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Abstract— Incremental sampling-based motion planning al-
gorithms such as the Rapidly-exploring Random Trees (RRTs)
have been successful in efficiently solving computationally
challenging motion planning problems involving complex dy-
namical systems. A recently proposed algorithm, called the
RRT∗, also provides asymptotic optimality guarantees, i.e.,
almost-sure convergence to optimal trajectories (which the
RRT algorithm lacked) while maintaining the computational
efficiency of the RRT algorithm. In this paper, time-optimal
maneuvers for a high-speed off-road vehicle taking tight turns
on a loose surface are studied using the RRT∗ algorithm. Our
simulation results show that the aggressive skidding maneuver,
usually called the trail-braking maneuver, naturally emerges
from the RRT∗ algorithm as the minimum-time trajectory.
Along the way, we extend the RRT∗ algorithm to handle
complex dynamical systems, such as those that are described by
nonlinear differential equations and involve high-dimensional
state spaces, which may be of independent interest. We also
exploit the RRT∗ as an anytime computation framework for
nonlinear optimization problems.

I. INTRODUCTION

There have been attempts to analyze and reproduce spe-
cialized human driving techniques, e.g., a minimum-time
lane change, a minimum lap-time trajectory, a trail-braking
maneuver, using optimal control theory [1], usually based
on numerical optimization methods [2]–[5]. Although earlier
work focused on posing the problem as an optimization over
a sequence of steady-state trim conditions, more recently
transient phases of extreme operating conditions were also
taken into account using high-fidelity modeling [3].

Although these approaches are successful in describing
and realizing certain aspects of the said vehicle maneuvers,
the computation is usually carried out offline with careful
transcription to numerical optimization formulations. Most
algorithms of this class must be started with a feasible initial
solution, which is usually hard to generate in the first place.
Moreover, some numerical optimization methods suffer from
local optimality, except for few unrealistic problem instances.
While handling differential constraints is efficient in the most
nonlinear programming methods (e.g., in a collocation-based
algorithm), imposing geometrical constraints in configuration
space, e.g., road boundaries, turns out to be challenging [6].

In this paper, we use motion planning methods to generate
optimal trajectories for minimum-time maneuvering of high-
speed off-road vehicles. Given an initial state, a goal set,
an obstacle set, and a description of the system dynamics,
the motion planning problem is to find a control input that
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drives the system from the initial state to the goal set while
avoiding collision with obstacles. An algorithm that solves
this problem is said to be complete, if it returns such a control
input when one exists and returns failure otherwise.

This problem of navigating through a complex environ-
ment is one of the fundamental problems in robotics [7]
with applications including, but not limited to, autonomous
driving [8], manipulation planing [9], logistics [10], and
medical surgery [11]. The motion planning problem also has
several applications outside the domain of robotics, ranging
from verification to computational biology [12]–[14].

Although the motion planning problem is interesting from
a practical perspective, the problem is known to be computa-
tionally challenging. In fact, a simple version of the problem,
referred to as the Piano Mover’s Problem, was proven to be
PSPACE-hard [15], which implies that complete algorithms
are doomed to suffer from computational complexity.

Designing computationally-efficient motion planning al-
gorithms that can handle systems with high-dimensional
state spaces has been a long-standing challenge for several
decades. Particularly tailored for this setting, sampling-based
algorithms such as the Probabilistic RoadMaps (PRMs) [16]
have achieved great success in computationally challenging
instances of the motion planning problem. Later, incremental
sampling-based algorithms such as the Rapidly-Exploring
Random Trees (RRTs) [17] have been proposed to address
planning for systems also with differential constraints. Most
sampling-based methods, including the RRT, achieve the
computational efficiency by relaxing the completeness of
requirements to probabilistic completeness, meaning that the
probability of finding a solution, if one exists, converges to
one as the number of samples approaches infinity.

Although the RRT algorithm efficiently finds solutions in
many challenging problems, the solutions provably remain
suboptimal, even if the algorithm is provided with infinite
computation time [18]. As a modification, the RRT∗ algo-
rithm was proposed to ensure asymptotic optimality of the
solutions while maintaining the probabilistic completeness
and the computational efficiency of the RRT [18]. Subse-
quently, preliminary work on extending the RRT∗ algorithm
to handle systems with differential constraints has appeared
in [19], which discussed applications to systems such as the
double integrator and Dubins’ vehicle dynamics.

This paper focuses on using the RRT∗ algorithm to solve
the optimal kinodynamic motion planning with probabilis-
tic guarantees for complex dynamical systems with high-
dimensional state spaces. Systems of this nature include
those that have high maneuvering capabilities, such as race
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cars and aerobatic airplanes. Earlier work in [19] had as-
sumed that the existence of a “steering” function that can
find a control input that exactly connects an initial state to a
final state, which is usually non-trivial to construct for such
systems. Our first contribution is to extend the RRT∗ algo-
rithm by relaxing this assumption to allow “approximate”
steering functions. Second, we interpret the RRT∗ as an
anytime computation framework for optimization problems
with complex differential and geometric constraints. Third,
using the resulting algorithm, we numerically analyze time-
optimal maneuvers for a high-speed off-road vehicle.

Even though our current implementation is not amenable
to real-time computation on commercially-available personal
computers such as laptops, our results are promising in that
they may provide guidelines in implementing the RRT∗ al-
gorithm on future or dedicated parallel-computation devices
towards realizing high-speed robotic race cars.

This paper is organized as follows. Sections II and III in-
troduce the optimal motion planning problem and the RRT∗

algorithm, respectively. In Section IV, several extensions of
the RRT∗ algorithm are introduced to handle systems with
differential constraints and high-dimensional state spaces.
Implementation details for an off-road rally car dynamics are
provided in Section V, and simulation results are discussed
in Section VI. The paper is concluded in Section VII.

II. PROBLEM DESCRIPTION

Let X ⊂ Rn and U ⊂ Rm be compact sets. Let z0 ∈ X
and consider the following time-invariant dynamical system:

ẋ(t) = f(x(t), u(t)), x(0) = z0, (1)

where x(t) ∈ X , u(t) ∈ U , and f is a continuously differ-
entiable function with respect to both of its variables. Let X
and U denote the set of all essentially bounded measurable
functions defined from [0, T ] to X and U , respectively, for
all real numbers T > 0. The sets X and U are called the
trajectories and the controls, respectively.

Let Xobs, Xgoal ⊂ X , called the obstacle region and
the goal region, respectively, be open sets, and define the
obstacle-free region as Xfree := X \Xobs. Let g : X → R
be a Lipschitz continuous function that is bounded away from
zero, i.e., infz∈X g(z) > 0. Using a cost functional g that
associates each trajectory x ∈ X with a non-zero cost can
be defined as the line integral of g(x(t)) over the interval
[0, T ] that x is defined, i.e., Jg(x) :=

∫ T
0
g(x(t))dt.

Problem 1 (Optimal Kinodynamic Motion Planning)
Given a state space X , an obstacle region Xobs, a goal
region Xgoal, an initial state z0 ∈ X , a dynamical system
described by a differential equation as in Equation (1), and
a cost functional Jg : X → R>0, find a control u ∈ U with
domain [0, T ] such that the unique trajectory x ∈ X that
satisfies Equation (1) for all t ∈ [0, T ],
• avoids collision, i.e., x(t) /∈ Xobs,∀t ∈ [0, T ],
• reaches the goal region, i.e., x(T ) ∈ Xgoal,
• and minimizes the cost functional Jg(x).

III. RRT∗ ALGORITHM

The RRT∗ algorithm [18] is an incremental sampling-
based motion planning algorithm for planning in configura-
tion spaces, and extended to handle more complex dynamics
in [19]. In this section, the RRT∗ algorithm is introduced as
described in [19] after slight modifications.

Before providing the details of the RRT∗, let us outline
the primitive procedures that the algorithm relies on.

Sampling: The sampling procedure Sample : N → Xfree

returns independent and identically distributed (i.i.d.) sam-
ples from the obstacle-free set. For simlicity, we assume that
the sampling distribution is uniform, even though our results
hold for a large class of sampling strategies.

Distance metric: Let dist : X ×X → R≥0 be a function
that returns the optimal cost of a trajectory between two
states, assuming no obstacles. In other words, dist(z1, z2) =
minT∈R≥0,u:[0,T ]→U J(x), s.t. ẋ(t) = f(x(t), u(t)) for all
t ∈ [0, T ], and x(0) = z1, x(T ) = z2.

Nearest Neighbor: Given a graph G = (V,E) on Xfree

and a state z ∈ X , the procedure Nearest(G, z) returns
the vertex v ∈ V that is closest to z, according to
the distance metric defined above, i.e., Nearest(G, z) =
arg minv∈V dist(v, z).

Near-by Vertices: Given a graph G = (V,E) on Xfree,
a state z ∈ X , and a number n ∈ N, the NearVertices

procedure returns all the vertices in V that are near z, where
the nearness is parametrized by n. More precisely, for any
z ∈ X , let Reach(z, l) : {z′ ∈ X : dist(z, z′) ≤ l}. Given
z and n, the distance threshold l(n) is chosen in such a
way that the set Reach(z, l(n)) contains a ball of volume
γ log(n)/n, where γ is an appropriate constant, and finally
NearVertices(G, z, n) = V ∩ Reach(z, l(n)).

Local Steering: Given two states z1, z2 ∈ X in some local
neighborhood, the Steer procedure returns the optimal tra-
jectory starting at z1 and ending at z2. In other words, there
exists a ε̄ > 0 such that Steer procedure returns a trajectory
x : [0, T ]→ X , with the time T , x(0) = z1, x(T ) = z2, and
the input u : [0, T ] → U that drives the system along the
trajectory x, such that J(Steer(z1, z2)) = dist(z1, z2), for
all ‖z1 − z2‖ ≤ ε̄.

Collision Check: Given a trajectory x : [0, T ] → X , the
ObstacleFree procedure returns true iff x lies entirely in
the obstacle-free space, i.e., x(t) ∈ Xfree for all t ∈ [0, T ].

The RRT∗ algorithm is given in Algorithms 1 and 2. Ini-
tialized with the tree that includes zinit being its only vertex,
RRT∗ iteratively builds a tree of collision-free trajectories by
first sampling a state from the obstacle-free space (Line 4)
and then extending the tree towards this sample (Line 5) at
each iteration. The cost of the unique trajectory from the root
vertex to a given vertex z is denoted as Cost(z).

The Extend procedure is formalized in Algorithm 2. The
algorithm first extends the nearest vertex towards the sample
(Lines 2-4). The trajectory that extends the nearest vertex
znearest towards the sample is denoted as xnew. The final
state on the trajectory xnew is denoted as znew. If xnew
is collision free, znew is added to the tree (Line 6) and
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its parent is decided as follows. First, the NearVertices

procedure is invoked to determine the set Znear of near-by
vertices around znew (Line 8). Then, among the vertices in
Znear, the vertex that can be steered to znew exactly with
minimum cost is chosen as the parent (Lines 9-14). Once
the new vertex znew is inserted into the tree together with
the edge connecting it to its parent, the extend operation also
attempts to connect znew to vertices that are already in the
tree (Lines 15-20) as follows. For any vertex znear in Znear,
the algorithm attempts to steer znew towards znear (Line 16);
if the steering procedure can connect znew and znear with a
collision-free trajectory that incurs cost less than the current
cost of znear (Line 17), then znew is made the new parent of
znear (Lines 18-20), i.e., the vertex znear is “rewired”.

The RRT∗ algorithm guarantees asymptotic optimality,
i.e., almost-sure convergence to optimal trajectories, while
ensuring effective use of computational resources [18], [19].

Algorithm 1: The RRT∗ Algorithm
1 V ← {zinit}; E ← ∅; i← 0;
2 while i < N do
3 G← (V,E);
4 zrand ← Sample(i); i← i+ 1;
5 (V,E)← Extend(G, zrand);

IV. EXTENSIONS

This section discusses several extensions to the RRT∗ algo-
rithm to allow planning for systems with complex differential
constraints involving high-dimensional state spaces.

A. Task Space Planning

To effectively deal with high-dimensional state spaces, the
RRT∗ algorithm operates in a task space, which has a smaller
dimension when compared to the state space (see [20] for
a discussion on task spaces). More precisely, let T ⊂ Rm′

be a compact set. Recall that the set U of inputs is a subset
of the m-dimensional Euclidean space. Usually, m′ is much
smaller than m. For practical purposes, it is tacitly assumed
that there exists a surjective mapping T : Xfree → T that
maps each collision-free state to its equivalent in the task
space. Moreover, the Sample procedure returns i.i.d. random
samples from the task space, and the steering procedure
operates in the task space as explained below.

B. Steering Procedure

In the description of the RRT∗ algorithm, it is assumed that
for any given z1, z2 ∈ Xfree, the Steer(z1, z2) procedure
returns an optimal trajectory that starts from z1 and reaches
z2 exactly, when such a trajectory exists.

Finding a trajectory that connects z1 and z2 in this manner
may be computationally challenging, since it amounts to
solving a two-point boundary value problem for an ordi-
nary differential equation. For certain dynamical systems,
e.g., single integrator, a double integrator, or a curvature-
constrained car (i.e., Dubins’ vehicle) [21], analytical solu-
tions to this boundary value problem do exist [21], [22].

Algorithm 2: The Extend Procedure
1 V ′ ← V ; E′ ← E;
2 znearest ← Nearest(G, z);
3 (xnew, unew, Tnew)← Steer(znearest, z);
4 znew ← xnew(Tnew);
5 if ObstacleFree(xnew) then
6 V ′ ← V ′ ∪ {znew};
7 zmin ← znearest; Jmin ← Cost(znew);
8 Znear ← NearVertices(G, znew, |V |);
9 for all znear ∈ Znear do

10 (xnear, unear, Tnear)← Steer(znear, znew);
11 if xnear(Tnear) = znew and

ObstacleFree(xnear) and
Cost(znear) + J(xnear) < Jmin then

12 Jmin ← Cost(znear) + J(xnear);
13 zmin ← znear;

14 E′ ← E′ ∪ {(zmin, znew)};
15 for all znear ∈ Znear \ {zmin} do
16 (xnear, unear, Tnear)← Steer(znew, znear);
17 if xnear(Tnear) = znear and

ObstacleFree(xnear) and
Cost(znew) + J(xnear) < Cost(znear) then

18 zparent ← Parent(znear);
19 E′ ← E′ \ {(zparent, znear)};
20 E′ ← E′ ∪ {(znew, znear)};

21 return G′ = (V ′, E′)

However, an analytical solution to this problem is not avail-
able for most dynamical systems [23].

In what follows, we provide the implementation details
of a steering procedure that is approximate in the following
sense: the trajectory x : [0, T ] → Xfree generated by the
Steer(z1, z2) procedure is such that (i) x starts at z1, i.e.,
x(0) = z1, (ii) reaches a neighborhood of z2 in the task
space, i.e., there exists some δ ≥ 0 such that T (x(T )) ∈
B(T (z2); δ)1, and (iii) has cost c∗+ε, where c∗ is the cost of
the minimum-time trajectory that starts from z1 and reaches
z2. Here, the parameters δ and ε are bounds on the connection
error and sub-optimality of the trajectory, respectively.

Our steering function is based on numerical methods for
solving differential equations [24] described in detail below.

1) Piecewise-constant Input: The steering function con-
siders only constant inputs. More precisely, the trajectory
x : [0, T ] → Xfree returned by Steer(z1, z2) is such that
ẋ = f(x(t), ū) and x(0) = z1 for some ū ∈ U .

2) Shooting Method: The steering procedure proposed in
this paper is based on the shooting method [24], which can be
used with either the bisection method or the false position
method in order to determine the constant input value for
local steering. If the method does not converge within a given
number of iterations, the connection is regarded as infeasible.

Before providing the shooting method, let us note the
following definitions. Given a constant input ū ∈ U and an
initial state z̄ ∈ X , let x(t; z̄, ū) denote the resulting trajec-
tory of the dynamical system when started from initial state

1In the sequel, for a subset A of the d-dimensional Euclidean space, the
set B(a, r) ⊂ A denotes the closed ball of radius r ∈ R≥0 centered at
a ∈ A, i.e., B(a, r) := {a′ ∈ A | ‖a′ − a‖ ≤ r}.
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Algorithm 3: The Steer procedure based on shooting
1 ū← 0;
2 for i = 1 to M do
3 t̄← inft∈[0,∞){t |x(t; z1, ū) ∈ Term(T (z2))};
4 z̄ ← x(t̄; z1, ū);
5 if T (z̄) ∈ B(T (z2); δ) then
6 return x([0, t̄]; z1, ū);
7 else
8 ū← ū+ Bisect(z1, z2, z̄, ū);

z̄ under constant input ū, i.e., ẋ(t; z̄, ū) = f(x(t; z̄, ū), ū) for
all t ∈ [0,∞) and x(0, z̄, ū) = z̄. Given some t̄ ∈ R≥0, let
x([0, t̄], z̄, ū) denote the restriction of the trajectory x(·; z̄, ū)
to the interval [0, t̄]. Let Term : T → {false, true}
denote a termination condition that associates a terminal
condition with each task space state. Finally, let Bisect :
(z1, z2, z3, u) → u′ be a bisection algorithm that returns an
increment for the input so as to steer the terminal state of the
dynamical system towards z2, when the dynamical system is
started at state z1 and the current constant input u under
consideration steers the system to state z3.

The shooting method is given in Algorithm 3. The algo-
rithm initially starts with the zero input (Line 1). The state
where the trajectory of the system starting from z1 enters
Term(T (z2)), i.e., the terminal set associated with z2, is
determined in Lines 3-4. This state is denoted as z̄. If z̄
is within the δ-neighborhood of T (z2), then the algorithm
returns the trajectory that reaches z̄ (Line 6). Otherwise, a
new input is selected using the Bisect function (Line 8),
and the procedure is continued until the maximum number
of iterations (denoted as M in Algorithm 3) is reached.

3) Repropagation: Since the steering function is approx-
imate, i.e., can only reach a neighborhood of the final state,
the rewiring procedure of the RRT∗ cannot be implemented
directly as errors induced by the steering function in the
rewiring step causes inconsistency in the states of descendant
nodes. To handle this issue, corresponding descendant nodes
are re-simulated using the stored sequences of inputs.

Before presenting the repropagation algorithm, let us note
the following definitions. Recall that (V,E) denotes the
graph maintained by the RRT∗ algorithm. Given a vertex z ∈
V in the tree, let Children(z) denote the set of all children
vertices of z, i.e., Children(z) := {z′ ∈ V | (z, z′) ∈ E}.
Given an edge e = (z1, z2) ∈ E, let Input(e) denote the
input that drives the dynamical system from state z1 to state
z2, and Time(e) denote the time it takes for this trajectory
to reach z2 starting from z1. Clearly, Children, Input, and
Time functions can be populated incrementally as the RRT∗

algorithm proceeds. Hence, these functions can be evaluated
quickly, e.g., without re-running the Steer procedure.

The repropagation procedure is given in Algorithm 4,
called whenever the extension towards an existing node
z ∈ V reaches z̄ 6= z. This procedure recursively calculates
the new state, denoted by znew, for all the descendants of z.

Clearly the re-propagation may render some marginally-
safe trajectories collide with adjacent obstacles. However, the

Algorithm 4: The Repropagate(z, z̄) procedure
1 for all z′ ∈ Children(z) do
2 z′new ← x(Time((z, z′)); z̄, Input((z, z′)));
3 Repropagate(z′, z′new);

4 V ← V \ {z};
5 V ← V ∪ {znew};

authors have observed in experiments that the tree quickly
recovers the lost edges with better trajectories.

C. Conditional Activation of the RRT∗

In order to find a feasible solution quickly, we run the
RRT algorithm until the algorithm returns a feasible solution.
Once a feasible solution is obtained, the RRT∗ algorithm is
run as is. More precisely, until a feasible solution is found,
the NearVertices procedure returns the empty set.

D. Branch-and-Bound

Branch-and-bound algorithm [25] is a widely-known tech-
nique in combinatorial optimization. It is often used in
robotics in conjunction with graph search algorithms [26],
[27]. A recent application of the branch-and-bound on the
RRT∗ can be found in [28] as well.

An admissible heuristic, or a cost-to-go function is a
function that maps each state z ∈ Xfree to a non-negative real
number that is less than or equal to the cost of the optimal
trajectory that reaches the goal starting from z (taking the
obstacles into account). A cost-to-go function that is closer
to the optimal cost leads to effective pruning, but most often
such functions are computationally very expensive to get.
In practice, even loose approximations enable significant
pruning of the search tree. For instance, the Euclidean
distance from z to Xgoal divided by the maximum speed can
be used as a cost-to-go function for minimum-time problems.

In the rest of the paper we assume that a cost-to-go
function is available and implemented into the CostToGo(z)
procedure. Let xsoln be the minimum-cost trajectory in
the tree reaching the goal region, then any vertex z with
Cost(z) + CostToGo(z) > J(xsoln) can be removed.

E. Reachability

Systems subject to non-honomic differential constraints
and input saturation have smaller reachable sets (e.g., in
terms of Lebesgue measure) when compared to holonomic
dynamical systems. Motivated by the assumption that sam-
pling is relatively cheaper than edge expansion, reachabil-
ity information had been used to improve the RRT algo-
rithm [29]. Clearly, the RRT∗ attempts to expand more edges
when compared to the RRT. Moreover, the cost of edge
expansion becomes even larger with higher fidelity trajectory
simulation. Therefore, the knowledge of the reachable set
must be useful for the RRT∗, especially for systems with a
high-dimensional state space. In general, computing reach-
able sets exactly is known to be computationally quite chal-
lenging [30]. However, conservative approximations thereof
usually can be computed rather easily.
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V. APPLICATION TO HIGH-SPEED OFF-ROAD VEHICLES

In this section, a nonlinear single-track vehicle dynamics
is considered to simulate a rally car driving on loose surface.
Specifically, a set of cornering maneuvers for various road
curvatures are generated. The single-track model is less gen-
eral than a full-body dynamics with suspensions, but it suf-
ficiently captures the longitudinal load transfer phenomenon
that takes an important role in cornering maneuvers [4].

A. Vehicle Dynamics

Let m and Iz denote the mass and the inertia of the
vehicle. Let Ii, ri, and ωi (i ∈ {F,R}), denote the moment
of inertia, the radius, and the angular velocity, respectively,
where the subscripts F and R denote the front or rear wheels.
Let x and y denote the position of the vehicle’s center of
gravity and ψ denote the yaw angle, in the inertial reference
frame. Let v denote the speed of the vehicle. Let fFx and
fFy denote the longitudinal and lateral forces acting on the
front wheel, and fRx and fRy denote those acting on the
rear wheel. Let β denote the side-slip angle. Let δ and Ti
(i ∈ {F,R}) denote the steering angle and torques acting
on each wheel, respectively. See Figure 1 for a depiction of
these variables.

Then, the equations of motion can be written as follows:

mẍ = fFx cos(ψ + δ)− fFy sin(ψ + δ)

+ fRx cosψ − fRy sinψ,

mÿ = fFx sin(ψ + δ) + fFy cos(ψ + δ)

+ fRx sinψ + fRy cosψ,

Izψ̈ = (fFy cos δ + fFx sin δ)lF − fRylR,
IF ω̇F = TF − fFxrF , IRω̇R = TR − fRxrR.

The tire force fij depends on the normal force fiz and
the friction coefficient µij determined by Pacejka’s Magic

Fig. 1. The Single-Track Vehicle Model

Formula [31]. The equations are

fij = µijfiz, (i = F,R, j = x, y);

µij = −sij
si
µi(si), (i = F,R, j = x, y);

µi(si) = Di sin(Ci arctan(Bisi)), (i = F,R).

The slip ratio, denoted by si, is calculated as follows:

si =
√
s2ix + s2iy, (i = F,R);

six =
Vix − ωiri
ωiri

, siy =
Viy
ωiri

, (i = F,R).

The velocities at the wheels are calculated by

V =
√
ẋ2 + ẏ2, β = arctan

ẏ

ẋ
− ψ,

VFx = V cos(β − δ) + ψ̇lF sin δ,

VFy = V sin(β − δ) + ψ̇lF cos δ,

VRx = V cosβ, VRy = V sinβ − ψ̇lR.

Finally, on a flat surface, normal forces are calculated by

fFz =
lRmg − hmgµRx

(lF + lR) + h(µFx cos δ − µFy sin δ − µRx)

fRz = mg − fFz

where h is the height of the vehicle’s center of gravity.
We assume that both input signals, namely the steering

angle δ and the engine/brake torques Ti are limited to a
range, i.e., δ ∈ [δmin, δmax] and Ti ∈ [Timin, Timax], and
vehicle parameters are set identical to those given in [4].

B. Implementation details

In this subsection, several technical details are described
in applying the RRT∗ algorithm and its extensions to the
nonlinear single-track vehicle dynamics.

1) Cost Functional: As the RRT∗ cost functional for each
trajectory, the total travel time is used since we aim to acquire
the minimum-time cornering maneuver. Edges in the tree are
constructed by 200-Hz forward simulation of the dynamics.

2) Sampling Strategy: The full state space consists of 8
variables x, y, ẋ, ẏ, ψ, ψ̇, ωF , and ωR, and sampling happens
uniformly at a 4-dimensional task space (x, y, V, ψ) to enable
the false position method with piecewise-constant inputs. The
position (x, y) is sampled on free space, and the velocity and
the yaw angle are sampled within ranges V ∈ [Vmin, Vmax]
and ψ ∈ [ψmin, ψmax]. The yaw angle ψt of the road
tangential guides the ψ range such that ψ ∈ [ψt−∆, ψt+∆]
where ∆ is chosen sufficiently large.

3) Distance Metric: In searching the nearest neighbor
or near-by vertices within a ball, a metric is necessary
for distance evaluation between two vertices. We define
the distance metric as the Euclidean distance divided by
the average speed. More precisely, given two states zi =
(xi, yi, ẋi, ẏi, ψi, ψ̇i, ωF i, ωRi) ∈ X for i ∈ {1, 2}, the
distance function is computed as

dist(z1, z2) =

√
(x2 − x1)2 + (y2 − y1)2

(
√
ẋ21 + ẏ21 +

√
ẋ22 + ẏ22)/2

.
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(a) 11793 Nodes (b) 20946 Nodes (c) 30520 Nodes (d) 59542 Nodes

Fig. 2. The RRT∗ Tree for 180-deg Turning

The metric is consistent with the cost functional. Moreover
our choice is consistent with the discussion in [17] that the
optimal cost-to-go is likely to be a good choice.

4) Reachability: Exact estimation of the reachable set
is a computationally intensive task. However, most often
computationally-efficient conservative estimates of the reach-
able set of a dynamical system are available. In the sequel,
an estimate of the reachable set is said to be conservative
if it includes the reachable set itself. For a more precise
definition, let T ∈ R>0 and z ∈ X . Given a dynamical
system of the form in Equation (1), an initial state z, and a
control input u ∈ U , recall that x(t; z, u) denotes the unique
solution of the differential equation with initial state z and
input u. Then, the T -reachable set of a dynamical system
described by this differential equation is defined as the set
of all states that are reachable from z by some admissible
control input before time T , i.e., RT (z) = {z′ ∈ Z | ∃u ∈
U , t ∈ [0, T ] such that x(t; z, u) = z′}.

Below, we provide a procedure for computing a conser-
vative estimate R̂T (z) of the reachable set of the dynamical
system described in Section V-A. This estimate assumes that
bounds on the acceleration of the car as well the yaw rate are
known, and denoted by v̇max and ψ̇max, respectively. For no-
tational convenience, we describe computing the complement
of R̂T (z). Given two states z1, z2 ∈ X , we have z2 /∈ R̂t(z1)
whenever at least one of the following holds:
• average yaw rate is greater than the maximum allowed,

i.e., |(ψ2 − ψ1)/(dist(z1, z2))| ≥ ψ̇max;
• average acceleration is greater than the maximum al-

lowed, i.e., |(v2 − v1)/(dist(z1, z2))| ≥ v̇max;
• z2 is “behind” z1, i.e., (x2, y2) ∈ H(x1,y1),ψ1

,
where H(x1,y1),ψ is the half-space with normal vector
(cos(ψ1), sin(ψ1)) that has (x1, y1) on its boundary.

This estimate of the reachable set is a conservative esti-
mate for all small T . That is, for any z ∈ X , there exists
some T ∈ (0,∞) such that Rt(z) ⊆ R̂t(z) for all t ∈ [0, T ].

5) Branch-and-Bound: For CostToGo(z) in the branch-
and-bound, the minimum distance from each node to the
goal region is divided by the maximum achievable velocity
so that the function never overestimates the actual cost.

VI. SIMULATION RESULTS

The algorithm is evaluated in 90-, 150-, 180-, and 270-
degree turns. The time to complete the maneuver reaching
the end of the road is used as the cost function.

Figure 2 shows of the RRT∗ tree (projected on the x-y
coordinate space) for minimum-time 180-deg cornering. The
solid black line represents the solution trajectory of the center
of gravity. The branch-and-bound procedure makes the part
of the tree close to the finish line sparse due to pruning.

Figure 3 is a comparison of the trajectories, the speeds,
and the vehicle slip angles for several turning angles. Plots
show some regional non-smoothness since the algorithm did
not grow the total number of vertices in the tree more than
60,000. It is noticeable that the time-optimal solution of the
150-deg turning does not involve much skidding while solu-
tions for the other angles heavily involve the skidding regime.
We observe that the characteristics of the optimal maneuver
depends on the road shape and other conditions. Roughly
speaking, Trail-Braking maneuvers by inputs parametrization
in [4] can be characterized as two synchronized V-shapes
in the speed and the slip angle. Our time-optimal 180-
deg turning maneuver shows the synchronization of two V-
shapes, meaning that the time-optimal maneuver for 180-deg
turning with an initial speed 60 km/h on a loose surface with
a friction coefficient µ = 0.52 is indeed the trail-braking
maneuver. For other road conditions and initial speeds, we
expect other turning angles would generate the trail-braking-
like trajectories also as the time-optimal solution.

The videos for the simulations can be found on our website
at http : //ares.lids.mit.edu/rrtstar/.

VII. CONCLUSION

This paper extended the application domain of the RRT∗ to
systems with complex differential and geometric constraints
with high-dimensional state spaces. This approach was used
for generating aggressive skidding maneuvers as minimum-
time solutions for high-speed off-road vehicle cornering on
loose surfaces with a low friction coefficient.

There are several directions for future work. On one hand,
from the theoretical point of view, a rigorous analysis of
the convergence properties of the RRT∗ algorithms in the
presence of numerical errors in the steering procedure will be
included in future work. From a practical perspective, on the
other hand, efficient implementations of the sampling strate-
gies, steering procedure, and cost estimation are sought, in
order to enable real-time computations. Finally, the algorithm
is currently applicable to deterministic models of the vehicle
dynamics, which may not be realistic in the scenario of
interest. Future work will also involve extending the current
approach to handle uncertainty and modeling errors.
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