom(φ, u) such that (t, j + 1) ∈
dom(φ, u), we have

(φ(t, j), ud(t, j)) ∈ D,

φ(t, j + 1) ∈ G(φ(t, j), ud(t, j)).

A solution pair (φ, u) to H is said to be complete if

dom(φ, u) is unbounded, Zeno if it is complete but the

projection of dom(φ, u) onto R≥0 is bounded, discrete if

their domain is {0}×N, and maximal if there does not exist

another pair (φ, u)′ such that (φ, u) is a truncation of (φ, u)′

to some proper subset of dom(φ, u)′. For a solution pair

(φ, u) with φ(0, 0) = ξ, we denote by φ(t, j, ξ, u) its value

at (t, j) ∈ dom(φ, u).
The following definition introduces a concept of stability

for hybrid systems without inputs, e.g., the hybrid system

resulting from assigning its inputs via a state-feedback law.

It is stated for general compact sets of the state space.

Definition 2.4 (stability): For a hybrid system H (without

inputs), a compact set A ⊂ R
n is said to be

• stable if for each ε > 0 there exists δ > 0 such that

each maximal solution φ from ξ with |ξ|A ≤ δ satisfies

|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• attractive if every maximal solution φ is bounded and

if it is complete satisfies

lim
(t,j)∈domφ,t+j→∞

|φ(t, j)|A = 0;

• asymptotically stable if stable and attractive.

C. Set-valued Analysis

A set-valued map S : Rn
⇉ R

m is outer semicontinuous

at x ∈ R
n if for each sequence {xi}∞i=1 converging to a point

x ∈ R
n and each sequence yi ∈ S(xi) converging to a point

y, it holds that y ∈ S(x); see [24, Definition 5.4]. Given a set

X ⊂ R
n, it is outer semicontinuous relative to X if the set-

valued mapping from R
n to R

m defined by S(x) for x ∈ X

and ∅ for x 6∈ X is outer semicontinuous at each x ∈ X . It is

locally bounded if, for each compact set K ⊂ R
n there exists

a compact set K ′ ⊂ R
n such that S(K) := ∪x∈KS(x) ⊂

K ′. For locally bounded set-valued maps with closed values,
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outer semicontinuity coincides with what is usually called

upper semicontinuity. A set-valued map S : R
n

⇉ R
m

is lower semicontinuous if for each x ∈ R
n one has

that lim infxi→x S(xi) ⊃ S(x), where lim infxi→x S(xi) =
{z : ∀xi → x, ∃zi → z s.t. zi ∈ S(xi) } is the inner limit

of S (see [24, Chapter 5.B]).

The following version of a selection theorem due to

Michael reported in [23] will be used to establish the

stabilizability result in Section V.

Theorem 2.5: Given a lower semicontinuous set-valued

map S : R
n

⇉ R
m with nonempty, convex, and closed

values, there exists a continuous selection s : Rn → R
m.

III. CONTROL LYAPUNOV FUNCTIONS

In this section, we define control Lyapunov functions

(CLFs) for hybrid systems H. Given a set K ⊂ R
n × U⋆

with ⋆ being either c or d, define

Π(K) := {x : ∃u⋆ ∈ U⋆ s.t. (x, u⋆) ∈ K }

Ψ(x,K) := {u : (x, u) ∈ K } .

That is, given a set K , Π(K) denotes the “projection” of K

onto R
n while, given x, Ψ(x,K) denotes the set of values

u such that (x, u) ∈ K . Then, for each x ∈ R
n, define the

set-valued maps Ψc : R
n
⇉ Uc, Ψd : Rn

⇉ Ud as

Ψc(x) := Ψ(x,C), Ψd(x) := Ψ(x,D). (2)

Definition 3.1 (control Lyapunov function): Given a

nonempty set A ⊂ R
n, a continuously differentiable

function V : Rn → R is a control Lyapunov function with

U controls for H if there exist α1, α2, α3 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A)

∀x ∈ Π(C) ∪ Π(D) ∪G(D), (3)

inf
uc∈Ψc(x)

sup
ξ∈F (x,uc)

〈∇V (x), ξ〉 ≤ −α3(|x|A)

∀x ∈ Π(C), (4)

inf
ud∈Ψd(x)

sup
ξ∈G(x,ud)

V (ξ)− V (x) ≤ −α3(|x|A)

∀x ∈ Π(D). (5)

We illustrate the definition of control Lyapunov functions

for hybrid systems.

Example 3.2: Consider a point-mass pendulum impacting

on a controlled slanted surface. Denote the pendulum’s angle

(with respect to the vertical) by x1 and the pendulum’s

velocity (positive when the pendulum rotates in the clockwise

direction) by x2. When x1 ≥ µ with µ denoting the angle

of the surface, its continuous evolution is given by

ẋ1 = x2, ẋ2 = −a sinx1 − bx2 + τ,

where a > 0, b ≥ 0 capture the system constants (e.g.,

gravity, mass, length, and friction) and τ corresponds to

torque actuation at the pendulum’s end. For simplicity, we

assume that x1 ∈ [−π
2 , π] and µ ∈ [−π

2 , 0]. Impacts between

the pendulum and the surface occur when

x1 = µ, x2 ≤ 0. (6)

At such events, the jump map takes the form

x+
1 = x1 + ρ(µ)x1, x+

2 = −e(µ)x2,

where the functions ρ and e are continuous and capture the

effect of pendulum compression and restitution at impacts,

respectively, as a function of µ. The function ρ captures rapid

displacements of the pendulum at collisions while e models

the effect of the angle µ on energy dissipation at impacts.

For a vertical surface (µ = 0), these functions are taken as

ρ(0) = 0 and e(0) = e0, where e0 ∈ (0, 1) is the nominal

(no gravity effect) restitution coefficient. For slanted surfaces

(µ ∈ [−π
2 , 0)), when conditions (6) hold, ρ is chosen as

x1+ρ(µ)x1 > x1, ρ(µ) ∈ (−1, 0), so that, after the impacts,

the pendulum is pushed away from the contact condition.

The function e is chosen as a nondecreasing function of µ

satisfying e0 ≤ e(µ) < 1 at such angles so that, due to the

effect of the gravity force at impacts, less energy is dissipated

as |µ| increases.

The model above can be captured by the hybrid system

H given by

ẋ1 = x2

ẋ2 = −a sinx1 − bx2 + uc,1

}
=: f(x, uc)

(x, uc) ∈ C,

x+
1 = x1 + ρ(ud)x1

x+
2 = −e(ud)x2

}
=: g(x, ud)

(x, ud) ∈ D,

(7)

where uc = [uc,1 uc,2]
⊤ = [τ µ]⊤ ∈ R × [−π

2 , 0] =: Uc,

ud = µ ∈ [−π
2 , 0] =: Ud,

C :=
{
(x, uc) ∈ R

2 × Uc : x1 ≥ uc,2

}
,

D :=
{
(x, ud) ∈ R

2 × Ud : x1 = ud, x2 ≤ 0
}
.

Note that the definitions of C and D impose state constraints

on the inputs.

Let A = {(0, 0)} and consider the candidate control

Lyapunov function with U controls for H given by

V (x) = x⊤Px, P =

[
2 1
1 1

]
. (8)

During flows, we have that

〈∇V (x), f(x, uc)〉 = 4x1x2 + 2x2
2

+2(−a sinx1 − bx2 + uc,1)(x2 + x1)

for all (x, uc) ∈ C. It follows that (4) is satisfied with α3

defined as α3(s) := s2 for all s ≥ 0. In fact, note that, for

each x ∈ R
2,

Ψc(x) =

{
R× [−π

2 ,min {x1, 0}] x1 ∈ [−π
2 , π]

∅ x1 6∈ [−π
2 , π].

and that Π(C) = [−π
2 , π]× R. Then

inf
uc∈Ψc(x)

〈∇V (x), f(x, uc)〉 = −x⊤x

for all x ∈ Π(C) such that x1 + x2 = 0, while when x1 +
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x2 6= 0, we have

inf
uc∈Ψc(x)

〈∇V (x), f(x, uc)〉 = −∞.

Note that, for each x ∈ R
2, we have

Ψd(x) =

{
{x1} x1 ∈ [−π

2 , 0], x2 ≤ 0
∅ otherwise ,

and that Π(D) = [−π
2 , 0] × (−∞, 0]. Then, during jumps,

we have

inf
ud∈Ψd(x)

V (g(x, ud))− V (x) = V (g(x, x1))− V (x)

≤ −min{2(1− ρ2(x1)), 1 − e2(x1)}x
⊤x

for all x ∈ Π(D). Then, condition (5) is satisfied with

α3 defined as α3(s) := λs2 for all s ≥ 0, λ :=
minx1∈[−π

2
,0]{2(1−ρ2(x1)), 1−e2(x1)}. It follows that both

(4) and (5) hold with this choice of α3.

IV. STABILIZABILITY IMPLIES EXISTENCE OF CLF

For continuous-time nonlinear systems, standard converse

Lyapunov theorems, like those in [25], [26], can be used to

establish that asymptotic stabilizability of the origin implies

the existence of a control Lyapunov function. A similar

result holds for hybrid systems H satisfying the regularity

conditions given in Definition 4.1 below, for which the

converse Lyapunov theorems in [21], [22] are applicable. We

consider hybrid systems H under the effect of the feedback

laws

κc : R
n → Uc, κd : Rn → Ud, (9)

which lead to the closed-loop hybrid system

H̃

{
ẋ ∈ F̃ (x) := F (x, κc(x)) x ∈ C̃

x+ ∈ G̃(x) := G(x, κd(x)) x ∈ D̃
(10)

with

C̃ := {x ∈ R
n : (x, κc(x)) ∈ C } ,

D̃ := {x ∈ R
n : (x, κd(x)) ∈ D } .

The required regularity conditions on the data of the hybrid

systems are stated next.

Definition 4.1 (Hybrid Basic Conditions): A hybrid sys-

tem H̃ is said to satisfy the hybrid basic conditions if its

data (C̃, F̃ , D̃, G̃) is such that

(A1) C̃ and D̃ are closed sets.

(A2) F̃ : Rn
⇉ R

n is outer semicontinuous and locally

bounded, and F̃ (x) is nonempty and convex for all x ∈
C̃.

(A3) G̃ : Rn
⇉ R

n is outer semicontinuous and locally

bounded, and G̃(x) is a nonempty subset of Rn for all

x ∈ D̃.

These conditions assure that (closed) hybrid systems are

well posed in the sense that they inherit several good

structural properties of their solution sets. These include

sequential compactness of the solution set, closedness of

perturbed and unperturbed solutions, etc. We refer the reader

to [20], [19] (see also [27]) and [28] for details on and

consequences of these conditions.

The following lemma is a straightforward consequence of

continuity of the feedback pair (κc, κd) and the regularity

properties of the hybrid system.

Lemma 4.2: Suppose κc and κd are continuous and H =
(C,F,D,G) is such that

(A1’) C and D are closed subsets of Rn×Uc and R
n×

Ud, respectively.

(A2’) F : R
n × R

mc ⇉ R
n is outer semicontinuous

relative to C and locally bounded, and for all (x, uc) ∈
C, F (x, uc) is nonempty and convex.

(A3’) G : R
n × R

md ⇉ R
n is outer semicontinuous

relative to D and locally bounded, and for all (x, ud) ∈
D, G(x, ud) is nonempty.

Then H̃ satisfies the hybrid basic conditions.

The next result establishes that the asymptotic stabiliz-

ability of a compact set implies the existence of a control

Lyapunov function.

Theorem 4.3: Given a compact set A ⊂ R
n and a hybrid

system H, suppose there exist functions κc : R
n → Uc

and κd : Rn → Ud such that H̃ satisfies the hybrid basic

conditions2 and that renders A asymptotically stable. Then,

there exists a smooth control Lyapunov function V with U
controls for H.

Example 4.4: The hybrid system H̃ resulting from using

zero controls in (7) is such that the hybrid basic conditions

hold and that A = {(0, 0)} is asymptotically stable (glob-

ally). This property can be established using the function

defined as

Ṽ (x) := a(1− cosx1) +
1

2
x2
2 (11)

and the invariance principle [29, Theorem 4.3]. However, as

a difference to V in (8), note that since 〈∇Ṽ (x), f(x, uc)〉 =
−bx2

2 + x2uc,1, Ṽ is not a CLF for the hybrid system (7)

with respect to A.

V. EXISTENCE OF CLF IMPLIES STABILIZABILITY

When a CLF is available, the problem of existence of a

state-feedback law hinges upon the possibility of making a

selection (κc, κd) from the CLF inequalities (4) and (5). It

amounts to determine (κc, κd) such that, for some α̃3 ∈ K∞,

we have

sup
ξ∈F (x,κc(x))

〈∇V (x), ξ〉 ≤ −α̃3(|x|A)

∀(x, κc(x)) ∈ C,

sup
ξ∈G(x,κd(x))

V (ξ)− V (x) ≤ −α̃3(|x|A)

∀(x, κd(x)) ∈ D.

When such a state-feedback pair exists, we say that the

system H is stabilizable with respect to A.

2Note that, in particular, due to Lemma 4.2, H̃ satisfies the hybrid basic
conditions when (κc, κd) are continuous.

7407



Below, we provide conditions under which stabilizing

feedback laws that are continuous exist for hybrid systems.

For simplicity, we consider hybrid systems with single-

valued flow and jump maps. Building from ideas in [3] and

[8] for continuous-time systems, our approach consists of

making continuous selections from a “regulation map.” This

differs from the work in [2], where explicit constructions of a

stabilizing state feedback laws for continuous-time systems

are given. Here, we first establish conditions under which

a selection of a feedback pair (κc, κd) is possible away

from the compact set of interest. Hence, no special property

nearby the compact set is needed. After that, we show that

under further small control conditions nearby A, a (globally)

continuous state-feedback pair exists. When specialized to

C = ∅ and D = R
n, the results below cover the discrete-time

case, for which results on existence of continuous stabilizers

do not seem available in the literature.

A. Practical asymptotic stability

Given a compact set A and a control Lyapunov function

V satisfying Definition 3.1 with α3 ∈ K∞, define, for each

r ∈ R≥0, the set

I(r) := {x ∈ R
n : V (x) ≥ r } .

Moreover, for each (x, uc) ∈ R
n×R

mc and r ∈ R≥0, define

the function

Γc(x, uc, r) :=





〈∇V (x), f(x, uc)〉+ α3(|x|A)
if (x, uc) ∈ C ∩ (I(r) × R

mc)
−∞ otherwise

and, for each (x, ud) ∈ R
n×R

md and r ∈ R≥0, the function

Γd(x, ud, r) :=





V (g(x, ud))− V (x) + α3(|x|A)
if (x, ud) ∈ D ∩ (I(r) × R

md)
−∞ otherwise.

The following proposition establishes conditions guaran-

teeing that, for each r > 0, there exists a continuous feedback

pair (κc, κd) rendering the compact set

{x ∈ R
n : V (x) ≤ r } (12)

asymptotically stable. When such a feedback pair exists, we

say that H is practically asymptotically stabilizable with

respect to A by continuous feedback. Our approach consists

of restricting the flow and jump sets of the hybrid system H
by the set I(r) for given r > 0. Such a restriction is given

by the hybrid system HI

HI

{
ẋ = f(x, uc) (x, uc) ∈ C ∩ (I(r) × R

mc)
x+ = g(x, ud) (x, ud) ∈ D ∩ (I(r) × R

md).
(13)

Proposition 5.1: Given a compact set A ⊂ R
n and a

hybrid system H = (C, f,D, g) satisfying the hybrid basic

conditions, suppose there exists a control Lyapunov function

V with U controls for H. Furthermore, suppose the following

conditions hold:

R1) The set-valued maps x 7→ Ψc(x) and x 7→ Ψd(x) in (2)

are lower semicontinuous with convex values.

R2) The functions Γc and Γd are upper semicontinuous.

R3) For every r > 0, we have that, for every x ∈ Π(C) ∩
I(r), the function uc 7→ Γc(x, uc, r) is convex on Ψc(x)
and that, for every x ∈ Π(D)∩I(r), the function ud 7→
Γc(x, ud, r) is convex on Ψd(x).

Then, H is practically asymptotically stabilizable with re-

spect to A by continuous feedback.

Remark 5.2: Condition R2) holds when the top functions

in the piecewise definitions of Γc and Γd are upper semi-

continuous and the sets C and D are closed. This follows

from the following result.

Lemma 5.3: (usc of piecewise function) Given an upper

semicontinuous function f1 : R
n 7→ R and a closed set

K ⊂ R
n, the function defined for each x ∈ R

n as

f2(x) :=

{
f1(x) x ∈ K

−∞ otherwise

is upper semicontinuous.

△

Example 5.4: The data of the hybrid system (7) satis-

fies the hybrid basic conditions. The set-valued maps Ψc

and Ψd computed in Example 3.2 have convex values.

Moreover, they are lower semicontinuous at every x. For

each x1 ∈ [−π
2 , π], we have lim infxi→x Ψc(xi) = R ×

[−π
2 ,min {x1, 0}] = Ψc(x) and at every x with x1 ∈

[−π
2 , 0], x2 ≤ 0, we have lim infxi→x Ψd(xi) = {x1} =

Ψd(x). Then, condition R1 of Proposition 5.1 holds. Con-

sider the control Lyapunov function V in (8) and α3 defined

at the end of Example 3.2. The smoothness of V , f , and

g, the closedness of C and D, and Lemma 5.3 imply that

Γc and Γd are upper semicontinuous. For the particular case

when the functions ρ and e are convex on [−π
2 , 0], f and

g are convex functions of uc and ud, respectively. Then,

conditions R2 and R3 of Proposition 5.1 hold, from where

practical asymptotic stabilizability with continuous feedback

of H with respect to A follows.

B. The global case

The result in the previous section guarantees a practical

stabilizability property. For global stabilizability, extra con-

ditions are required to hold nearby the compact set A. For

continuous time systems, such conditions correspond to the

so-called small control property [2], [3], [6], which guarantee

the existence of a continuous control selection at the origin.

Given a compact set A and a control Lyapunov function

V satisfying Definition 3.1 with α3 ∈ K∞, define, for each

(x, r) ∈ R
n × R≥0, the set-valued map3

Ŝc(x, r) :=

{
S̃c(x, r) if x ∈ Π(C) ∩ I(r), r > 0
κc,0(x) if x ∈ Π(C) ∩ I(0)

(14)

Ŝd(x, r) :=

{
S̃d(x, r) if x ∈ Π(D) ∩ I(r), r > 0
κd,0(x) if x ∈ Π(D) ∩ I(0),

(15)

3Note that if either Π(C) or Π(D) do not intersect the compact set A,
then neither the existence of the functions κc,0 or κd,0, respectively, nor
lower semicontinuity at r = 0 are needed.
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where for each (x, r) ∈ R
n × R>0,

S̃c(x, r) := {uc ∈ Ψc(x) : Γc(x, uc, r) < 0 } , (16)

S̃d(x, r) := {ud ∈ Ψd(x) : Γd(x, ud, r) < 0 } . (17)

and the functions κc,0 : Rn → R
mc and κd,0 : Rn → R

md

induce forward invariance of A, that is,

R4) Every maximal solution φ to

ẋ = f(x, κc(x)) x ∈ Π(C)

starting from A satisfies |φ(t, 0)|A = 0 for all (t, 0) ∈
domφ.

R5) Every maximal solution φ to

x+ = g(x, κd(x)) x ∈ Π(D)

starting from A satisfies |φ(0, j)|A = 0 for all (0, j) ∈
domφ.

Under condition R2) of Proposition 5.1, the maps (14) and

(15) are lower semicontinuous for every r > 0. To be able to

make continuous selections, these maps are further required

to be lower semicontinuous for r = 0, i.e., for every x such

that V (x) = 0. These conditions resemble those already

reported in [3] for continuous-time systems.

Theorem 5.5: Under the conditions of Proposition 5.1, if

there exist continuous functions κc,0 : R
n → R

mc and κd,0 :
R

n → R
md such that conditions R4) and R5) hold, and

R6) The set-valued map (14) is lower semicontinuous at

each x ∈ Π(C) ∩ I(0),
R7) The set-valued map (15) is lower semicontinuous at

each x ∈ Π(D) ∩ I(0),

then H is globally asymptotically stabilizable with respect

to A.

VI. CONCLUSIONS

By exploiting recent results for robustness of hybrid

systems, conditions for the existence of control Lyapunov

functions and for asymptotic stabilizability of compacts sets

were derived. The result on existence of a CLF relies on a

converse Lyapunov theorem and only mild regularity condi-

tions are needed. The stabilizability result imposes stringent

conditions needed for the application of Michael’s selection

theorem so that a continuous feedback pair can be extracted

from the CLF inequalities – these conditions parallel those

already reported in [3] and are the price to pay when insisting

on continuity.
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