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Abstract—This paper is concerned with optimal utilization
of storage, characterization of the economic value of storage
in the presence of ramp-rate constraints and stochastically-
varying electricity prices, and characterization of the price
elasticity of demand induced by optimal utilization of storage.
The ramp constraints limit the charging and discharging rate of
storage, and can be due to the physical limitations of the storage
device or the power lines. Such constraints make analytical
characterization of optimal policies particularly difficult. In this
paper, the optimal utilization problem is addressed in a finite-
horizon stochastic dynamic programming framework, and an
analytical characterization of the value function along with
recursive formulas for computation of the associated optimal
policy are derived. It is shown that the value function associated
with the dynamic programming problem is a piecewise linear
convex function of the storage state, i.e., the amount of stored
energy. Furthermore, while the economic value of storage
capacity is a non-decreasing function of price volatility, it is
shown that due to finite ramping rates, the value of storage
saturates quickly as the capacity increases, regardless of price
volatility. Finally, it is shown that optimal utilization of storage
by consumers could induce a considerable amount of price
elasticity, particularly near the average price.

Index Terms—Value of Storage, Ramp Constraints, Price
Elasticity of Demand, Stochastic Dynamic Programming

I. INTRODUCTION

Understanding the implications of optimal management
of storage on the characteristics of supply and demand, and
the economic and operational limitations of storage induced
by ramp constraints is of practical importance to various
entities, from consumers to system operators to investors in
smart grid technologies. Hence, there is a need for devel-
opment of econometric models and characterization of the
response of a storage system to real-time price signals. This
paper seeks to provide such characterization by presenting
a model for optimal utilization of ramp-constrained storage
in response to stochastically-varying electricity prices. The
problem of optimal management of storage is formulated
in a finite-horizon dynamic programming framework, and
analytical expressions are given for the optimal policy and
the associated value function. The effects of physical ramp
constraints on optimal management of storage, and also, the
economic value of storage, as well as the price elasticity of
demand (PED) induced by storage are analyzed within the
same mathematical framework.
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Availability of econometric models of storage manage-
ment such as the one presented in this paper are particularly
important for system operators who need to maintain stabil-
ity and guarantee reliability of the system. For instance, it
was shown in [9] that in power grids with information asym-
metry between consumers, producers, and system operators,
the stability and robustness of the system to disturbances
are greatly affected by the consumers’ real-time valuation of
electricity, and their response to the real-time price. It was
shown that under real-time pricing, instability and high price
volatility in the resulting feedback system can be associated
with high PED.

The existing literature covering various aspects of energy
storage is extensive. Bannister and Kaye in [1] focus their
study on optimizing the operation of a single storage con-
nected to a general linear memoryless system in the presence
of ramp constraints. However, in their model, the objective
function is deterministic and known a priori. Also, Lee
and Chen [7] study industrial customers with time-of-use
rates and use dynamic programming to determine optimal
contracts and optimal sizes of battery storage systems for
such consumers. Their work, like ours, pays special attention
to the economic value of storage; however, they use a
deterministic approach and ignore ramp constraints.

Several other works such as [2] and [4] have studied the
impacts of energy storage on the economics of integration
of renewable sources. In particular, in [4], a stochastic
dynamic programming framework is used to study the opti-
mal storage investment problem through characterization of
optimal sizing of energy storage for efficient integration of
renewable sources. In contrast to [4], we explicitly include
ramp constraints in our model, and highlight the effects of
ramp constraints on the value of storage. Another related
work is [2], in which Bitar et al. study the impact of
energy storage capabilities on revenue of a wind power
producer. Their formulation of the underlying stochastic
dynamic programming problem is somewhat similar to ours;
however, their focus on integration of renewable sources
makes the key issues of interest and hence the context and
findings of the two studies different.

The contributions of this paper are summarized as fol-
lows: First, we propose a model for optimal utilization of
storage in the presence of ramp constraints. We analytically
characterize the solution, and show that at each instant of
time, the value function is a piecewise linear convex function
of the storage state. Second, we show that although the
economic value of storage increases with price volatility, due
to finite ramping rate, the value of storage saturates quickly
as the capacity increases. Finally, we show that optimal
scheduling of storage may induce a considerable amount of
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price elasticity, particularly near the average price. While the
demand for electricity has often been considered to be highly
inelastic, the existing literature on price elasticity are mostly
based on empirical evidence and qualitative reasoning, see,
for instance, [5], [6], [10], and [3]. In this paper, we address
price elasticity in a quantitative framework. To the best
of our knowledge, this paper is the first to characterize
PED induced by storage through an input-output model of
response to prices based on optimal control policies in the
presence of ramp constraints.

The remainder of this paper is organized as follows: In
Section II, we introduce the dynamic model of utilization of
storage. In Section III, we present the optimal policies for the
storage management problem and analytically characterize
the corresponding value function. We report our findings on
the economic value of storage and PED in Sections IV and
V respectively, and conclude in Section VI.

II. A DYNAMIC MODEL OF CONSUMER BEHAVIOR

A. Notation

The set of positive real numbers (integers) is denoted by
R+ (Z+), and non-negative real numbers (integers) by R+

(Z+). The notation for negative real and/or integer numbers
is similar. The probability mass function (PMF) of a random
variable Λ is denoted by PΛ, and the cumulative distribution
function (CDF) is denoted by FΛ. We will simply use P and
F when there is no ambiguity.

B. The Model

In this section, we develop a dynamic model of storage
management in the presence of stochastically-varying price
signals. We formulate the storage management problem as
an inventory control problem over a finite horizon.

1) The Decisions: The decision set of the consumer (or
storage owner) at each discrete instant of time k ∈ Z+ is
characterized by a pair

(vin
k , v

out
k ) ∈ [0, vin]× [0, vout] (1)

where, vin
k and vout

k are, respectively, the amount of electricity
that the consumer injects in, or withdraws from the storage.
The corresponding upper bounds (vin and vout) represent the
physical ramp constraints on storage. Also, vk = vin

k −vout
k ∈

[−vout, vin] denotes the net consumption.
2) The Price: The price process λ is assumed to be an

exogenous Markovian process driven by an independently
distributed random process wk according to

λk+1 = gk (λk, wk)

where the functions gk and the distributions of wk are
assumed to be known for each k. It is assumed that at
the beginning of each time interval [k, k + 1] , the random
variable λk is materialized and revealed to the consumer. A
particular scenario where this model is readily applicable is
where the distributions of the prices for the next 24 hours are
estimated based on the day-ahead market. In this case, we

may choose g (λk, wk) = wk, where the distribution of wk is
known for each k. We assume that the prices are distributed
between λmin and λmax, such that 0 ≤ λmin < λmax, with
mean λ. We also assume that the feed-in and usage tariffs are
the same, i.e., λk is the price per unit for both consumption
(corresponding to vk ≥ 0) and sell-back (corresponding to
vk ≤ 0), and there are no transaction costs.

3) The States: The storage state is characterized by a
variable

sk ∈ [0, s] (2)

where sk is the amount of energy stored, and s is the upper
bound on storage capacity. The state sk evolves according
to:

sk+1 = βsk + ηinvin
k − ηoutvout

k (3)

where β ≤ 1 is the decay factor, ηin ≤ 1 and ηout ≥ 1 are
charging and discharging efficiency factors1. The idealized
model of the dynamics of storage can be written as:

sk+1 = sk + vk, vk ∈ [−vout, vin] (4)

which corresponds to β = 1, ηin = 1, and ηout = 1.

4) Penalty: There is a penalty hk(sk) associated with
storage, where the sequence of functions hk : R+ 7→ R+

are assumed to be nonnegative and monotonic.
5) The Optimization-Based Model of Ideal Storage:

Since our goal in this paper is to develop tractable models
that effectively highlight the important structural features
of consumer behavior, we will adopt the idealized model
of storage. The ideal storage management problem can
be formulated as a finite-horizon dynamic programming
problem as follows:

min E

[∑N

k=0
hk(sk) + λkvk

]
(5)

s.t. sk+1 = sk + vk

λk+1 = gk (λk, wk)

sk ∈ [0, s]

vk ∈ [−vout, vin]

Remark 1. We formulate and solve the storage problem for
the finite-horizon case, and assign a value of λ̂, the mode of
the price distribution, to each unit of energy left in storage
by the end of the time horizon.

III. MAIN RESULTS: THE OPTIMAL POLICY

In this section, we characterize the optimal policy for
problem (5) based on principles of stochastic dynamic pro-
gramming. We show that under some technical assumptions,
at each instant of time, the value function is a convex
piecewise linear function of the storage state.

1The efficiency factors and the ramp rates might in general be compli-
cated functions of the operating point, i.e., the storage level.
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Definition. Given a probability mass function P, let Θ and
ψ be a pair of maps from the set of all subsets of R+ to R+

defined according to

Θ : I 7→
∑
θ∈I

θP (θ) , ∀I ⊂ R+

ψ : I 7→
∑
θ∈I

P (θ) , ∀I ⊂ R+.

Given v ∈ R+, and maps Θ and ψ as defined above, let
Φv be a map from the set of all subsets of R+ to R defined
according to

Φv : I 7→ v (Θ− ρψ) I, ∀I ⊂ R+,

where
ρ = inf I.

For instance, Φ1 maps an interval (a, b) to (Θ− aψ) (a, b) .

Theorem 1. Consider the finite-horizon storage control
problem (5) with vin = vout = v, and s = nv for some
n ∈ Z+, and i.i.d price process λ, i.e., gk (λk, wk) = wk
for all k. Furthermore, assume that the penalty functions
hk : [0,∞) → [0,∞), k = 0, .., N are piecewise linear
non-decreasing convex functions of the form:

hk (s) = hiks+ cik, s ∈ [iv, (i+ 1)v) , i ∈ Z+ (6)

Then

(i) The optimal policy is characterized by:
(a) If 0 ≤ sk < v, then

v∗k =


−sk if t0k+1 < λk

v − sk if t1k+1 < λk ≤ t0k+1

v if λk ≤ t1k+1

(b) If sk ≥ v, so that sk ∈ [iv, (i+ 1)v), for some
i ∈ {1, 2, ..., n− 1}, then

v∗k =


−v if ti−1

k+1 < λk

iv − sk if tik+1 < λk ≤ ti−1
k+1

(i+ 1)v − sk if ti+1
k+1 < λk ≤ tik+1

v if λk ≤ ti+1
k+1

and the thresholds are given by the recursive equations:

tiN = λ̂, i ∈ 0, 1, 2, ..., n− 1

tiN = −hiN , i ≥ n

for k < N :
t0k = t1k+1 + Φ1(t1k+1, λmax]− h0

k

tik = ti−1
k+1 − hik + Φ1(ti+1

k+1, t
i−1
k+1]

+ (ti+1
k+1 − ti−1

k+1)F
(
ti−1
k+1

)
, i ≥ 1

(ii) The value function is a piecewise linear convex function
of the form:

Vk (s) = −tiks+ eik, s ∈ [iv, (i+ 1)v) , i ∈ Z+ (7)

where ti+1
k ≤ tik for all k and i.

Proof: The proof is omitted due to space limitation.
Please see the full version on arXiv.

Remark 2. We will use e0
0 as a function of the distribution

to characterize the value of storage. The eik parameters
of the value function are given by the following recursive
equations:

eiN = 0, i ∈ {0, 1, 2, ..., n− 1}
eiN = s(tiN − λ̂), i ≥ n

for k < N :
e0
k=c0k + e0

k+1 + (vλmin + e1
k+1 − e0

k+1 − vt1k+1)F (t0k+1)

+ Φv[λmin, t
0
k+1]

eik=cik+vλ+ f(ti−1
k+1, t

i
k+1, t

i+1
k+1, e

i−1
k+1, e

i
k+1, e

i+1
k+1)

+g(ti−1
k+1, t

i
k+1, t

i+1
k+1), i ≥ 1

(8)
where the functions f and g are given by

f(·) = ei−1
k+1 − vti+1

k+1 + (eik+1 − ei−1
k+1)F (ti−1

k+1)

+ (ei+1
k+1 − eik+1)F (tik+1)

g(·) = (i+ 1)Φv(t
i+1
k+1, t

i
k+1] + iΦv(t

i
k+1, t

i−1
k+1]

− Φv(t
i−1
k+1, λmax]− Φv(t

i+1
k+1, λmax].

Remark 3. The results in Theorem 1 are expressed for
discrete probability distributions, but they extend naturally to
continuous distributions under some technical assumptions.

Remark 4. The upper bound s on the storage capacity is
enforced by choosing hik in (6) sufficiently large (i.e. hik >
λmax) for i ≥ n, so that it would never be optimal to store
energy beyond s.

IV. THE VALUE OF STORAGE

We define the expected economic value of storage, or
simply the value of storage, as the negative of the cost
of the optimal value of problem (5), and we denote it by
V . Therefore, V = −V0 (s0). Throughout this section we
assume that N is fixed and s0 = 0, which means that the
consumer starts with an empty storage. This implies, using
(7), that the value of storage becomes:

V = −V0(0) = −e0
0. (9)

which can be computed using the recursive equations in (8).
For convenience, let us define the following distributions.

Definition. A low-high distribution is a mixture of two im-
pulses, where the low price (L) has probability 9/10 and the
high price (H) has probability 1/10. In our computations,
this probability distribution will serve as a proxy for the case
of an electricity market with somewhat frequent price spikes.
We also define a discrete uniform distribution with support
between non-negative integers a and b. Letting M = b −
a + 1, we have P (θ) = 1/M for a ≤ θ ≤ b, θ ∈ Z+,
and P (θ) = 0 otherwise. Note that throughout this paper,
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for the discrete uniform distribution, we use the mean of the
distribution as its mode, i.e. we assume that tiN = λ̂ = λ.

In this section, using the above definition, we consider the
following classes of distributions:

a) Discrete uniform distribution, with fixed mean λ = 80,
b) Low-high distribution, with fixed mean λ = 80.

For each of these distributions, we fix all quantities in
our model other than σ, the standard deviation of price
distribution, and n, the ratio of storage capacity s to physical
ramp constraint of storage v. We vary n = s/v by fixing v
and changing s. Note that as defined in Theorem 1, n only
takes on integer values. Using the fixed quantities N = 30,
v = 10, and λ = 80, we examine how the normalized V
(normalized by the time horizon N ) varies as a function
of σ and n, once for the case of no storage penalties, and
another time in the presence of storage penalties.

A. Without Storage Penalties

Herein, we set hik = 0, for all i ≤ n − 1 and k ≤ N ,
so that there is no penalty on storing energy up to capacity.
Then, for a fixed time horizon, we examine how V/N varies
with σ and n, for each of the following price distributions:

1) Discrete uniform distribution: Figure 1 illustrates how
V/N changes with σ and n, for the discrete uniform distri-
bution. The plots show that the value of storage increases
linearly with σ. As one would expect, the value of storage
also increases as the storage capacity increases. However, it
is interesting to note that for a fixed standard deviation, the
value of storage saturates fairly quickly as a function of n.
Hence, for a given time horizon, a fixed ramp constraint,
and a fixed σ, there exists a certain storage capacity beyond
which the value of storage will no longer change noticeably.
Also note that the magnitude of n at which this saturation
occurs is an increasing function of σ, implying that the
optimal storage capacity increases with price volatility.

2) Low-high distribution: As can be seen in Figure 2,
saturation of the value of storage occurs much more quickly
than the case of the discrete uniform distribution. This
implies that the price distribution has a considerable impact
on the value of storage. However, the value of storage is still
a linear function of the standard deviation, just like the case
of the discrete uniform distribution.

B. With Storage Penalties

This time we set the storage penalty to hik = 0.1λ̂, for all
i ≤ n− 1 and k ≤ N .

1) Discrete uniform distribution: As shown in Figure 3,
in contrast to the previous case, the plots show that the value
of storage is no longer a linear function of σ, though, it is
still an increasing function of σ. The observation here is that
the value of storage saturates more quickly than the case
with no penalties, which makes intuitive sense considering
the high cost of keeping a lot of energy in storage. Also,
note that for this case, the marginal value of storage with
respect to σ is almost zero for low values of σ.

2) Low-high distribution: As shown in Figure 4, the value
of storage saturates even more quickly than the case of no
penalties. Also, the marginal value of storage with respect
to σ is almost zero even for relatively large values of σ.

An interesting observation in this section is that in the
presence of ramp constraints, several distributed storage
systems would be more profitable than one large storage
system of equal ramp constraint and total capacity, due to
the quick saturation of V as n increases.

V. PRICE ELASTICITY OF DEMAND

In the previous sections, we developed a model that
characterizes an individual consumer’s optimal policy for
managing storage and the associated economic value of
storage. In this section, we will introduce a simple model
of aggregation, where each individual uses the storage man-
agement model (5). We give consumers randomized initial
states, and simulate their response. In particular we compute
their consumption, and cluster them as a function of the real-
time price in order to characterize the PED.

A. Aggregation Model

We denote the number of consumers by L, and specify
the aggregation model as follows. We assume that there is
a fixed time horizon for all consumers, which we denote by
N . At each time k ∈ {0, · · · , N}, all consumers are given
the same price signal λk. However, to model random initial
states, consumer j ∈ {1, · · · , L} starts at time k = 0 with a
random initial state that is uniformly distributed over [0, s].
We denote the local state for each consumer at time k by
sjk. The total consumption of all consumers at time k is the
ensemble average of the individual vjk values.

The PED is defined as the ratio of the percentage change
in demand to the percentage change in price. To make the
notion of PED accurate, one needs a measure of consumption
that depends only on price. In our dynamic model, however,
the consumption depends on price, stage, state, storage
capacity, and ramp constraint. Quick saturation of the value
of storage with storage capacity for a fixed ramp rate (as
shown in Section IV) makes it reasonable to use the same
storage capacity for all consumers within the same sector
(e.g. the residential sector). Moreover, we can eliminate
state-dependence by taking expectations. In particular, we
can define:

vj(k, λ) = Eλ0,λ1,...,λk−1,s
j
0

[
vj∗k |λk = λ

]
,

In order to eliminate stage-dependence, we think of the
consumption-measuring observer as sampling a random time
τ uniformly over {0, · · · , N}. By averaging over this ran-
domness, we maintain dependence on price alone:

vaggr(λ) =
1

L

L∑
j=1

Eτ
[
vj(τ, λ)

]
,

which is easily captured in numerical simulations by clus-
tering real-time prices, and averaging over each cluster.
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Fig. 1. V/N vs. σ and n, in 3-D (left), and its 2-D projections for a few samples (middle and right), without penalties, using a discrete uniform
distribution.
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Fig. 2. V/N vs. σ and n, in 3-D (left), and its 2-D projections for a few samples (middle and right), without penalties, using a low-high distribution.
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Fig. 3. V/N vs. σ and n, in 3-D (left), and its 2-D projections for a few samples (middle and right), with penalties, using a discrete uniform distribution.
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Fig. 4. V/N vs. σ and n, in 3-D (left), and its 2-D projections for a few samples (middle and right), with penalties, using a low-high distribution.

B. Simulations

1) Aggregation Parameters: In these numerical simula-
tions we assume that the number of consumers is L = 30,
and we average over 20 random instances of price and
consumer initial states. We set N = 288, which corresponds
to a period of 24 hours, where real-time prices are updated
once in every 5 minutes. They each implement the optimal
policy given in Theorem 1. We simulate a discrete uniform
distribution with mean λ = 10. Based on our results in
Section IV, for these model parameters, a storage capacity
of s = 5v is a reasonable choice for all consumers.

We examine two different scenarios:
(a) hik = 0 for all k ≤ N and i < n, and

(b) hik = 0.1λ for all k ≤ N and i < n.
Figure 5 illustrates how the aggregate demand changes as

a function of price for (a) and (b), using the discrete uniform
price distribution.

C. Interpretation

As the plots for both cases suggest, the aggregate demand
seems to be more responsive to prices that fall in the mid-
portion of the price range. For the case of no storage
penalties, this portion serves as a relatively steep transition
region, in which the consumer quickly switches from the
“buy it all” policy to the “sell it all” policy. The situation
is slightly different when storage penalties are imposed.
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Fig. 5. (a) Aggregate demand vs. price, using the discrete uniform price
distribution, without storage penalties. (b) Aggregate demand vs. price,
using the discrete uniform price distribution, with storage penalties.

Considering the cost of storing energy, the “buy it all”
region has become narrower, and the transition region has
instead become wider. The selling policy has practically been
reduced to “sell it all if prices are above average” with the
exception that due to the cost of keeping a lot of energy
in inventory, the expected sell-back to the grid has become
close to half of the ramp constraint, for practically any price
that is greater than average.

To characterize PED in a more quantitative way, one needs
to bear in mind that the overall PED should have the firm
component of demand in it. Recall the definition of PED:

PED =
∆d/d

∆λ/λ

where d denotes demand. Here, we have d = df +vaggr(λ),
where df denotes the firm demand. So, the overall PED
depends on how much storage we have compared to the
firm demand. More storage yields higher elasticity. Similarly,
a smaller firm demand results in higher PED. Also, note
that the PED is almost zero for prices that are considerably
larger or smaller than the mean price, and only in the mid-
portion of the plots (i.e. around the mean price) we observe
a substantial PED. For instance, in the above simulations
for scenario (a), if we set the firm demand equal to 3 times
the ramp constraint (i.e. df = 3v), then the PED around
the mean price (i.e. around λ = 10) would be about -0.9,
whereas setting df = 10v yields a PED of about -0.26
around the mean price. Also, in the above simulations for
scenario (b), if we set df = 3v, then the PED around the
mean price would be -1.2, whereas setting df = 10v yields
a PED of about -0.34 around the mean price.

Both of these scenarios confirm that a lower fixed demand
relative to storage level yields higher elasticity. We also
observe that the PED at the mean price is higher in the
presence of storage penalties compared to case of no penal-
ties, because when we have penalties, the optimal policy

becomes the “sell it all” policy right after the mean price,
which causes a jump in the aggregate demand.

Although we present a consumer-aggregate model, be-
cause the stochastic behavior of each user is the same, the
ensemble average provided in this section is equivalent to a
single-user expectation. Moreover, since our time horizon is
fairly long, the initial state s0 only affects the optimal policy
of a consumer for the first few stages. Hence, within a short
period after the initial time, the states for all consumers will
become the same.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a dynamic model of storage
management. We derived the optimal policy for the storage
problem with ramp constraint, and showed that the value
function is a convex piecewise linear function. We provided
analytical expressions for the expected economic value of
storage, and illustrated how the economic value of storage
varies as a function of price volatility and the ratio of storage
capacity to physical ramp constraint.

An immediate observation that one could make in our
results is that if all the consumers optimally schedule
their utilization of storage capacity in the presence of bi-
directional meters, a considerable amount of power will
be fed back into the grid when the prices are above the
mean price, and the direction is reversed for prices that are
below the average price. This implies that the consumers’
utilization of storage capacity may need to be regulated by
the system operator to maintain system balance and stability.

Our future work includes embedding this storage model
into a feedback loop under various scenarios of bi-directional
metering to study long term effects of storage on stability
of electricity markets and integration of renewable sources.
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