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Abstract— In this paper we consider general linear quantum
systems with operator-valued variables. It is shown that a
specific but fairly wide class of linear quantum control problems
have exactly the same solutions to the corresponding classical
one obtained simply by replacing the operator variables by the
scalar variables. Based on this result, an application of the so-
called covariance assignment control to the quantum system is
given, which is a suitable approach for controlling quantum
entanglement.

I. INTRODUCTION

One of the most fundamental differences between quan-

tum and classical systems is that any physical quantity is

represented by an operator defined in an abstract Hilbert

space in the quantum case. A typical example is that the

pair of position and momentum operators q̂t and p̂t should

satisfy the so-called canonical commutation relation (CCR)

q̂tp̂t − p̂tq̂t = i~, which immediately implies that they are

infinite-dimensional operators. Hence, it can be imagined

that control theory for quantum systems with such operator-

valued variables is drastically different from the classical

one. Actually we are not allowed even just to simulate the

dynamical control effect of (q̂t, p̂t) in the phase space R
2.

Now let us focus on a specific class of systems, linear

quantum systems or equivalently Gaussian systems [1]. For

this system a straightforward generalization of the above

position and momentum operators are the system variables,

and hence they satisfy the (generalized) CCR (see Eqs.

(1) and (2) in Section II). The importance of this class of

systems is maintained by the fact that it includes for instance

linear optical networks [2], nano-mechanical oscillators [3],

and trapped ions [4], all of which are vital test-beds with

nontrivial quantum mechanical features appearing [5]. Re-

markably, it was shown in [6], [7] that the LQG control

problem for such a linear quantum system has exactly the

same solution to the corresponding classical one obtained

simply by replacing the operator variables by the scalar

variables. This fact implies that, within the formalism of

LQG control, the corresponding classical system serves as

an equivalent representation for the quantum one. Clearly,

such an equivalent classical system allows us to do various

numerical simulations and obtain useful information in an-

alyzing dynamical behavior of the system variables as well
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as synthesizing an efficient feedback controller.

The above-mentioned quantum-classical equivalence in

linear case is actually observed in several situations [8],

[9], [10], [11]. However, this does not mean that all linear

control theory can directly be applied to quantum systems.

The reason is as follows. As in the classical case, a Gaus-

sian quantum state is fully characterized only by the first

and second moments; thanks to this feature the CCR can

equivalently be replaced by the so-called uncertainty relation

V + ~iΘN/2 ≥ 0, where V is the covariance matrix (See

Section II for the detailed description). Clearly, in classical

case the non-negativity of V is only required, thus in this

sense the set of quantum Gaussian states is a special class

of classical Gaussian states. Hence, we expect that a linear

control theory with states satisfying the uncertainty relation

only works for quantum systems. This observation further

implies that, in performing a numerical simulation for the

corresponding classical system, a fixed initial state cannot be

specified, because this means V = 0 at t = 0. Consequently,

our question is now posed; do we really need this additional

constraint on the state to apply a linear control theory to the

quantum case?

The first contribution of this paper is to show that the

answer to the above question is “No” in special but enough

general cases. More specifically, the (optimal) controllers

for quantum and the corresponding classical systems are

exactly the same for linear control problems with control

performance evaluated only at the steady state if the linear

system to be controlled is Hurwitz stable. Furthermore, in

this case, any numerical simulation for that classical system,

even trajectories in the phase space with a fixed initial state,

makes sense for the quantum system.

The second contribution is to show that the covariance

assignment control theory [12], [13], [14] can properly be

applied to the quantum case. The purpose of this control is

to (i) stabilize the system via feedback and then (ii) drive

the system to a steady state with a given desirable covari-

ance matrix. Hence, the above quantum-classical equivalence

result holds for this control problem. That is, a covariance

assigning controller for a classical system indeed achieves

the same control goal for the corresponding quantum one.

The significance of this application clearly appears for the

problems of controlling entanglement, which is one of the

most crucial properties in order to accomplish various quan-

tum information technologies [15]. Indeed, in Gaussian case,

it is known that the covariance matrix fully characterizes the

entangling structure of a state as well as its quantity [16],

[17], [18].
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This paper is organized as follows: In Section II a general

description of quantum Gaussian states and linear quantum

systems is given. The quantum-classical equivalence will be

discussed in Section III. Section IV is devoted to study

the application of covariance assignment control to the

entanglement control.

We will use the following notations; All (infinite-

dimensional) linear operators are denoted with hat, e.g.,

x̂. We denote 1̂ by the identity operator, but it is omitted

when trivial. ⊤, ∗, and † represent the matrix transpose, the

element-wise conjugate operation, and the complex conjuga-

tion, respectively; i.e., (M̂k,l)
† = (M̂∗

l,k). IN and ON are

the N -dimensional identity and zero matrices, respectively.

⊗ denotes the tensor or the Kronecker product.

II. PRELIMINARY

In this section, we introduce basic notions of a quantum

Gaussian state and a linear quantum system.

A. Uncertainty relation

The canonical conjugate pairs q̂ and p̂ are unbounded

linear operators that satisfy the following canonical commu-

tation relation (CCR):

q̂p̂− p̂q̂ = i~1̂,

where 1̂ represents the identity operator. We will deal with

the generalized canonical conjugate pairs

x̂ := (q̂1, p̂1, · · · , q̂N , p̂N )⊤. (1)

Note that (q̂k, p̂k) and (q̂j , p̂j) live in different Hilbert spaces

for j 6= k. That is, q̂k is a shorthand for

q̂k := 1̂⊗ · · · ⊗ 1̂⊗
kth
︷︸︸︷

q̂ ⊗1̂⊗ · · · ⊗ 1̂
︸ ︷︷ ︸

N-fold tensor products

,

and the same rule is applied for p̂k. Hence the CCR is

generalized to q̂kp̂l − p̂lq̂k = i~δk,l, k, l = 1, · · · , N , where

δk,l is the Kronecker’s delta. This is summarized in a single

equation as

x̂x̂
⊤ − (x̂x̂⊤)⊤ = i~ΘN , (2)

ΘN := IN ⊗
(

0 1
−1 0

)

.

We here give a direct consequence of the CCR, which will

become an equivalent representation of the above difference

in Gaussian case. In quantum theory, a physical quantity

is described by a suitable self-adjoint operator called an

observable. The measurement results of an observable dis-

tribute probabilistically [19]. In particular, the expectation

of the measurement results of an observable X̂ is given

by Pρ̂(X̂) := Tr(ρ̂X̂), where ρ̂ is a positive semidefinite

operator satisfying Tr(ρ̂) = 1. This is called a density

operator or simply called a state, because a density operator

contains all the information determining the statistics of the

measurement results. Now the covariance matrix of Eq. (1)

given a suitable state Pρ̂ is calculated as

Pρ̂(∆x̂∆x̂
⊤) =

1

2
Pρ̂

(

∆x̂∆x̂
⊤ + (∆x̂∆x̂

⊤)⊤
)

+
1

2
Pρ̂

(

∆x̂∆x̂
⊤ − (∆x̂∆x̂

⊤)⊤
)

=V (x̂) + i
~

2
ΘN ≥ 0, (3)

where ∆x̂ := x̂ − Pρ̂(x̂). This is the so-called uncertainty

relation. In particular, when N = 1 Eq. (3) reduces to

Pρ̂(∆q̂2)Pρ̂(∆p̂2) ≥ ~
2/4, implying that the canonical

conjugate pairs cannot be specified simultaneously. In other

words, statistical uncertainty must have a strict lower bound

in quantum case. We call V (x̂) the symmetrized covariance

matrix of x̂. Also a real symmetric positive matrix X is

called quantum if it satisfies X + ~iΘN/2 ≥ 0.

B. Gaussian state

A Gaussian state is a state that is fully characterized by

only the first and second moments, similar to the classical

case (see for instance [1]). To define it let us introduce the

Wigner function:

fρ̂(x) :=
1

(2π)2N

∫

R2N

Tr
[

ρ̂eik
⊤

ΘN x̂
]

eik
⊤

ΘNxdk,

where ρ̂ is a given state. fρ̂(x) is in one-to-one corre-

spondence to ρ̂ [21]. A state ρ̂ is called Gaussian if the

corresponding Wigner function is Gaussian:

fρ̂(x) =
~
N

πN

1
√

det(V )
exp

(

− (x− µ)⊤V −1(x− µ)

2

)

,

with µ a real 2N -dimensional vector and V ∈ R
2N×2N a

quantum matrix. In particular in this case we have

Pρ̂(x̂) =

∫

R2N

xfρ̂(x)dx = µ,

V (x̂) =

∫

R2N

(x− µ)(x− µ)⊤fρ̂(x)dx = V.

That is, µ and V are exactly the mean and the covariance

matrix for the Gaussian state ρ̂, respectively.

The condition of V to be a quantum matrix is necessary

for x to satisfy the CCR. Conversely, given a Gaussian state

we always construct Eq. (3), implying the CCR. That is,

in Gaussian case the uncertainty relation V + ~iΘN/2 ≥ 0
holds for a quantum state while V ≥ 0 for a classical one,

and this is only a difference between quantum and classical

states.

C. Linear quantum system

A linear quantum system with linear measurements is

represented by the following set of equations (see Fig. 1):

dx̂t =~Ax̂tdt+ ~Buutdt+ ~ΘNB(αdt+ dŴ t), (4)

dŶ t =2ΘMB⊤x̂tdt+αdt+ dŴ t, (5)

dyt =
√
HDSdŶ t +

√
Hdwt (6)

=Cx̂tdt+
√
HDS(αdt+ dŴ t) +

√
Hdwt,
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Fig. 1. Block diagram of the linear quantum system with linear measure-
ments.

where ~ is the Dirac constant. Note that x̂0 satisfies (2). All

parameters in the above equations are defined as follows:

A := ΘN (G+BΘMB⊤), C := 2
√
HDSΘMB⊤,

G = G⊤ ∈ R
2N×2N , B = R

2N×2M , Bu ∈ R
2N×m,

D ∈ {D ∈ R
p×2M | DD⊤ = Ip, DΘMD⊤ = Op},

S ∈ {S ∈ R
2M×2M | SΘMS⊤ = ΘM},

H = (DSVqnS
⊤D⊤ + Vm)

−1,

Vm ≥ 0, Vqn ∈ {V ∈ R
2M×2M | V + iΘM ≥ 0}.

N , M , and m are positive integers and p is a positive integer

satisfying p ≤ M . Now we describe the variables: The

system variable x̂t is the generalized canonical conjugate

pairs (1). Ŵ t is the 2M -dimensional vector with canonical

conjugate pairs as well, though this represents the noise;

that is, Ŵ t is the quantum Wiener noise with 0 means and

symmetric covariance matrix Vqnt defined in the following

quantum Ito rule (see [8], [20] for instance):

dŴ tdŴ
⊤

t = (Vqn + iΘM )dt, dŴ tdt = 0. (7)

α ∈ R
2M is the external quantum input, e.g., amplitude

of an input laser, while ut ∈ R
m is the classical control

input. Ŷ t and Ẑt are the system output and the transmitted

output through some physical device, respectively. zt is the

classical signal transfered through the detector D. wt is

a classical measurement Wiener noise with 0 mean and

covariance matrix Vmt. We can only observe the classical

output signal zt + wt and yt denotes the normalized one;

i.e., dyt(dyt)
⊤ = Ipdt.

Eq. (4) preserves the CCR, i.e., we have x̂tx̂
⊤
t −

(x̂tx̂
⊤
t )

⊤ = i~ΘN , ∀t. Clearly, in classical case the corre-

sponding algebraic relation must be x̂tx̂
⊤
t − (x̂tx̂

⊤
t )

⊤ = 0.

Hence in this sense the quantum dynamics (4) differs from

a classical dynamics.

III. EQUIVALENT CLASSICAL SYSTEM

In this section, we provide a classical system that is

equivalent to the quantum system (4), (5), and (6) in the

sense that both dynamics satisfy the uncertainty relation (3),

at least at steady state.

As mentioned in the previous section, Eq. (4) preserves the

CCR: x̂tx̂
⊤
t − (x̂tx̂

⊤
t )

⊤ = i~ΘN , ∀t. This directly means

that the uncertainty relation is always satisfied, i.e., Vt +
~iΘN/2 ≥ 0, ∀t. In particular, if V∞ exists, or equivalently

if A is Hurwitz, we have V∞ + ~iΘN/2 ≥ 0. Now, as in

the classical case, it is straightforward to see that the time

evolution of Vt = V (x̂t) is given by the following Lyapunov

differential equation:

d

dt
Vt = ~AVt + ~VtA

⊤ + ~
2ΘNBVqnB

⊤Θ⊤
N . (8)

When A is Hurwitz, this equation has a unique steady

solution V∞, which does not depend on V0. Therefore,

combining the above facts we conclude that, when A is

Hurwitz, V∞ is a quantum matrix even if V0 is not. That

is, the “quantumness” in the sense of uncertainty relation

comes from the specific structure of the system matrices, or

equivalently the block diagram structure depicted in Fig. 1.

Based on the above observation we here consider the

following classical stochastic system:

dxt =~Axtdt+ ~Buutdt+ ~ΘNB(αdt+ dvt), (9)

dY t =2ΘMB⊤xtdt+αdt+ dvt, (10)

dyt =
√
HDSdY t +

√
Hdwt. (11)

This is exactly the classical system obtained just by replacing

the canonical conjugate variables in Eqs. (4), (5), and (6)

by the corresponding scalar variables. That is, xt ∈ R
2N ,

x0 ∈ R
2N , Y t ∈ R

2M , vt ∈ R
2M , and wt ∈ R

p are all

classical Gaussian random variables with the same means

and covariance matrices, respectively. The point is that, the

covariance matrix for this system, V c
t , obeys exactly the same

Lyapunov equation, i.e.,

d

dt
V c
t = ~AV c

t + ~V c
t A

⊤ + ~
2ΘNBVqnB

⊤Θ⊤
N , (12)

thus consequently V c
t has the same property as Vt. This

means that, when V c
0 is a quantum matrix, V c

t is also

quantum for all t ≥ 0 despite the lack of CCR in this

case. Moreover, as in the quantum case, if A is Hurwitz,

V c
∞ exists and is quantum even when V c

0 is not. That is, for

the classical system (9), (10), and (11) with A Hurwitz, the

“quantumness” is automatically satisfied at least at steady

state. Hence, our conclusion is that this is an equivalent

classical system to the linear quantum system, in the sense

that both systems satisfy the quantum statistics at steady state

without respect to the initial condition. This implies that

the solution to a certain control problem for the classical

system (9), (10), and (11) is at the same time the solution

to the corresponding quantum control problem. In particular,

independence on the initial condition is significant, because a

controller synthesis is usually carried out without taking the

initial condition into account. Moreover, because in the long

time limit the uncertainty relation is automatically recovered,

we can perform a numerical simulation of the dynamical

behavior of xt with a fixed initial state x0, which means the

violation of the uncertainty relation at t = 0.
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Remark 1: If A is not Hurwitz, we need to set V c
0 to be

quantum. For example, when B = 0 we have det(V c
t ) =

det(V c
0 ), implying that the uncertainty relation is violated

for all time if it is at t = 0.

Remark 2: From the quantum filtering theory [22], we can

construct the optimal estimate of x̂t in the sense of least

mean squared error. This is given by the quantum conditional

expectation π̂t(x̂) = P(x̂t|Yt), where Yt = σ{ys | s ≤ t} is

the σ-algebra representing the measurement data up to time

t. The optimal estimate can be computed recursively using

the following quantum Kalman filter:

dπ̂t(x̂) =~Aπ̂t(x̂)dt+ ~(Buut +ΘNBα)dt

+ (VtC
⊤ + F )(dŷt − Cπ̂t(x̂)dt−

√
HDSαdt), (13)

d

dt
V R
t =~AV R

t + ~V R
t A⊤ + ~

2ΘNBVqnB
⊤Θ⊤

N

− (V R
t C⊤ + F )(V R

t C⊤ + F )⊤, (14)

where F := ~ΘNBVqnS
⊤D⊤

√
H and V R

t is the estimation

error covariance matrix. V R
t is a quantum matrix when V R

0 is

quantum. The vital point is that, for the classical system (9),

(10), and (11), the optimal estimate of xt follows the same

Kalman filter as above. Therefore, we can again stress the

classical-quantum equivalence discussed before in the sense

that the output statistics are also compatible. However, it

should be noted that only for the smoothing problem there

is no such a correspondence; see [23], [24] for more detailed

description.

Remark 3: In classical case, a state-space representation

has a freedom with respect to the similarity transformation

x′
t = Txt with T any invertible matrix. However, for Eqs.

(9), (10), and (11) to be an equivalent classical system to the

quantum system, T must be symplectic, i.e., it has to satisfy

TΘNT⊤ = ΘN , because by the similarity transformation

the uncertainty relation changes to V c
t + i~

2
TΘNT⊤ ≥ 0 .

However note this is not a constraint for controller synthesis.

IV. APPLICATION : COVARIANCE CONTROL AND

ENTANGLEMENT GENERATION

Now we apply a classical control method to the linear

quantum systems. Consider the problem of entanglement

generation for two linear quantum systems. It is one of

the main issues of quantum information technologies [15],

and it is known that entanglement can be characterized

by a covariance matrix for quantum Gaussian state [17],

[25]. Hence, a problem of entangled state generation can be

reduced to a problem to achieve specific covariance matrices,

which is well known as the covariance assignment control

problem in control theory [12], [13], [14]. We here apply

this controller synthesis for the linear quantum systems.

A. Problem setting

Let V := Vρ̂(x̂) ∈ R
4×4 be a covariance matrix under the

state ρ̂, and we divide V into 4 block matrices,

V =

[
V11 V12

V ⊤
12 V22

]

, V11, V12, V22,∈ R
2×2.

A given Gaussian state ρ̂ is called entangled, if ν̃−(V ) < ~

2

holds, where

ν̃−(V ) :=
1√
2

√

∆̃(V )−
√

∆̃(V )2 − 4det(V )

and ∆̃(V ) := det(V11)+det(V22)− 2det(V12) . One of the

measures of Gaussian entanglement is so called logarithmic

negativity [18] defined by

LN~(V ) := max{− ln(ν̃−(V )/(~/2)), 0}.

The logarithmic negativity is widely used in physics litera-

tures [25], [26]. The goal of this section is to generate a V
satisfying LN~(V ) > 0 by classical feedback control.

Fig. 2. Feedback controlled linear quantum systems connected by cascade.

Consider a linear quantum systems in Fig. 2 with ~ = 1.

The dynamics of the system is represented by
{

dx̂t = Ax̂tdt+Kdyt +Θ2BdŴ t

dyt = Cx̂tdt+DdŴ t

with

A = Θ2

[
G1 +B1ΘpB

⊤
1 O2

2B2ΘpB
⊤
1 G2 +B2ΘpB

⊤
2

]

,

C = 2DΘpB
⊤, B =

[
B⊤

1 B⊤
2

]⊤
,

where x̂t = (x̂1(t)
⊤, x̂2(t)

⊤)⊤, G1 = G⊤
1 , G2 = G⊤

2 ∈
R

2×2 and B1, B2 ∈ R
2×2p, D ∈ R

p×2p and K ∈ R
4×p. The

time evolution of the state covariance matrix Vt := V (x̂t) is

expressed as

d

dt
Vt =(A+KC)Vt + Vt(A+KC)⊤

+ (KD +Θ2B)(KD +Θ2B)⊤. (15)

Note that the control input ut depends on the information

Yt+dt in this setting. We should emphasize that Vt always

satisfies the uncertainty relation with direct feedback control

input if V0 is a quantum matrix. This is ensured by physical

realization theorem [8], and the following relation holds:

(A+KC)Θ2 +Θ2(A+KC)⊤

+2(Θ2B +KD)Θp(Θ2B +KD)⊤ = O4.

Also note that there exists an unique Gaussian state ρ̂ for

any vector µ ∈ R
2N and any quantum matrix V ∈ R

2N×2N .
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B. Entanglement generation by covariance assignment con-

troller

Consider a following problem; for a given positive definite

matrix V , to find a necessary and sufficient condition for the

existence of a feedback gain K which assigns the V as a

steady solution of Eq. (15). To this end, letting d
dt
Vt = O4

in (15), we have

− (K + V C⊤ + F )(K + V C⊤ + F )⊤

=AV + V A⊤ +Θ2BB⊤Θ⊤
2 − (V C⊤ + F )(V C⊤ + F )⊤

(16)

where F := Θ2BD⊤ ∈ R
4×p. It is seen from [12], [14] that

the necessary and sufficient condition of the existence of the

gain K satisfying (16) is the existence of L ∈ R
4×p which

satisfies

O4 =AV + V A⊤ +Θ2BB⊤Θ⊤
2

− (V C⊤ + F )(V C⊤ + F )⊤ + LL⊤ (17)

If the above condition holds, then the gain K is set as

K = LU − V C⊤ − F,

where U ∈ R
p×p is any orthogonal matrix. If it is possible

to choose an assignable positive definite matrix V with

LN1(V ) > 0, the static controller K given above equation

generates an entangled state.

Note that it is impossible to assign any positive definite

matrix as a steady state covariance matrix. A class of the

assignable positive definite matrix is given by solutions of

Eq. (17) with respect to V for each L ∈ R
4×p and, at

least, a class of assignable matrices is included in a class of

quantum matrices. It is an open problem that the relationship

between the assignable class of Gaussian states and the class

of entangled Gaussian states. Furthermore, it is hard to find

parameter L for the given desirable positive matrix, since Eq.

(17) is an equality condition. We will show a simple method

to find a set of assignable and entangled matrices in the next

subsection.

Mancini and Wiseman [27] proposed a method to a gen-

erate quantum Gaussian entanglement by optimal feedback

control in the special case of linear quantum systems. Their

method is a generation of the most nearest covariance matrix

to a covariance matrix of maximal entangled Gaussian state.

Although their method may be attractive, the nearest covari-

ance matrix does not imply entanglement because the notion

of neighborhood of entangled Gaussian states is not clear yet.

In contrast with this, the covariance assignment controller

derived by our method assigns a desirable covariance matrix

if there exists L satisfying (17).

Remark 4: We can check numerically whether an

assignable entangled state exists or not. Let V (L) be a

solution of Eq. (17) for a given L ∈ R
4×p. Then if

minL ν̃−(V (L)) is strictly less than 1/2 , then there is

at least an assignable entangled state by feedback control.

Though this is a nonlinear optimization problem, the problem

becomes tractable when p ≥ 4 and LL⊤ > O4. The positive

definiteness of LL⊤ implies the following matrix inequality:

O4 >P (A− FC) + (A− FC)⊤P

+ P (Θ2BB⊤Θ⊤
2 − FF⊤)P − C⊤C, (18)

where P := V −1. Applying the Schur complement (e.g.,

see [14]) to (18), we can formulate the following numerical

optimization problem:

min
P

ν̃−(P
−1)

s.t. P = P⊤ > O4,
[
P (A− FC) + (A− FC)⊤P − CC⊤ P

√
R√

RP −I

]

< O8,

where R := Θ2BB⊤Θ⊤
2 − FF⊤ and R ≥ O4. Although

this is also a nonlinear optimization problem, its constraints

are LMIs.

C. Numerical examples

As we mentioned above, it is difficult to find assignable

positive definite matrices in general. Here, we show that there

exists a system which has assignable entangled states.

Consider two controlled linear quantum systems which

connected cascade as in Fig. 2 with following parameters:

G1 = G2 = I2, B1 = Θ1, B2 =

(
0 1
0 0

)

, D =
(
1 0

)
.

Since (A,B) is controllable and (A,C) is observable, there

exists a unique positive definite real symmetric solution of

Eq. (17) with L = 0. We can see from the comparison

theorem (see, e.g., [28]) that there exists a unique positive

definite real symmetric matrix solution of Eq. (17) for

any fixed L ∈ R
4×1. Therefore, the assignable covariance

matrices are characterized by the free parameter L and we

can check numerically whether the intersection between the

sets of assignable matrices and entangled states is nonempty

or not.

Fortunately, we can see the existence of the intersection.

Set the free parameter L as

L =a
(
0 cos(θ) sin(θ) 0

)⊤
,

a =0.1, 1, 2, θ = 5, 10, · · · , 180 [deg],

and calculate the logarithmic negativity of resultant

assignable covariance V by solving (17) for each L.

The result is illustrated in Fig. 3. Fig. 3 is a plot of

logarithmic negativities of the feedback controlled Gaussian

states as a function of the parameter θ. The solid red line,

the chained green line and the dashed blue line in Fig. 3

describe a = 0.1, a = 1 and a = 2, respectively. We can

see that the logarithmic negativity decreases as |L| increase.

This fact can be interpreted by one of another criteria of the

quantum entanglement [17] : a quantum matrix V ∈ R
4×4

is entangled if and only if it satisfies

~
2

4
(det(V11) + det(V22) + 2det(V12))

≤~
4

16
+ det(V ) <

~
2

4
∆̃(V ). (19)
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Roughly speaking, V increases as |L| increases. A trivial

facts det(bV ) = b4det(V ) and ∆̃(bV ) = b2 ˜∆(V ) for b ∈ R

imply that large |L| easily breaks the above entanglement

condition. We can also see that a decrease of the logarithmic

negativity around θ = π/4 is less than others. θ = π/4
means that information of the output is equivalently fed into

each system. It is intuitive to keep the correlation between

two systems.
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Fig. 3. Plot of logarithmic negativities of the feedback controlled Gaussian
states as a function of the parameter θ. The solid red line, the chained
green line and the dashed blue line describe a = 0.1, a = 1 and a = 2,
respectively.

Though it seems that |L| = 0 is better than |L| > 0
for entanglement generation because the control gain with

|L| = 0 must be generate the largest entanglement, we

should note that a large entanglement does not imply an

useful entanglement as mentioned in [26]. To explain this

fact, consider atoms with two level energy states in cavities.

These atoms represent qubits, which are fundamental for

quantum information technologies. It is important to generate

a quantum entanglement of qubits for quantum information

processing. The atoms interact with cavity modes, which is

represented as a linear quantum system. If the cavity modes

have a quantum entanglement, then it transfers to a quantum

entanglement of qubits via interaction. McHugh et.al. [26]

showed that a large quantum entanglement of cavity modes

does not imply a large resultant quantum entanglement of

qubits. Since it is not clear which covariance matrix is better

to generate the large quantum entanglement of qubits, the

free parameter L with |L| > 0 give a degree of freedom to

assign useful covariance matrices.

V. CONCLUSION

In this paper, we have provided a classical system that

is equivalent to a linear quantum system in the sense that

both dynamics satisfy the uncertainty relation at least at

steady state. This result allows us to apply a solution for a

specific linear classical control problem to the corresponding

quantum case, directly. Also for such an equivalent classical

system we can carry out various numerical simulations,

which should be useful in analyzing dynamical behavior

of the system variables as well as synthesizing an efficient

feedback controller. Note that the initial condition need not

satisfy the uncertainty relation in these simulations; this is

practically a convenient fact because we can set a certain

fixed initial condition in the simulation. Finally, based on

this quantum-classical equivalence result, an application of

the covariance assignment control to the quantum case was

shown. We believe this will be a powerful approach to the

problems of controlling quantum entanglement.
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