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Abstract— In this paper we address the problem of output
feedback attitude control of a rigid body in quaternion coor-
dinate space through a PD+ based tracking controller using
switching technique to obtain stability for all initial values.
Assumptions on earlier results where either the initial state is
considered bounded, or the attitude error for all time is less
than 180 degrees, is removed by applying switching technique,
also including hysteresis for robust stability. More precisely,
we show uniform asymptotic stability in the large of a set
containing the origin for the closed-loop system in the presence
of unknown, bounded input disturbances. Simulation results are
presented to verify our theoretical findings, showing that the
system stabilizes as expected, even with high initial estimated
velocity error.

I. INTRODUCTION

Attitude control on the rotational sphere is an interesting

theoretical problem since, due to the parametrization of the

attitude for the unit quaternion, the model has multiple

equilibrium points. From a more practical viewpoint, besides

achieving stability in some sense, control of a rigid body

demands fast and accurate settling using minimal control ef-

fort. Thus, a wide number of controllers have been developed

during the past years, by focusing on the enhancement of per-

formance while guaranteeing robust stability and minimizing

the control effort.

Attitude tracking control naturally lies on a bulk of liter-

ature on tracking control of robot manipulators –cf. [1]. A

classic in robot control literature is the PD+ controller of

Paden and Panja –cf. [2] which, together with the Slotine

and Li controller –cf. [3], was the first algorithm for which

global asymptotic stability was demonstrated. A PD+ based

controller for spacecraft was presented in [4], called model-

dependent control.

An angular velocity observer for rigid body motion was

presented in [5], using unit quaternions and a mechanical

energy function approach, while a passivity approach was

considered in [6] where the passivity properties were ex-

ploited in a nonlinear controller to ensure asymptotic stability

without need of a model-based observer for angular velocity

reconstruction. Similar results were presented in [7] where

a class of Euler-Lagrange (EL) systems were determined,

satisfying a dissipation propagation condition, while output
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feedback tracking control of a class of EL-systems subjected

to monotonic loads were investigated in [8]. In [9] two

different schemes were presented based on results for output

control of robot manipulators (cf. [10]); in the first scheme, a

second-order model-based observer is adopted for estimation

of the angular velocity, while the second scheme is based on

a lead-filter for estimation of the angular velocity error. An

alternative approach using Modified Rodrigues Parameters

(MRP) was presented in [11], simplifying the resulting

control law. The topic of output feedback was further pursued

for spacecraft control in [12], where the inertia matrix was

assumed unknown, and the problem was solved using an

adaptive approach. [13] presented a scheme based on a unit

quaternion observer and a linear feedback control law to

prove asymptotic stability of the equilibrium point, thus

avoiding the use of lead filter. The problem was further

pursued and almost global (in the large) asymptotic stability

was obtained for a similar approach in [14], and almost

global exponential stability for stabilization on SE(3) in [15].

In work such as [9], [16], [17] it is assumed that either the

attitude error for the dynamics and estimator never increases

beyond π rad, thus choosing one rotational direction and

stick to it throughout the maneuver, or a bound on the

initial values is introduced to make sure this never happens.

Choosing a goal equilibrium at the start of the maneuver is

mostly motivated by the theoretical analysis. From a practical

viewpoint it may be more desirable to implement a decision

law which determines the reference operating point online.

To deal with the problem of multiple equilibria while allow-

ing discontinuous changes of the goal equilibrium during the

maneuver it is most natural to use hybrid or, more specif-

ically, switching control (cf. [18], [19]). See for instance

[20] for the control of an under-actuated non-symmetric

rigid body and [21] where the authors use quaternion-based

hybrid feedback and presents two different control laws:

one derived from an energy-based Lyapunov function which

only switches rotational direction when the rotational error

is above π rad, and one based on backstepping design which

also has the angular velocity error included in the switching

threshold, thus leading to a more complex behavior.

In this paper we use a PD+ based output feedback con-

troller, roughly speaking, include quaternion-based hybrid

feedback with hysteresis for the error dynamics leading

to robust stabilization with respect to measurement noise.

Switching is also used to ”reset” the estimated attitude error

to zero when a certain threshold is crossed to make sure

that asymptotic stability with respect to Lyapunov holds

for all time without restricting the set of available initial
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values. Strictly speaking, we show that a set containing the

origin of the closed-loop system is uniformly practically

asymptotically stable in the large with respect to unknown,

bounded perturbations, which means that all trajectories

converge asymptotically towards a set which size can be

arbitrarily diminished by increasing controller gains. Our

theoretical findings are validated in simulation for an Earth

orbiting spacecraft with high initial angular velocity error,

both for the dynamical and estimated part, thus switching is

provoked. The result presented in this paper can be seen as

an extension to the results presented in [9] - even though the

observer structure differs some because we do not make use

of sliding variables - where switching control is applied to

remove the assumption of strict boundedness on the initial

state vector.

II. PRELIMINARIES

The cross product operator × between two vectors a and

b is written as S(a)b where S is a skew-symmetric matrix.

The symbol ωc
b,a denotes angular velocity of frame a relative

to frame b, expressed in the frame c; Rb
a is the rotation matrix

from frame a to frame b; ‖ · ‖ denotes the Euclidean norm

or the induced L2-norm of matrices, and we denote R+ as

the set of all positive real numbers. When the context is

sufficiently explicit, we omit the arguments of functions.

A. Quaternions

The attitude of a rigid body is represented by a rotation

matrix R ∈ SO(3) = {R ∈ R
3×3 : R⊤R = I, det (R) =

1}, which is the special orthogonal group of order three.

Quaternions are used to parameterize members of SO(3)
where the unit quaternion is defined as q = [η, ǫ

⊤]⊤ ∈
S3 = {x ∈ R

4 : x⊤x = 1}, where η ∈ R and ǫ ∈ R
3. The

rotation matrix may be described by [22]

R = I+ 2ηS(ǫ) + 2S2(ǫ). (1)

The inverse rotation can be performed by using the inverse

conjugated of q as q̄ = [η, − ǫ
⊤]⊤. The set S3 forms a

group with quaternion multiplication, which is distributive

and associative, but not commutative, and the quaternion

product of two arbitrary quaternionsq1 andq2 is defined as

q1 ⊗ q2 =

[

η1η2 − ǫ
⊤
1 ǫ2

η1ǫ2 + η2ǫ1 + S(ǫ1)ǫ2

]

. (2)

See [22] for further detail.

B. Kinematics and Dynamics

The time derivative of (1) can be written as Ṙa
b =

S
(

ω
a
a,b

)

Ra
b = Ra

bS
(

ω
b
a,b

)

, and the kinematic differential

equations can be expressed as

q̇i,b = T(qi,b)ω
b
i,b, T(qi,b) =

1

2

[

−ǫ
⊤
i,b

ηi,bI+ S(ǫi,b)

]

. (3)

The dynamical model of a rigid body can be described by

a differential equation for angular velocity, and is deduced

from Euler’s moment equation. This equation describes the

relationship between applied torque and angular momentum

on a rigid body as [23]

Jω̇
b
i,b = −S(ωb

i,b)Jω
b
i,b + τ

b, (4)

where τ b ∈ R
3 is the total torque working in the body frame,

and J ∈ R
3×3 is the rigid body inertia matrix. The torque

working on the body is expressed as τ
b = τ

b
a + τ

b
d, where

τ
b
d is the disturbance torque, and τ

b
a is the actuator torque.

C. Hybrid Control

For the purpose of analysis, we use the setting of [24],

[19]. According with this framework hybrid systems are

described by a continuous-time dynamics defined by a “flow

map” and discrete-time dynamics, defined by a “jump map”.

In addition, we are equipped of a “flow set” and a “jump

set”. That is,

H :

{

x ∈ C =⇒ ẋ = F (x)
x ∈ D =⇒ x+ = G(x)

where x+ is the state value ‘immediately’ after a jump.

After [24], [19] solutions to the hybrid system are defined

as maps from a hybrid time domain, subset of R≥0 × N,

into an Euclidean space. Roughly, the hybrid time do-

main denoted “dom x”, consists in an ordered sequence of

continuous-time intervals [tj , tj+1) or [tj , tj+1] and discrete

instants {j}. During flows (if x(t, j) ∈ C) the solution is

a locally absolutely continuous function that satisfies ẋ =
F (x). At jumps (x ∈ D), the state value after the jump

satisfies x+ = G(x). The solution of a hybrid system is

denoted j, t→ x(t, j).

Then, (asymptotic) stability is defined as follows. A com-

pact set A is stable for H if for each ǫ > 0 there exists

σ > 0 such that1 ‖x(0, 0)‖A ≤ σ implies ‖x(t, j)‖A ≤ ǫ
for all solutions x to H and all (t, j) ∈ dom x. A compact

set is attractive if there exists a neighborhood of A from

which each solution is complete and converges to A, that is

‖x(t, j)‖A → 0 as t+ j → ∞, where (t, j) ∈ dom x.

III. CONTROL OF RIGID BODY

A. Problem Formulation

The control problem is to steer the state qi,b(t) to-

wards a given reference trajectory qi,d(t) satisfying q̇i,d =
T(qi,d)ω

b
i,d. The tracking error in quaternion coordinates,

q̃ = [η̃, ǫ̃
⊤]⊤ is given by

q̃ := q̄i,d⊗qi,b =

[

ηi,dηi,b + ǫi,dǫi,b

ηi,dǫi,b − ηi,bǫi,d − S(ǫi,d)ǫi,b

]

, (5)

and the quaternion velocities may be expressed as ˙̃q =

T(q̃)
(

ω
b
i,b − ω

b
i,d

)

. For the purpose of establishing mean-

ingful stability properties we define the errors

eq := [1 − hη̃, ǫ̃
⊤]⊤, eω := ω

b
i,b − ω

b
i,d, (6)

1As usual, ‖x‖A =infz∈A|z − x|.
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where h ∈ H := {−1, 1} is considered as a switching

variable determining the choice of goal equilibrium point

(cf. [21]). Moreover, we have

ėq = Te(eq)eω, Te(eq) :=
1

2

[

hǫ̃⊤

η̃I+ S(ǫ̃)

]

. (7)

Since measurements of the angular velocity is not available

we define an estimation error defined as eeω := ω
b
i,b −ω

b
i,e,

where subscript e denotes the estimated frame, together with

an attitude estimation error defined as qe,b := [ηe,b, ǫ
⊤
e,b]

⊤ =
q̄i,e ⊗ qi,b, thus the error function is defined as eeq := [1−
ηe,b, ǫ

⊤
e,b]

⊤ with the kinematic relation

ėeq = Teq(eeq)eeω, Teq :=
1

2

[

−ǫ
⊤
e,b

ηe,bI+ S(ǫe,b)

]

. (8)

The problem is solved if the equilibrium point

(eq, eω, eeq, eeω) = (0,0,0,0) is practically asymptotically

stabilized.

B. Controller-Observer Design

We pose the following assumptions:

Assumption 3.1: There exists βj , βJ > 0 such that the

inertia matrix J is symmetric and positive definite, and

satisfies the inequality

βj ≤ ‖J‖ ≤ βJ . (9)

Assumption 3.2: There exists βd > 0 such that the

disturbance moments τ
b
d are bounded as

‖τ b
d(t)‖ ≤ βd. (10)

Assumption 3.3: The desired angular velocity and the

desired angular acceleration are bounded, i.e.‖ωb
i,d(t)‖ ≤

βωb
i,d

∈ R+ and ‖ω̇b
i,d(t)‖ ≤ βω̇b

i,d
∈ R+ ∀ t ≥ t0 ≥ 0.

The desired angular velocity is usually given with reference

to the inertial frame denoted by ω
i
i,d. In the body frame,

ω
b
i,d = Rb

iω
i
i,d (11)

hence, the reference acceleration in the body frame is

ω̇
b
i,d = Ṙb

iω
i
i,d +Rb

i ω̇
i
i,d (12)

= −S(ωb
i,b)ω

b
i,d +Rb

i ω̇
i
i,d. (13)

As is common in control of mechanical systems, the con-

troller includes feedforward terms which depend on reference

velocity and acceleration. However, notice that ωb
i,d depends

on the unavailable actual velocity ω
b
i,b. Therefore, for control

purposes we use the modified acceleration vector (cf. [9])

ad = −S(ωb
i,d)ω

b
i,d +Rb

i ω̇
i
i,d (14)

= Rb
i ω̇

i
i,d (15)

that is, where the unmeasured state ω
b
i,b is replaced by the

reference ω
d
i,b.

Consider the controller

τ a = Jad − S(Jωb
i,e)ω

b
i,d − kpT

⊤
e eq − kdω

b
d,e, (16)

with kp, kd,∈ R+ considered as constant gains and ω
b
d,e :=

ω
b
i,e − ω

b
i,d is the angular velocity of the estimated frame

relative to the desired frame presented in the body frame.

Roughly, this may be regarded as the difference between

the desired reference velocity and the estimated velocity,

generated by the observer

ż =ad + J−1
[

lpT
⊤
eqeeq − kpT

⊤
e eq

]

, (17)

ω
b
i,e =z+ 2J−1ldT

⊤
eqeeq, (18)

where lp, ld ∈ R+ are constant gains to be defined.

For the purpose of analysis, let x :=
[e⊤q , e⊤ω , e⊤eq, e⊤eω , h]

⊤ and define the flow sets as

C1 = {x : hη̃ ≥ −δm} (19)

C2 = {x : ηe,b ≥ δn}, (20)

where C = C1 ∩ C2, and δm and δn are constants to be

defined. The set (19) can be seen as hysteresis similar to

[21], while the second set (20) ensures that the system is

”flowing” as long as the state ηe,b is positive and separated

from zero. Then, the jump sets are defined as

D1 ={x : h(η̃ −
1

2kp
λǫ̃⊤Jeω) ≤ −δm} (21)

D2 ={x : ηe,b ≤ δn}, (22)

where D = D1 ∪D2, and the switching laws defined as

ḣ = 0 ∀x ∈ C (23)

x+ = G1(x) = [e⊤q , e
⊤
ω , e

⊤
eq, e

⊤
eω,−h]

⊤ ∀x ∈ D1 (24)

x+ = G2(x) = [e⊤q , e
⊤
ω ,0, e

⊤
eω, h]

⊤ ∀x ∈ D2. (25)

G1(x) ensures that h switches sign when the hysteresis value

is passed such that the product hη̃ is positive, while G2(x)
”resets” the estimated attitude error, (eeq = 0 ⇒ ηe,b = 1)

ensuring that ηe,b is kept positive and separated from zero

for the Lyapunov stability to hold.

Proposition 3.1: Let Assumptions 3.1–3.3 hold. Then, the

set A = {(eq, eω, eeq, eeω, h) : ‖(eq, eω, eeq, eeω)‖ ≤ δ}
where δ is to be defined, of the system (3) and (4), in closed

loop with the hybrid control law (16) and (19)–(25), and the

observer (17)–(18) is Uniformly Asymptotically Stable (UAS)

in the large.

The proof is given in the Appendix.

IV. SIMULATION RESULTS

We present simulation results for a spacecraft in an elliptic

Low Earth Orbit (LEO). The simulations were performed

in Simulink using a fixed sample-time Runge-Kutta ODE4

solver with 10−2 s step size. The moments of inertia were

chosen as J = diag{4.35, 4.33, 3.664} kgm2, and the

spacecraft orbit was chosen with perigee at 600 km, apogee

at 750 km, inclination at 71◦, and the argument of perigee

and the right ascension of the ascending node at 0◦.

We introduce measurement noise as σBn = {x ∈ R
n :

‖x‖ ≤ σ} and add a suitable amount to the error functions

according to ẽq = (eq + 0.01B4)/‖eq + 0.01B4‖. Since
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Fig. 1. Attitude error, angular velocity error and control torque during
spacecraft maneuver.

we are applying a slightly elliptic LEO, we only consider

the disturbance torques which are the major contributors to

these kind of orbits; namely, gravity gradient torque [23], and

torques generated by atmospheric drag and gravity (J2 effect)

[25], the two latter because of rbc = [0.1, 0, 0]⊤ m displace-

ment of the center of mass. All disturbances are considered

continuous and bounded. For our simulations we have chosen

the initial conditions as x(t0) = [1, 0, 0, 0, 4, 0.2, −
0.3, 1]⊤, z(t0) = [0, 0, 0]⊤ and qb

i,e(t0) = qb
i,b(t0), gains

kp = 1, kd = 3, lp = 40, ld = 25, and switching variables as

δm = 0.1 and δn = 0.9. The spacecraft were commanded to

follow smooth sinusoidal trajectories around the origin with

velocity profile

ω
i
i,d = [3.2 cos(2× 10−3t), 0.12 sin(1× 10−3t), (26)

− 3.2 sin(4× 10−3t)]⊤ × 10−6 rad/s.

The simulation results are depicted in Figure 1 and show

that the large initial velocity error provoked switching for

both the dynamical system and the observer after about 1 s
and 0.4 s, as can be seen in the topmost plot, which means

that h is set to −1 and ηe,b is set to 1, respectively. In the

second plot it is shown that the angular velocity of the body

frame relative to the estimated frame converges faster than

the angular velocity of the body frame relative to the desired

frame, as is expected since from (35) we observe that ld >
kd and we can expect that in most cases l⋆p > k⋆d . When

both angular velocity errors have converged, we conclude

that also ω
b
d,e ≈ 0. The actuator torque is depicted in the

bottommost plot, where the required torque is consequently

reduced during jumps.

V. CONCLUSION

In this paper we have designed a PD+ based output

feedback control law utilizing switching technique to re-

move assumptions on previous work regarding a bound on

the initial state vector. The a set containing the origin of

the closed-loop system is proven uniformly asymptotically

stable, and simulation results of an Earth orbiting spacecraft

are presented to to verify the theoretical findings.

APPENDIX

The error dynamics can be written on state space form

ẋ=f(t,x)=[(Teeω)
⊤, (J−1

l ξ1)
⊤, (Teqeeω)

⊤, (J−1

l ξ2)
⊤, 0]⊤,

where

ξ1 =S(Jωb
i,b)eω + S(Jeeω)ω

b
i,d − kpT

⊤
e eq (27)

− kd(eω − eeω)− JS(ωb
i,d)eω + τ d,

ξ2 =S(Jωb
i,b)eω − kdeω + S(Jeeω)ω

b
i,d + kdeeω (28)

−
ld
2
[ηe,bI+ S(ǫe,b)]eeω − lpT

⊤
eqeeq + τ d.

Consider the Lyapunov function candidate

V (x) :=
1

2

[

e⊤q kpeq + e⊤ωJeω + e⊤eqlpeeq + e⊤eωJeeω

]

(29)

which is quadratic and thus positive definite because

kp, lp, βj > 0. The total time derivative of V along the

closed-loop trajectories yields

V̇ =− kde
⊤
ω eω + e⊤ωS(Jeeω)ω

b
i,d − e⊤ωJS(ω

b
i,d)eω (30)

+ e⊤eωS(Jω
b
i,b)eω + e⊤eωS(Jeeω)ω

b
i,d

−

(

ld
2
ηe,b − kd

)

e⊤eωeeω +
(

e⊤ω + e⊤eω
)

τ d.

Since the matrix S(·) is linear in its arguments, we have [9]

‖S(Ja)b‖ ≤ βJ‖a‖‖b‖. (31)

By applying (31), Young’s inequality and Assumptions 3.1–

3.3 we have

e⊤ωS(Jeeω)ω
b
i,d ≤

1

2
βJβωb

i,d
(‖eω‖

2 + ‖eeω‖
2) (32)

e⊤ωJS(ω
b
i,d)eω ≤βJβωb

i,d
‖eω‖

2

e⊤eωS(Jω
b
i,b)eω ≤

1

2
βJ (‖eω‖

2 + ‖eeω‖
2)(‖eω‖+ βωb

i,d
)

e⊤eωS(Jeeω)ω
b
i,d ≤βJβωb

i,d
‖eeω‖

2. (33)

Inserting the bounds (32)–(33) into (30), we obtain

V̇ ≤− φ(kd, ‖eω‖)‖eω‖
2 − ψ(kd, ld, ‖eω‖)‖eeω‖

2

+
(

e⊤ω + e⊤eω
)

τ d, (34)

where

φ(kd, ‖eω‖) = kd −
1

2
βJ

(

4βωb
i,d

+ ‖eω‖
)

(35a)

ψ(kd, ld, ‖eω‖) =
ld
2
ηe,b−kd−

1

2
βJ(4βωb

i,d
+‖eω‖).(35b)

In view of the definition of the flow and sets, (20), (22)

and the jump map (25), we have ηe,b ≥ δn ∀t ≥ t0 hence,

ψ(·) may be made positive for sufficiently large gains. It

follows that V̇ is negative semi-definite for bounded values
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of eω, thus for any r > 0 there exists ∆†(r) > 0 such that

supt≥t0
‖[e⊤ω (t), e⊤eω(t)]

⊤‖ ≤ ∆† for all initial conditions

‖χ(t0)‖ < r, t0 ≥ 0 where χ = [e⊤q , e
⊤
ω , e

⊤
eq, e

⊤
eω]

⊤. For

any ∆†, let λ(∆†) > 0 be a real valued constant to be

determined. Now, consider the Lyapunov function candidate

V(x) := V (x) + λW (x), (36)

where W (x) := e⊤q TeJeω + e⊤eqTeqJeeω , and observe that

V is positive positive definite and proper for λ ≤ 1, that is, V
is lower and upper bounded as α(x) ≤ V(x) ≤ α(x) where

α(x) := χ
⊤pmχ, α(x) := χ

⊤pMχ (37)

and pm, pM are such that pm ≤ ‖P‖ ≤ pM where

P :=
1

2









kpI λTeJ 0 0

λJT⊤
e J 0 0

0 0 lpI λTeqJ

0 0 λJT⊤
eq J









. (38)

The total time derivative of W along the closed-loop trajec-

tories yields

Ẇ =e⊤ωh/4[η̃I+ S(ǫ̃)]eω + e⊤q TeS(Jω
b
i,b)eω

+ e⊤q TeS(Jeω)ω
b
i,d − e⊤q TekpT

⊤
e eq

− e⊤q Tekd(eω − eeω)− e⊤q TeJS(ω
b
i,d)eω + e⊤q Teτ d

+ e⊤eω/4[ηe,b + S(ωe,b)]Jeeω + e⊤eqTeqS(Jω
b
i,b)eω

− e⊤eqTeqkdeω + e⊤eqTeqS(Jeeω)ω
b
i,d

+ e⊤eqTeqkdeeω − e⊤eqTeq ld/2[ηe,bI+ S(ǫe,b)]eeω

− e⊤eqTeq lpT
⊤
eqeeq + e⊤eqTeqτ d (39)

and by applying (32)–(33) on (39) and add the result with

(34) according to (36) we obtain

V̇(χ) ≤ −χ
⊤Q(ωb

i,b)χ + 2βd‖χ‖ (40)

where Q(ωb
i,b) = [qij ], i, j = 1, 2, 3, 4 with

q11=λTekpT
⊤
e (41a)

q12=q⊤
21 =

λ

2
Te

[

kdI− S(Jωb
i,b) + JS(ωb

i,d)
]

(41b)

q13=q⊤
31 = 0 (41c)

q14=q⊤
41 =

λ

2
Te

[

S(ωb
i,d)J− kdI

]

(41d)

q22=φ(kd, ‖eω‖)I− λ
1

4
J (41e)

q23=q⊤
32 =

λ

2

[

kdI− S(Jωb
i,b)

]

T⊤
eq (41f)

q24=q⊤
42 = 0 (41g)

q33=λTeq lpT
⊤
eq (41h)

q34=q⊤
43=

λ

2
Teq

[

S(ωb
i,d)J+

ld
2
[ηe,bI+S(ǫe,b)]−kdI

]

(41i)

q44=ψ(kd, ld, ‖eω‖)I− λ
1

4
J. (41j)

Next, we observe that in view of the quaternion constraint,

e⊤q TeT
⊤
e eq ≥

1

8
e⊤q eq. (42)

idem for eeq . Therefore, for each ∆′ and for all eω such that

‖eω‖ ≤ ∆′ there exist lower and upper bounds qij,m and

qij,M on the norms of the sub-blocks qij of Q such that,

after applying the triangle inequality repeteadly, we obtain

χ
⊤Qχ ≥

1

2
(q11,m‖eq‖

2 + q22,m‖eω‖
2

+ q33,m‖eeq‖
2 + q44,m‖eeω‖

2). (43)

It follows that (43) holds, that is Q is positive definite, if

defining (from (41))

k⋆d :=
1

2
βJ(4βωb

i,d
+∆′) (44)

k⋆p :=jM (∆′ + 2βωb
i,d
) (45)

l⋆d :=[2kd − βJ (4βωb
i,d

+∆′)]/δn (46)

l⋆
′

p :=jM (∆′ + βωb
i,d
) +

ld
2

(47)

≥jM (∆′ + βωb
i,d
) +

ld
2
ηe,b, (48)

we choose gains kd > k⋆d , kp > k⋆p , ld > l⋆d, lp > l⋆
′

p and

λ ≤min

{

φ(kd,∆)
1

4
jM + 2kd + jM (2∆′ + βωb

i,d
)
,

ψ(kd, ld,∆)
1

4
jM + 2βωb

i,d
jM + ld

2
2kd

, 1

}

.

Thus,

V̇ ≤ −qm‖χ‖2 + 2βd‖χ‖, (49)

where qm(∆′) > 0 is a lower bound on the smallest

eigenvalue of Q(∆′). The derivative V̇ < 0 for all x ∈
H := {x ∈ S3×R

3×S3×R
3×H : δ ≤ ‖χ‖ ≤ ∆}, where

δ := 2βd/qm. Given any positive constants δ⋆, ∆⋆ such that

δ⋆ < ∆⋆, we have that there exists ∆ > δ > 0 such that

α−1 ◦ α(δ) =

√

pMδ2

pm
≤ δ⋆ (50)

α−1 ◦ α(∆) =

√

pm∆2

pM
≥ ∆⋆. (51)

In accordance with [26, Theorem 10], all the conditions are

satisfied.

We have to ensure that the Lyapunov function decreases

over jumps (cf. [19]), such that

V(G1(x)) − V(x) <0 (52)

V(G2(x)) − V(x) <0 (53)

is fulfilled. We see that

V(G1(x))− V(x) = 2hkp(η̃ −
1

2kp
λǫ̃⊤Jeω), (54)
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and due to (21), (52) is fulfilled. We have that

V(G2(x))−V(x)=
1

2

[

(ωi,b−z)
⊤
J
(

ω
b
i,b−z

)

−lpe
⊤
eqeeq

−
(

ω
b
i,b − ω

b
i,e

)⊤
J
(

ω
b
i,b − ω

b
i,e

)

]

− λe⊤eqTeqJ
(

ω
b
i,b − ω

b
i,e

)

(55)

=
1

2

[

(

ω
b
i,b−z

)⊤
J
(

ω
b
i,b−z

)

−lpe
⊤
eqeeq

−
(

ω
b
i,b − z− 2J−1ldT

⊤
eqeeq

)⊤
(56)

× J
(

ω
b
i,b − z− 2J−1ldT

⊤
eqeeq

)

]

−λe⊤eqTeqJ
(

ω
b
i,b−z−2J−1ldT

⊤
eqeeq

)

,

where eeω = ω
b
i,b − ω

b
i,e and (18) was inserted, and the

fact that T⊤
eqeeq = 0 for x+ ∈ D2 which implies that eeω =

ω
b
i,b−z. For (53) to be fulfilled according to (22) we require

that

lpe
⊤
eqeeq + 4l2de

⊤
eqTeqJ

−1T⊤
eqeeq (57)

≥ 4ldω
b,⊤
i,b T⊤

eqeeq − 4ldz
⊤T⊤

eqeeq − 2λωb,⊤
i,b JT⊤

eqeeq

+ 2λz⊤JT⊤
eqeeq + 4λlde

⊤
eqTeqT

⊤
eqeeq. (58)

For ηe,b = δn we have that ǫ⊤eqǫeq = 1 − δ2n, ‖T⊤
eqeeq‖ =

1/2‖ǫeq‖ = 1/2
√

1− δ2n and e⊤eqeeq = (1−δn)
2+ǫ

⊤
eqǫeq =

2(1− δn), such that

l⋆
′′

p :=
(2ld+λjM )(∆′+∆z)

√

1−δ2n−ld

(

ld
jM

−λ
)

(1−δ2n)

2(1− δn)
,

where ‖z‖ ≤ ∆z for a constant upper bound ∆z > 0.

This can be argumented by looking at (17), where T⊤
eqeeq

and T⊤
e eq will, according to the previous part of the proof,

converge towards a subset of A for x ∈ C, and, if x is

entering a jump set (D1 or D2), the value of z will not

abruptly change during a jump, thus ż will converge towards

ad as given in (15), which can not be constant and sign-

definite because that would violate Assumption 3.3, thus

limt→∞

∫ t

t0
addτ < ∞. Last, we need to be sure that lp

is chosen such that there exists an δn ∈ (0, 1). According to

(57), we have that

2l⋆
′′

p (1− δn) = c1
√

1− δ2n − c2(1− δ2n), (59)

where c1 > 0, and in most cases c2 > 0 since λ≪ 1, and it

can be seen that there exist a l⋆
′′

p large enough such that there

exists a solution for δn > 0, and as l⋆
′′

p → ∞, δn → 1. On

the other hand, one can choose a δn ∈ (0, 1) and solve (57)

for l⋆
′′

p . Thus, by defining l⋆p := max{l⋆
′

p , l
⋆′′

p } and choosing

lp > l⋆p, we ensure that all conditions are fulfilled according

to [24, Corollary 7.7], and it can be concluded that the set

A of the closed loop system is UAS in the large. �
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