
PRISCA: A Policy Search Method for Extreme Trajectory Following

Tak Kit Lau

Abstract— Consider slide parking, given a desired demon-
stration, how to repeat it accurately? Many robotics tasks, such
as slide parking, can be formulated in trajectory following,
but not many dynamics of which can be easily modeled to
facilitate a solving by the optimal control. Although an emerging
stream in robotics is to learn the dynamics and policy from
demonstrations, multiple, if not numerous, demonstrations are
required. Therefore, learning a policy from scarce experience
remains a difficult problem. In this paper, we proposed an
online algorithm to learn a policy for control using only
a desired demonstration and our intuitive knowledge of the
dynamics system. Our approach is found on this observation:
For trajectory following, even on a highly nonlinear and coupled
dynamical system, so long as the state deviation is initially
small, a policy can be updated online to keep the robot on
track according to a very obvious and coarse model information
(e.g., for driving, this information is simply: steer left to
turn left). Our policy search is then devised as a function
minimization problem, and is solved by gradient descent using
the techniques of optimal baseline, least-state-deviation error,
smoothing and in an inverse depreciation as a cost intensifier.
Apart from guarantees on performance and convergence, we
also demonstrated its performance in two simulations, and an
extreme trajectory-following scenario − four-wheel-drive slide
parking experiment. To our best knowledge, it is the state-of-
the-art autonomous precision slide parking of a 4x4 brakeless
RC car.

I. INTRODUCTION

Given sufficient expert’s demonstrations, an optimal policy

can be exactly known in the Markov Decision Process (MDP)

formalism. These learn-from-demonstration algorithms in

reinforcement learning typically assume a stochastic or a

deterministic policy, and to generate a policy either by an

explorative drawing of control inputs from a probabilistic

distribution, or by an exploitation of some proper system

knowledge. Although this formalism could be useful for

many robotic tasks, such as trajectory following, we believe

that even obtaining a number of expert’s demonstrations of

the same task for learning is redundant. Consider driving,

given no prior policy and dynamic model but only a very

rough model information (e.g., steer left to turn left) and a

desired trajectory, a learning driver can gradually improve the

policy if he/she continuously has access to the last few state-

action pairs − i.e., when a deviation to the left is observed,

this learning driver will gradually turn right to correct it,

based on his/her rough understanding on the actuation and

dynamics.
This feedback-and-learn mechanism is more vital than

finding the underlying expert’s reward/cost that tells the

This work was partially sponsored by the Hong Kong RGC under the
grants 414707, 415110 and 415011. T.K. Lau is with the Department of
Mechanical and Automation Engineering, The Chinese University of Hong
Kong. E-mail: tklau@mae.cuhk.edu.hk.

hidden desiderata. In practice, many robotics tasks can be

formulated in trajectory following. Then, when a desired

trajectory is given, the fundamental concern is to directly

learn a policy that keeps the agent on track, rather to

retrieve some subtle rewards/costs that answer “How to drive

well?”. Therefore, when such a learning-to-control problem

is formulated without retrieving a reward/cost function but

in a feedback-and-learn mechanism, we can achieve not only

a model-free learning, but also an undelayed learning for

control because the only prerequisites are a single desired

demonstration and an intuitive understanding of the system.

In this paper, we proposed PRISCA (for Policy Reasoning

In State-and-Cost Adaptation), which is a policy search

method that makes use of a single desired demonstration

and our intuitive understanding on a dynamical system for

trajectory following. Our approach assumes that the policy

is a linear combination of some policy parameters and state

features. The objective is to minimize a H-step cost that is

composed primarily of the square of a state-driven tracking

error. By leveraging our intuitive knowledge on the system

and a gradient descent update rule with the techniques of

optimal baseline, least-state-deviation error, smoothing and

an inverse depreciating function as a cost intensifier, we

boosted the notoriously slow and noise-susceptible gradient

update to become a fast online learning algorithm. Apart

from theoretical guarantees on performance and convergence,

we also demonstrated our approach in two simulations and

an experiment. In a simulated acrobot, our approach was

compared against two other approaches in learning control,

and achieved the best results in terms of learning speed. In a

simulated aerial robot, our approach outperformed a carefully

tuned PD controller, and yielded an accurate trajectory fol-

lowing. In the experiment, we applied our approach in a slide

parking task of a brakeless four-wheel-drive (4x4) RC car,

which possess an under-actuated, highly coupled and nonlin-

ear dynamics. By making use of a single demonstration and a

brief understanding of driving (i.e., increase throttle to speed

up, and steer left/right to turn left/right), our approach can

successfully park into the designated lot with an accuracy of

5cm ± 2cm. To our best knowledge, it is one of the state of

the arts in robotics maneuver.

The paper is organized as follows: Section II describes the

related work. Section III establishes our algorithm, including

the coarse model, and the design of cost function. Section IV

gives our theoretical results. Section V discusses the simula-

tions and experiment. Section VI closes with a conclusion.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2856

Fig. 1. (From left to right) These are snapshots of a four-wheel-drive (4x4) slide parking by PRISCA. The RC car started at a position shown on
the top-left corner in the image, and parked into a desired parking lot shown on the right in the image by sliding. The control inputs are generated
by a desktop PC running with a quad-core 3GHz processor in real-time using the live video feed from an infrared-sensitive CCD camera mounted
on the ceiling. The control inputs are transmitted to the RC car by a typical RC transmitter. The videos of the parking experiments are available at:
http://www.mae.cuhk.edu.hk/∼tklau/rccar

II. RELATED WORK

When the optimal baseline in (15) in our algorithm is set

to zero, and the cost intensifier in (10) is set to one, the

discounting factor is fixed to some values between zero and

one, and the tracking error is driven by time instead of the

proximity of state deviation, then our algorithm is similar

to PGSD [1]. In fact, PGSD can be considered as a special

case of our algorithm. As shown in Theorem 4.3, that kind

of formulation in the cost function never outperforms our

algorithm in terms of learning speed. Moreover, although

PGSD and our algorithm both use a coarse model for control,

our model is approximated by making an efficient use of the

demonstration in a formulation of regression.

The literature in reinforcement learning for control is too

broad to survey. Here are a portion of work that related to

online learning for control: [2], [3] use immediate reward

reinforcement learning, and learn a partitioned local and for-

ward model around some states for control. It is formulated

as an online learning algorithm. Yet it is reported to take

about 3 machine hours to learn a policy for a 3DOF (degree-

of-freedom) robot. [4], [5] propose a learning method that

can be formulated in a stochastic policy or a deterministic

policy. For the stochastic policy, it needs to obtain a model-

free policy gradient. But such gradient is constructed on the

distribution of logπθ(ak|sk) among a number of samples,

hence is not suitable for online learning with scarce samples

or trials. [6] shows how an optimal baseline can be added

to gradients. Nevertheless, our baseline is of a local one and

is not based on the true expectation which would require

numerous roll-outs. [7] gave a stability-checking method for

online algorithms in learn-to-control domain. Rather than

proposing an algorithm to learn a policy online, the authors

emphasized the monitoring of the safety guarantees in this

class of online learning method. [8], [9] attempted to repeat

an expert’s demonstration in order to build a model to

control. [10] proposed to learn an optimal trajectory and a

local model for control. [11] focused on retrieving the hard

to be described reward function in the MDP formalism, and

learn an optimal policy by value/policy iteration.

For extreme maneuvers1 like the slide parking, [12] suc-

cessfully performed such a maneuver by a multiple-model

LQR approach. That approach first builds a driving model

by 2 minutes of data for a “normal” driving, and mixes

the control with recorded actions when the residual between

1In this paper, we describes the control tasks that can yet be solved by
the optimal and robust control as the extreme maneuvers.

actual and predicted states goes up. In our algorithm, no

training is needed to build an accurate dynamics model for

the mixing of control inputs. Moreover, their slide parking is

performed by using throttle, steering and brakes. The avail-

ability of brakes on their platform facilitates a more precise

control over velocity and position during the maneuver, but

our platform is a brakeless four-wheel-drive car which only

takes throttle and steering as inputs.

III. ALGORITHM

A. Policy Search via Gradient

A vector s(k) ∈ R
n describes the states of an agent at a

discretized time k, i.e. kΔt = t, where Δt is the sampling

time, and Jτ (s) is a positive cost function J : R
n �→ R+

where τ denotes a H-step time horizon, i.e. the scope of J
covers the most immediate H items. Suppose a control input

u ∈ R
m is parameterized by a policy parameter θ ∈ R

p×m

and a state feature φ(sk) ∈ R
p, we write uk = θT φ(sk) +

u∗
k, where u∗

k is the action from a desired demonstration, if

available. The optimal policy is parameterized by a set of
(�)θ∗, for � = 1, 2, . . . , L, such that,

(�)θ∗ = argmin
(�)θ

(�)Jτ (s) (1)

By the gradient descent, we define an update rule that

iteratively updates the policy parameters in the direction that

minimizes the cost function,

(�)θk+1 ← (�)θk − αk
(�)gk, (2)

where (�)g is the partial derivative of the cost function

with respect to the �th policy parameter, such that (�)gk =
∂(�)Jτ/∂(�)θk, and αk is a discounting factor which is square

summable but not summable, such that,

αk = β/(k + β) for β ∈ R+ (3)

The summary of our algorithm is given in Algorithm 1.

B. Coarse Model

Putting (�)θ for � = 1, 2, . . . , L into a matrix θ where

θ ∈ R
p×m=L, the gradient term in Equation (2) involves

∂sk+1/∂θk. Assuming that the change of states depends on

the change of control inputs hence the change of control

parameters, we write,

∂sk+1

∂θk
=

∂sk+1

∂uk
· ∂uk

∂θk
= φ(sk+1)

(
∂sk+1

∂uk

)T

(4)

This step narrows the gradient down, and diverts us to solve

for ∂sk+1/∂uk. Assume that the dynamics can be written in

2857

Algorithm 1 PRISCA for trajectory following

1: Input: {S∗,U∗}, a single demonstration
2: Bv , B̃, estimated and intuitive action action mappings
3: φ, state feature
4: γ, rate of inverse depreciation
5: H , size of time horizon
6: β, rate of learning
7: Learning Dynamics:
8: B∗

v = argmin
Bv

Ei=0:T Ej=i:T ||δsk+1 − Bv � B̃Δt δuk||22
9: Learning Control:

10: for k = 0 to K do
11: Compute baseline,

12: (�)b =
2Eτ′ [(EiEjAD)(EiEjA)]

Eτ′ [(EiEjA)2]+[Eτ′ (EiEjA)]2
, for � = 1, 2, . . . , L,

where A = (�)φ(s)(s − s̄∗)T ((�)B∗
v)T , for � = 1, 2, . . . , L

13: Compute gradient,
14: (�)g = Ei=k−H:k Ej=i:k

(�)φ(sj)(sj − s̄∗j)T ((�)B∗
v)T (Dj −

(�)b), for � = 1, 2, . . . , L
15: Update parameter,
16: (�)θ := (�)θ − αk

(�)g, for � = 1, 2, . . . , L
17: Compute control input,
18: u := θT φ(sk) + u∗

k , (u∗
k = 0 if unavailable)

19: end for

a system of differential equations, and the states are update

by the time-step integration, then we have,

∂sk+1

∂uk
=

∂

∂uk

N−1∑
i=0

(AΔt + I)i (BΔt)uk−i = BΔt (5)

where A,B are the state transition mapping and action

mapping, Δt is the sampling time.

Assuming that we have a rough knowledge of the actuation

and dynamics, we decompose the action mapping B into two

terms,

B ∼= Bv � B̃, (6)

where � is defined as an element-wise multiplication be-

tween two matrices of the same size2. Bv is a to-be-estimated

action mapping. B̃ is the intuitive action mapping.

For car driving, we intuitively know that if we increase

the throttle, the car will speed up; and if we steer left, it will

move left and rotate to the left. Therefore, we can have such

a mapping,

Lateral Longitudinal Orientation
Movement Movement Movement

Throttle 1 0 0
Steering 0 1 1

Hence,

Bv � B̃ =
(

b1 0 0
0 b2 b3

)
�

(
1 0 0
0 1 1

)
, (7)

where b1,2,3 are the terms to be estimated. For different

dynamical systems, the arrangement of the 1’s and 0’s in

B̃ will vary, and is depended on the choices of states and

control inputs.

By making use of a series of state-and-action pairs from

a single demonstration, we can approximate the model by

2Same spirit of the .∗ operator in MATLAB.

regression, such that,

B∗
v = argmin

Bv

Ei=0:T Ej=i:T ||δsk+1 − Bv � B̃Δt δuk||22
(8)

where E(·) is the expectation. δsk+1 is the change of states,

i.e. δsk+1 = sk+1 − sk, and δuk = uk − uk−1. Here,

we assumed that the system is responsive. To account for

latencies, an extra term can be added to (8). Also, the

states should be carefully selected to reflect the deviations

in the body frame. The advantage of this method is that,

we make use of the intuitive, yet often ignored knowledge

of a dynamics system, then efficiently guide the dynamics

modeling in a setting of regression using few samples.

C. Cost Function

In this paper, we consider an algorithm that, given a

desired demonstration S∗ : {s∗(0), s∗(Δt) . . . s∗(K · Δt)},

to find a policy for an agent online so that the agent can

automatically reproduce the desired demonstration. Straight-

forwardly, we define the cost function Jτ = J(k−H):k, where

k · Δt = t, as a quadratic tracking error,

(�)Jτ = Ei=k−H:k Ej=i:kCj (9)

where Cj is the quadratic tracking error, i.e. Cj = (sj −
s̄j)T (sj−s̄j), and s̄j is the desired state. Ei=k−H:k Ej=i:k(·)
is a smoothing function which covers the most immediate H
items. Apart from the penalty from the state deviations, we

introduce an inverse depreciation,

Di = H/(γi + 1), for γ ∈ (0, 1) (10)

which is a concave function to inversely depreciate the state

deviation. This function intensifies the rate of learning in the

progress of time. Therefore, the sooner the tracking error is

minimized, the lower the cost that Jτ will incurred.

Moreover, although the method of gradient descent the-

oretically converges, it is susceptible to noises in practice.

To learn a policy only from one demonstration, we do not

have enough samples to construct a value function that tells

us a probabilistically sound direction to update the policy

parameters. Therefore, we introduce a variance reducer,

which is often known as baseline, in the cost function,

hence the gradient can update the policy towards convergence

amidst noises. And unlike the baselines commonly used

in the gradient methods, ours is of a local one, i.e. it is

generated from the most immediate samples covered in a

horizon, but not the true expectation over numerous roll-

outs. Furthermore, we augment the quadratic cost function

with a least-state-deviation term to drive the tracking error

by the proximity of the nearest desired state but not the time,

such that,

Cj = (sj − s̄∗j)
T (sj − s̄∗j), (11)

where,

s∗j = argmin
s∗

Es|sj − s∗| (12)

2858

We re-write the cost function in (9),

(�)Jτ = Ei=k−H:k Ej=i:kCj(Dj − (�)b) (13)

Hence,

(�)g = Ei=k−H:k Ej=i:k
(�)φ(sj)(sj − s̄∗j)

T ((�)
∂s
∂u

)T (Dj − (�)b)

(14)

where (�)(·) denote the terms that are related to the �th control

parameter, i.e. (�)θ, for � = 1, 2, . . . , L.

The purpose of b is to suppress and eventually reduce

the effect of variance to the gradient during the learning of

a policy, hence the optimal variance reducer of a H-step

horizon is formulated as,

(�)b∗ = argmin
(�)b

Var((�)g)

= argmin
(�)b

Eτ [((�)g − Eτ [(�)g])2]

By setting,

∂Var((�)g)/∂(�)b =0

then,

(�)b =
2Eτ ′ [(EiEjAD)(EiEjA)]

Eτ ′ [(EiEjA)2] + [Eτ ′(EiEjA)]2
(15)

where A = (�)φ(s)(s − s̄∗)T ((�) ∂s
∂u)T . Eτ ′(·) is an expecta-

tion over a time horizon τ ′. Ei(·) is denoted as Ei=k−H:k(·),
and Ej(·) is denoted as Ej=i:k(·). This τ ′ is picked as 2τ in

experiments. Unlike the baselines that are commonly used

in the gradient method, our baseline is of a local one, i.e. it

does not depend on a true expectation of the states but on a

range of states covered by τ ′.

IV. THEORETICAL RESULTS

The formulation of the cost function in the previous

section is predicted on the assumption that the inverse de-

preciation and variance reducer together yield a better policy

search than the typical policy gradient method (PGM) during

the learning. In this section, we prove that our formulations

of the cost function and update rule always yield a policy

that gives better results when comparing with PGM, and in

probability that our algorithm will converge to a local optimal

policy.

The following lemmas establish the proofs of the perfor-

mance and convergence.

Lemma 4.1: Let there be a step size H ∈ [1, 2. . .50] and a

time-discounting factor γ ∈ [0, 1] in a concave function that

Di = H/(γi + 1), then there always exist a combination of

H and γ that

Eτ ′(D2) − Eτ ′(D)2 − 1 < 0
Proof: The existence of such a combination can be best

understood by visualization. We plotted the H − γ graph in

Figure 2.

Lemma 4.2: Let there be a PRISCA gradient g ∈ R
p×m

and a typical PGM gradient g̃ ∈ R
p×m that is formulated

without the inverse depreciation and variance reducer, such

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

γ

H

Fig. 2. The gray grids represent the combinations of the corresponding H
and γ satisfies Eτ ′ (D2) − Eτ ′ (D)2 − 1 < 0.

that J̃ = C. The variance of PRISCA gradient is smaller than

the variance of the typical PGM gradient. We then have that,

Varτ ′((�)g) < Varτ ′((�)g̃)
Proof: Consider that,

Varτ ′ ((�)g) − Varτ ′ ((�)g̃) < [Eτ ′ (D2) − Eτ ′ (D)2 − 1]Eτ ′ ((�)g̃2)
(16)

Using Lemma 4.1, there exist a combination of γ and H that

would satisfy,

Eτ ′(D2) − Eτ ′(D)2 − 1 < 0

Then we immediately have,

Var((�)g) − Var((�)g̃) < 0

Theorem 4.3: Let there be a matrix θ ∈ R
p×m which

consists of a set of (�)θ for i = 1, 2, . . . , L, and it iterates
by setting (�)θk+1 ← (�)θk − αk

(�)gk where a gradient,
(�)gk, is the partial derivative of a cost function, such that
(�)gk = �(�)θ

(�)Jτ . Assume that up to an arbitrary k time-
step, PRISCA and the typical PGM yield the same output,
then, PRISCA would always yield a (�)θk+1|g that is closer
to a local optimum than a typical PGM gradient does, i.e.
for � = 1, 2, . . . , L,

E[((�)θk+1|g − (�)θ∗)2; (�)θk] < E[((�)θk+1|g̃ − (�)θ∗)2; (�)θk] (17)

Proof: Using the typical PGM, the �2-norm of the

squared difference between an instance of the policy parame-

ters (�)θk+1 and the optimum is ((�)θk+1−(�)θ∗)2. We denote

the parameter obtained by our method as (�)θk+1|g , and the

one by the typical PGM is (�)θk+1|g̃ .

Assume that the gradient in our method is (�)g and it is

composed of a true gradient (�)ḡ and variance vg , i.e. (�)g =
(�)ḡ + vg . Similarly, the gradient in typical PGM is denoted

as (�)g̃, i.e., (�)g̃ = (�)ḡ + vg̃ . As variances are non-negative,

and by Lemma 4.2, we have v2
g < v2

g̃ . Also, we assume that

a true gradient (�)ḡ would lead to a local optimum (�)θ̄k+1,

i.e. (�)θ∗ = (�)θ̄k+1 = (�)θk − α(�)ḡ.

Taking an expectation to observe the bound of the squared

difference between the iterated parameter and the local

2859

optimum, when given the same previous parameter (�)θk,

E[((�)θk+1|g − (�)θ∗)2; (�)θk] <

E(−2αvg
(�)θk+1 + α2v2

g − 2(�)θ∗(�)θ̄k+1 + 2αvg
(�)θ∗; (�)θk)

(18)

Similarly, we can write a similar form for E[((�)θk+1|g̃ −
(�)θ∗)2; (�)θk]. Then, by subtracting these two expectations

together, we have,

E[((�)θk+1|g − (�)θ∗)2; (�)θk] − E[((�)θk+1|g̃ − (�)θ∗)2; (�)θk]

< E[α2(v2
g − v2

g̃); (�)θk] < 0, for � = 1, 2, . . . , L (19)

Remark Theorem 4.3 shows a that PRISCA always yields a

better control parameter in each step in terms of the closeness

to the local optimum. In other words, it always learns faster

than typical PGM.

Theorem 4.4: Let there be a policy parameter which is

updated according to PRISCA. Then, this policy parameter

will converge to a local optimum in probability, such that,

Pr(‖θ − θ∗‖2
2 ≥ ε) ≤ 0, where ε > 0

Proof: Recall that the time-discounting factor in (3)

is chosen as αk = β/(k + β), which is square summable

but not summable, the proof of convergence of PRISCA is

equivalent to the proof of convergence of subgradient. See

[13] for the details.

V. EXPERIMENTS

A. Acrobot

Our first simulation is the trajectory following of an

acrobot. The mass of each link is assumed to be a point

mass centered at the middle of each link. Each joint can

exert a limited torque. The tracking error is the deviation

of the desired joint angles. Given a desired trajectory, we

generate the series of desired joint angles at each time-step.

The state feature is defined as the deviation of tracking angle

and the rate of this deviation.

Two other methods are included for comparison. PGSD

[1] and PEGASUS [14]. PGSD uses a coarse model and

policy gradient to refine the policy online. See Section II

for more. PEGASUS searches for a policy by the finite

difference method.

All methods are carefully hand-tuned to yield their best

performance. Figure 3 shows the result of these algorithms.

B. Aerial Robot

In our second simulation, we evaluated our algorithm on

a fixed-wing aerial robot in a trajectory following task. We

ran our algorithm on an open source flight simulation called

FlightGear with a flight dynamic model from JSBSim. We

first defined a desired trajectory, then activated our algorithm

in the middle of flight to follow this trajectory. The desired

trajectory is localized to the state of the robot at which the

algorithm is activated. The state feature is defined as the

longitudinal position deviation with respect to the desired

body frame, and the heading deviation. The definition of

(a) Trajectory following of an acrobot

2 4 6 8 10 12 14 16 18 20
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Seconds s

T
ra

ck
in

g
E

rr
or

‖e
‖2 2

PGSD

Ours

PEGASUS

(b) Comparison of algorithms

Fig. 3. (a) Trajectory following of an acrobot: Given a desired trajectory for
an acrobot, we evaluated two other reinforcement learning algorithms along
with our approach in a MATLAB simulation. (b) Performance evaluation:
After a careful calibrations of the step size on each algorithm, this figure
shows the best results of each algorithm. The simulations ran for 20 times.
The 95% confidence interval is plotted. The tracking error is the square of
�2-norm of the joint angle deviation. This results show that PRISCA learnt
faster and in a more focused manner than PGSD and PEGASUS.

coordinate frame is described in Figure 4. A PD controller

is implemented as a comparison. To show the enormous

improvement that this learning algorithm can achieve, we

inherited all PD channels except the rudder and throttle in

our evaluation. It suggests that our learning algorithm can

improve a PD controller drastically.

C. Slide Parking of a Four-Wheel-Drive RC Car

Unlike full-sized cars that can make use of handbrake and

brake to perform slide parking, the maneuverability of the RC

car in this experiment is much more demanding because this

car takes only two inputs: throttle and steering, for control.

To slide this RC car into a desired parking lot, this RC car

must be accelerated to a speed and steer properly at the right

time with a right magnitude and rate to achieve a precise

parking. While the dynamics of the traction and actuation

in the regime of sliding is hard to be described, the typical

optimal control, such as LQR, cannot be trivially applied to

this robotics maneuver.

For the evaluation, we as well compared our algorithm

with the variants of PD controllers, and the results are shown

in Table I. We denote the PD controller with the H-step

horizon (13) as PD+H, and with the least-state-deviation

(12) as PD+LSD. PD+H+LSD is denoted as having both

techniques.

We found that the techniques of least-state-deviation and

2860

0 1000 2000 3000 4000 5000 6000
−3000

−2500

−2000

−1500

−1000

−500

0

500

1000

Δx (meters)

Δ
y

(m
et

er
s)

Desired
PD

(a) (b)

0 1000 2000 3000 4000 5000 6000
−3000

−2500

−2000

−1500

−1000

−500

0

500

1000

Δx (meters)

Δ
y

(m
et

er
s)

Desired
Prisca+PD

(c)

Fig. 4. (b). Using an open-source flight simulation called FlightGear (http://www.flightgear.org/) and a popular flight dynamic model by
JSBSim (http://www.jsbsim.org/), we ran our learning algorithm on a desktop PC to control a fixed-wing UAV for a trajectory following task in
real-time. (a) PD controller: Green line is the desired trajectory. Red line is the actual trajectory achieved by the controller. It is the best results after a
careful calibration of the gains. Best view in colors. (c) PRISCA: Given the same desired trajectory, our algorithm performed an immediate online learning
by using a coarse model (i.e. rudder left to turn ”level-left”, give a larger throttle to speed up) and the tracking error. Only the rudder and throttle are
controlled by the learning algorithm, the rest of the channels are inherited from the same PD controller as shown in (a). The purpose of this mixture of
control is to show that even with only two learn-to-control channels, the performance of a typical PD controller can be improved enormously. The learning
algorithm worked immediately without much tuning on the step size H and the time-discounting factor γ. In this evaluation, we set H = 10, α = 1. The
control frequency and the measurement sampling rate are at 40Hz.

Fig. 5. p̄(t) indicates the desired position of the robot at time t with
respect to the inertial frame, pd(t) is the position of the robot with respect
to the desired position frame at time t. The desired position frame moves
along the desired trajectory according to the time t, and the orientation of
the frame is the desired orientation for the robot.

H-step horizon together improve the results of PD controller.

But our algorithm yields the best results among all other

methods, and is the only controller that can persistently park

into the desired lot.

VI. CONCLUSION

We presented a policy search method, to learn a pa-

rameterized control policy from only a very coarse model

information (e.g., for driving, steer left to turn left) and a

desired demonstration for trajectory following. We showed

that our algorithm holds the guarantees in performance and

convergence, and demonstrated its performance and effec-

tiveness not only in simulations of an acrobot and an aerial

robot, but also in a slide parking experiment of a 4x4 RC

car. Our algorithm is generally applicable to robotic tasks

that can be formulated in trajectory following. We believe

that our online learning algorithm − which requires neither

Fig. 6. The vehicle for experiments is a four-wheel-powered electric RC car.
It takes only two control inputs, namely throttle δthro and steering δsteer .
Three high-power IrLEDs are placed on top of the car for localization. An
infrared-sensitive CCD camera is mounted on ceiling to track the position
and orientation of the RC car. At the bottom of this image, a sequence of
snap-shots taken from each stage of the image processing is shown.

TABLE I

THE PERFORMANCE OF PRISCA IN 4-WHEEL SLIDE PARKING

POSITION
MEAN-ABSOLUTE-ERROR ERROR VARIANCE

OURS 4.89cm ± 2.17cm 4.73cm
PD 32.12cm ± 28.19cm 794.59cm
PD (SELECTED) 22.35cm ± 15.21cm 231.42cm
PD+H 13.44cm ± 7.35cm 54.04cm
PD+LSD 22.63cm ± 13.68cm 187.03cm
PD+H+LSD 12.96cm ± 8.33cm 69.35cm
ACTION PLAYBACK 12.41cm ± 5.34cm 28.55cm

ORIENTATION
MEAN-ABSOLUTE-ERROR ERROR VARIANCE

OURS 17.35o ± 7.49o 56.14o

PD 50.29o ± 68.61o 4707.59o

PD (SELECTED) 30.40o ± 15.50o 240.35o

PD+H 21.14o ± 9.52o 90.72o

PD+LSD 27.66o ± 10.42o 108.59o

PD+H+LSD 22.71o ± 10.83o 117.22o

ACTION PLAYBACK 11.61o ± 13.28o 176.28o

2861

60

80

100

120

140

160

180

200

20015010050

x
[c

m
]

y [cm]

60

80

100

120

140

160

180

200

20015010050

x
[c

m
]

y [cm]

60

80

100

120

140

160

180

200

20015010050

x
[c

m
]

y [cm]

150

160

170

180

190

200

210

230220210200190180170160150

x
[c

m
]

y [cm]

150

160

170

180

190

200

210

230220210200190180170160150

x
[c

m
]

y [cm]

150

160

170

180

190

200

210

230220210200190180170160150

x
[c

m
]

y [cm]

PDAP Ours

AP PD Ours

Fig. 7. (Upper) The whole slide parking trajectories performed by actions playback (AP), proportional-derivative (PD) control, and PRISCA. (Lower)
A closer look around the region of the desired parking lot. The desired parking lot is in dotted red lines. The end postures of each parking attempt are
in dark colored lines. The intermediate trajectories are in pale colored lines. Left: By actions playback (AP). Middle: By proportional-derivative (PD)
control plus AP. Right: By PRISCA. As a whole, by AP or PD , the car could only park into the desired parking lot occasionally by luck. By PRISCA,
the RC car can consistently park by making use of only one demonstration, and the intuitive knowledge of car driving. The axes are in centimeters [cm].
The performance is detailed in Table I. Best view in colors.

a dynamical model nor multiple demonstrations − holds

promise for solutions to robotics maneuver in some extreme

situations.

ACKNOWLEDGMENT

The author gives warm thanks to Yun-Hui Liu for his

helpful discussion and support, and to J. Zico Kolter for his

implementation of the dynamical simulation of acrobot in

MATLAB, and to Kit-Hung Lee and Shun-Yi Lau for their

help in the setup of experiments.

REFERENCES

[1] J. Kolter and A. Ng, “Policy search via the signed derivative,” in
Proceedings of Robotics: Science and Systems, 2009.

[2] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
International Conference on Machine Learning, 2007, pp. 745–750.

[3] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Advances in Neural Information Processing Systems, vol. 22, 2009.

[4] P. Glynn, “Likelihood ratio gradient estimation for stochastic systems,”
Communications of the ACM, vol. 33, no. 10, 1990.

[5] J. Tang and P. Abbeel, “On a connection between importance sampling
and the likelihood ratio policy gradient,” in Advances in Neural
Information Processing Systems, 2010.

[6] E. Greensmith, P. Bartlett, and J. Baxter, “Variance reduction tech-
niques for gradient estimates in reinforcement learning,” The Journal
of Machine Learning Research, vol. 5, 2004.

[7] A. Ng and H. Kim, “Stable adaptive control with online learning,” in
Advances in Neural Information Processing Systems, 2004.

[8] C. Atkeson and S. Schaal, “Learning tasks from a single demonstra-
tion,” in Proceedings of IEEE International Conference on Robotics
and Automation, vol. 2, 2002.

[9] ——, “Robot learning from demonstration,” in Proceedings of the
Fourteenth International Conference on Machine Learning, 1997, pp.
12–20.

[10] A. Coates, P. Abbeel, and A. Ng, “Learning for control from multiple
demonstrations,” in Proceedings of 25th International Conference on
Machine Learning, 2008, pp. 144–151.

[11] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the 21st International Conference
on Machine Learning, 2004, p. 1.

[12] J. Kolter, C. Plagemann, D. Jackson, A. Ng, and S. Thrun, “A
probabilistic approach to mixed open-loop and closed-loop control,
with application to extreme autonomous driving,” in Robotics and
Automation, 2010 IEEE International Conference on, 2010, pp. 839–
845.

[13] N. Shor, Nondifferentiable optimization and polynomial problems.
Kluwer Academic Publishers, 1998.

[14] A. Ng and M. Jordan, “PEGASUS: A policy search method for large
MDPs and POMDPs,” in Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, 2000.

2862

