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Abstract— The dynamic stabilization of a sectional model of
a long-span suspension bridge is considered. Feedback control
is achieved using leading- and trailing-edge flaps as actuators.
While a wide variety of control systems is possible, we focus
on compensation schemes that can be implemented using
passive mechanical components such as springs, dampers, and
a rack and pinion mechanism. A single-loop control system
is investigated that controls the flaps by sensing the main
deck heave velocity. A symmetrical control scheme is used on
both flaps to make the feedback system insensitive to the wind
direction. The key finding is that the critical wind speed for the
flutter instability of the sectional model of the bridge can be
greatly increased, with good robustness characteristics, through
passive feedback control.

I. INTRODUCTION

The now iconic Tacoma Narrows bridge disaster (1940)

was caused by the gradual growth, over a period of ap-

proximately 45 minutes, of a torsional flutter oscillation.

It was subsequently established that the Tacoma Narrows

bridge failure resulted from the use of a structurally and

aerodynamically inappropriate squat H-section structure for

the main bridge deck [1]. One possible modification to the

aeroelastic properties of the bridge structures is to introduce

stationary, or actively controlled aerodynamic flutter suppres-

sion surfaces. In [2] we present a 2D aerodynamic model of

a long-span suspension bridge with controllable leading- and

trailing-edge flaps; see Fig. 1. In this work we make use of

the thin aerofoil theory first developed by Theodorsen [3]

to study flutter - this theory also exposes a non-oscillatory

instability known as torsional divergence. The torsional di-

vergence mode is a bona fide aeroelastic mode that goes

unstable when there is a loss of torsional rigidity due to

the cancelation of the (positive) torsional stiffness of the

structure by the negative pitch-related aerodynamic moment.

This paper investigates the utility of a symmetric (with

respect to wind direction) aerodynamic control system that

will be evaluated by numerical simulation. There are sup-

plementary issues to consider that relate to control surface

flow separation and compromised actuator effectiveness due

to their immersion in the main deck’s wake.

A lot of good work has been done on the aerodynamic con-

trol of cable-stayed suspension bridges. This literature falls

into four broad categories, and while much progress has been
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Fig. 1. Cross section of a long-span suspension bridge with controllable
flaps. The wind speed is denoted U , while the leading- and trailing-edge
flap angles are denoted βl and βt respectively.

made, each approach has its short-comings. Passive pure-gain

controllers [4], [5] are in principle easy to implement, but

these systems forego the advantages that might accrue from

some form of phase compensation. Fixed-phase controllers,

such as those described in [6], are not physically realizable.

Realizable systems that introduce frequency-dependent phase

compensation may operate satisfactorily, but this has not thus

far been established. Active controllers, such as those based

on linear optimal control and H∞ [7], face severe reliability

questions, because they are relatively complicated and will

require a power supply and probably also a computer system.

Bad weather situations may well result simultaneously in

high winds and power supply failures. Adaptive controllers,

such as variable gain output feedback controllers [8], face the

same difficulties. Our purpose is to address some of these

issues and contribute to the better understanding of these

systems. It is a truism that computer models can be useful,

but they are never ‘right’. As a result, one must be mindful

of robust stability and robust performance issues [9], because

ultimately it is the bridge and not the bridge model that must

be stabilized. Robustness is an important issue that appears

not to have been considered in the long-span bridge design

context.

II. DYNAMIC MODEL

We begin by describing the structural and aerodynamic

models of the bridge section with leading- and trailing-edge

controllable flaps developed in [10], [2]. Referring to the

diagram of the system kinematics in Fig. 2, we see that the

generalized coordinates are the deck’s heave h and pitch

angle α, and the flap angles βt and βl.

The heave and pitch dynamics are described by:

Mhḧ+ 2ωhζhḣ+Khh = L, (1)

Jpα̈+ 2ωpζpα̇+Kpα = M, (2)

where L is the aerodynamic lift force; M is the aerodynamic

moment around O as shown in Fig. 2; Mh and Jp are the

mass and the torsional mass moment of inertia, per unit

length, respectively; ωh and ωp are the undamped natural

frequencies of the heave mode and pitch mode; ζh and ζp
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Fig. 2. Kinematic model of the bridge deck. The origin of the inertial
axis system is O. The wind velocity U is assumed positive to the right, the
heave h and lift force L are assumed to be positive downwards, moments
M are positive clockwise, as are the pitch and flap angles α, and βl and βt
respectively. The deck chord (including the flaps) is 2b. The leading- and
trailing-edge flap chords are (1+ cl)b and (1− ct)b respectively; note that
cl < 0.

are the structural damping coefficients; Kh = Mhω
2
h and

Kp = Jpω
2
p are the per unit length heave and torsinal deck

stiffness respectively.

The aerodynamic model is based on unsteady thin aerofoil

theory as was described in the first instance by [3]. The lift

and moment on the system are given by

L = ρb3ω2

{

Lh

h

b
+ Lαα+ Lβt

βt + Lβl
βl

}

, (3)

M = ρb4ω2

{

Mh

h

b
+Mαα+Mβt

βt +Mβl
βl

}

(4)

in which b and ρ are the half chord of the deck and the

air density respectively. The aerodynamic derivatives Lh,

Lα, Lβt
, Mh, Mα and Mβt

corresponding to the various

perturbation variables, can be derived by direct calculation

from equation (XVIII) or (XX) in [3]. One may verify that

Lβt
(ct) =

jT4(ct)

k
−T1(ct)−C(k)

(

2T10(ct)

k2
+

jT11(ct)

k

)

in which C(k) is the Theodorsen function

C(k) =
J1(k)− jY1(k)

(J1(k) + Y0(k))− j(J0(k)− Y1(k))
, (5)

in which J0(k), J1(k), Y0(k) and Y1(k) are Bessel functions

of the first and second kind respectively, k = ωb/U is the

reduced frequency [11] and j =
√
−1. The functions Ti(·)

are defined in [3].

The Theodorsen function is an irrational function of the

reduced frequency, and it is convenient, for computational

reasons, to make use of a rational approximation. Motivated

by a desire to study transient (non-steady) phenomena, Jones

and Sears introduced operational methods (and the Laplace

transform) into aeroelastic theory [12]. Rational approxi-

mations of the Theodorsen function and other irrational

quantities allow one to replace techniques such as the k-

method and the (p−k)-method with classical control devices

such as root locus and Nyquist diagrams. By invoking a

linear least squares approximation, the authors found an

accurate quartic approximation to the Theodorsen function

[10], [2], whose numerator and denominator coefficients are

given in Table I. The interested reader can find more on high-

fidelity approximations in unsteady flow problems in [13].

Here ŝ = sb
U

is the reduced Laplace transform variable.

numerator terms denominator terms

0.99592 1
57.01896 ŝ 62.30441 ŝ

623.78848 ŝ2 807.78489 ŝ2

1895.46328 ŝ3 3060.67868 ŝ3

1523.24700 ŝ4 3033.76379 ŝ4

TABLE I

NUMERATOR AND DENOMINATOR COEFFICIENTS OF A QUARTIC

APPROXIMATION TO THE THEODORSEN FUNCTION.

The aerodynamic derivatives for a leading-edge flap can

be derived using superposition methods [10], [2]:

Lβl
(cl) = Lβt

(cl)− Lα − clbLh, (6)

Mβl
(cl) = Mβt

(cl)−Mα − clbMh. (7)

III. FEEDBACK CONTROL SYSTEM

We will now present a control system which uses the

bridge deck heave velocity as a feedback signal and the flap

angles as control inputs. In the sequel, we will use the Akashi

Kaikyo bridge [5] as working example:

2b = 30m, Mh = 33, 600 kg/m, Jp = 4.97× 106 kgm2,

ωh = 0.427 rad/s, ωp = 0.917 rad/s, ζh = 0.0083,

ζp = 0.0072 and ρ = 1.23 kg/m3.

For this bridge the critical wind speeds for flutter and

torsional divergence are approximately 52 m/s and 70 m/s

respectively [4]. While our control scheme cannot influence

the critical wind speed for torsional divergence, we aim to

increase the critical wind speed for flutter to match that for

torsional divergence.

A. Control System Design and Open-Loop Response

A block diagram of the bridge deck control system with

its structural dynamics, fluid dynamics and flap controller

is given in Fig. 3. The uncontrolled system is described by

the plant P (s) that contains the structural dynamics and

the non-circulatory part of the fluid mechanics. A finite-

dimensional approximation to the Theodorsen function that

generates the circulatory flow is given as C(s). The leading-

and trailing-edge flaps have the same flap length and use the

same controller K(s), which has the deck heave velocity

ḣ(s) as input and so single-loop Nyquist diagrams can be

plotted by breaking the feedback loop at ∆. This control

system is independent to wind direction, but it is ineffective

to improving critical wind speed for torsional divergence,

because of the offset effect of the flaps on critical torsional

divergence speed. In the study presented here the system is

represented in terms of a generalized state-space model of

the form

Eẋ = Ax+Bu (8)

z = Cx, (9)
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ḣ(s)

βt(s)

βl(s)

�
∆

�

Fig. 3. Block diagram of the flutter control system with heave velocity
feedback. The dynamics of the bridge are represented by the plant P (s)
and the Theodorsen function C(s); ‘s’ is the Laplace variable. The flaps
control system is given by K(s). The leading- and trailing-edge flap angles
are given by βl(s) and βt(s), and the deck pitch angle and heave are given
by α(s) and h(s) respectively.

which is an assembly of equations (1), (2), (3), (4) and

a rational approximation to (5). The control input u(t) =
[βt(t) βl(t)]

′ in (8) comprises the leading- and trailing-edge

flap angles, while the system output in (9) is z(t) = ḣ(t).
Figures of this type are standard in the control systems

literature with more detail available in [9].

Since the controlled inputs (in the model) are the flap

angles rather than torques applied to massy flap bodies,

the model given in (8) must generate the first and second

derivatives of the flap angles internally; these derivatives are

required by the aerodynamic model. This is achieved using

a generalized state-space system of the form
[

0 0
1 0

] [

ẋ1

ẋ2

]

=

[

1 0
0 1

] [

x1

x2

]

+

[

−1
0

]

β, (10)

where β denotes a flap angle. It follows immediately that

x1 = β; x2 = β̇ and ẋ2 = β̈,

thereby establishing that the required flap-angle derivatives

can be constructed in this way. Since (10) has both its

eigenvalues at infinity, (8) will have four eigenvalues there.

These eigenvalues are not associated with ‘real’ system

dynamics, or system stability properties and are thus ignored

for present purposes.

The class of mechanical controllers K(s) we are consid-

ering in this papers are illustrated in Figure 4, where the

bridge’s heave velocity ḣ (which is positive downwards)

is used to manipulate mechanically the flap angles β l and

βt. The control system is made up of several components

including a passive mechanical network connected to the

middle of the bridge deck with admittance functions Y (s),
a rack, three pinions with radius r, and a spring with

spring constant Ks. The pinions are mounted in the inertial

reference frame, and attached to the flaps. While this is

not shown in Figure 4, the flaps are attached to remote

hinges that are mounted on the bridge deck; these hinges

are connected to the pinions in Figure 4 through addition

mechanical equipment such as a cable arrangement. The

pinions illustrated in Figure 4 are driven by a rack connected

to the passive mechanical network Y (s). The other end of the

rack is connected to the spring Ks, which is anchored in the

inertial reference framework. As is evident from Figure 4,

the flaps are actuated by the controller K(s) that consists

of the mechanical network Y (s), the rack, the spring K s

and the pinions arrangement. Evidently the passive controller

proposed here is insensitive to wind direction and requires

no power supply.

ḣ
F

Y (s)

r

βt

βl

Ks

Fig. 4. Mechanical network used as compensator K(s) in Fig. 3 for flap
feedback control in which deck motion is used to control the bridge flaps.

The series connection of the admittances Y (s) and Ks is

given by

K̄(s) =
KsY (s)

Ks + sY (s)
. (11)

The network through-variable associated with K̄(s) is the

force F (t), while the across-variable is the heave velocity

ḣ(t). Thus

F (s) = K̄(s)ḣ(s). (12)

The pinions rotate according as

r × β =
F

Ks

, (13)

where β denotes both βl and βt. From (11), (12) and (13),

we have

K(s) =
Y (s)

rKs + rsY (s)
, (14)

4197



which maps ḣ into the flap angles.

The control system design will focus on the optimization

of K(s), which will be constrained to be passive and so:

∫ T

−∞

F (t)ḣ(t)dt ≥ 0

for all terminal times T [14]. The control system illustrated

in Figure 4 is only one of many possible configurations.

Fig. 5 taken from [10] is the root-locus diagram for the

open-loop system in which the wind speed U is the varied

parameter. There are two oscillatory structural (flutter) modes

due to the heaving and pitching of the bridge deck. It is

clear that the critical wind speeds for flutter and torsional

divergence are around 52 m/s and 70 m/s, respectively.
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Fig. 5. Root-loci of the Akashi Kaikyo suspension bridge section. The
wind speed is swept from 30 m/s to 80 m/s, with the low-speed ends of
the root loci marked with (blue) diamonds and the high-speed ends marked
with (red) hexagons. The pitch mode goes unstable at approximately 52 m/s,
while the torsional divergence mode goes unstable at approximately 70 m/s.

B. Results

In this section we optimize the compensator K(s) shown

in Figure 3. For comparason purposes we begin by investi-

gating the response characteristics for pure gain feedback. By

setting K(s) = 0.25, with flap lengths 1.5 m, we obtain the

Nyquist diagram (for the loop break point at ∆ in Figure 3)

and the associated closed-loop root loci in Figure 6. It is

clear from this figure that the system is closed-loop stable

with the critical flutter speed increased to 69 m/s, but with

very poor robustness margins (see the region around the −1
point corresponding to 2 anti-clockwise encirclements).

We will now consider a dynamic compensator K(s) that is

designed to improve robustness at higher wind speeds. This

is achieved using the design objective:

min
K(s)

{

max
Gi(s,p)

‖ 1

1−Gi(s, p)
‖∞

}

i = 1, . . . n. (15)
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Fig. 6. The upper diagram shows the Nyquist diagram of the Akashi Kaikyo
suspension bridge section at a wind speed of 65 m/s with K(s) = 0.25 and
flap length 1.5 m. The lower diagram shows the root loci of the closed-loop
system. The wind speed is swept from 14 m/s to 69 m/s, with the low-speed
ends of the root loci marked with (blue) diamonds and the high-speed ends
marked with (red) hexagons.

in which ‖ · ‖∞ is the frequency-response infinity norm [9].

The aim of this performance criterion is to maximise the dis-

tance between the compensated Nyquist diagram and the -1

point, with the correct winding number, thereby maximizing

the closed-loop robust stability margin relative to additive-

type perturbations [9]. Each of the transfer functions G i(s, p)
correspond to the break point ∆ in Fig. 3, and are a function

of the Laplace variable s and the optimization variables

p that include the parameters of the passive mechanical

network Y (s), the spring stiffness Ks, pinions radius r and

the flap chords. For the purpose of solving the optimization

problem n discrete wind speeds Ui are used; this leads

to the indexing Gi(s, p). It is noted that maximizing the

distance between the Nyquist diagram and the -1 point, for all

frequencies, is equivalent to minimizing ‖ 1
1−Gi(s,p)

‖∞ [9].

In other words, the index (15) requires the distance between

the Nyquist diagram and the -1 point to be maximized across

all frequencies for the worst-case wind speed.

To ensure that the optimization problem is properly posed
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a number of constraints must be put in place that operate in

conjunction with (15).

1) The closed-loop eigenvalues are constrained to have

negative real parts to ensure stability. This is equivalent

to ensuring that the Nyquist plot encircles the -1 point

the correct number of times. For wind speed above the

critical flutter speed, but below the critical torsional

divergence speed, a winding number of N = 2 is

required.

2) The leading- and trailing-edge flap chords are assumed

to have the same length. Since they are design param-

eters, they must be constrained to be non-negative and

below some maximum; (≤2 m is used in the studies

presented here).

3) The Y(s) in Fig. 4 will be constrained to be passive so

that they can be synthesized using only passive me-

chanical components (springs, dampers and inerters)

[14]. This is ensured by imposing a positive-reality

constraint on its coefficients [15]. If Y (s) is passive,

K(s) in Figs. 4 and 3 is passive.

The resulting nonlinear constrained optimization problem is

solved using MATLAB’s sequential quadratic programming

algorithm FMINCON.

C. First-order Compensator

In the first design study we consider Y (s) has the follow-

ing first-order transfer function:

Y (s) = Y
s+ z0
s+ p0

(16)

in the control loop in Figs. 3 and 4. Here both flaps have the

same length ≤ 2, and z0 and p0 are constrained to be non-

negative to ensure passivity. The compensator K(s) can be

easily derived by equation (14). The wind speeds considered

in the optimization process are 14 m/s to 69 m/s in steps of

5 m/s. The result of the optimization calculation is

Y = 0.1899, z0 = 0.6810, p0 = 0.0666,

Ks = 1.1827N/m, r = 1.0521. (17)

with both optimal flap chords 0.5100 m. It’s clear that Y (s)
is a lag network, which can be realized using springs and

dampers only. Figure 7 shows the compensated (K(s) given

by (14), (16) with values in (17)) Nyquist diagrams for the

loop break point at ∆ in Figure 3, and the associated closed-

loop root loci.

It is clear from these diagrams that the system is closed-

loop stable with the critical flutter speed increased to 69m/s.

By comparing the Nyquist diagrams in Figures 7 and 6,

it is clear that the phase compensation introduced by (14),

(16) and (17) has ‘opened up’ the N=2 region significantly,

and thus greatly improved robustness margins have been

obtained. The lower root locus diagram shows that the flutter

(heave and pitch) modes are well damped at U=69 m/s. In

this case the index given in (15) had a value of 1.2738

indicating that the smallest distance, across all frequencies,

to the -1 point, is 0.7851. This distance can be interpreted

as a robustness margin.
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Fig. 7. The upper diagram shows the compensated Nyquist diagram of the
Akashi Kaikyo suspension bridge section at a wind speed of 65 m/s with
compensator K(s) given by (14), (16) with parameters in (17). The lower
diagram shows the root loci of the compensated closed-loop system. The
wind speed is swept from 14 m/s to 69 m/s, with the low-speed ends of the
root loci marked with (blue) diamonds and the high-speed ends marked with
(red) hexagons.

D. Second-order Compensator

Now we consider Y (s) has the following second-order

transfer function:

Y (s) =
a2s

2 + a1s+ a0
s2 + d1s+ d0

(18)

in the control loop in Figs. 3 and 4 with the coefficients

constrained to ensure that K(s) is positive-real [16]. Pos-

itive reality requires each of the five coefficients in (18)

to be non-negative together with the condition a 1d1 ≥
(√

a0 −
√
d0a2

)2
; see Theorem 2 in [15]. The wind speeds

considered in the optimization process are 14 m/s to 69 m/s

in steps of 5 m/s. When the coefficients in (18) are optimized,

the following numerical values were obtained

a2 = 0.6119, a1 = 1.4059, a0 = 1.1225, d1 = 9.0054,

d0 = 0.7331,Ks = 2.0115N/m, r = 0.4969. (19)

with both flap chords set at 0.5000 m.
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The compensated (K(s) given by (14), (18) with opti-

mized parameters in (19)) Nyquist diagram for the loop break

point ∆ in Fig. 3, and the associated closed-loop root loci are

shown in Fig. 8. From the Nyquist plots in Figures 8 and 7,

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

N=2, anti-clockwise

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Fig. 8. The top diagram shows the compensated Nyquist diagram of the
Akashi Kaikyo suspension bridge section at a wind speed of 65 m/s with
compensator K(s) given by (14), (18) with parameters in (19). The lower
diagram shows the root loci of the compensated closed-loop system. The
wind speed is swept from 14 m/s to 69 m/s, with the low-speed ends of the
root loci marked with (blue) diamonds and the high-speed ends marked with
(red) hexagons.

it is clear that very little improvement is achieved using a

second-order Y (s) as compared with a first-order network

Y (s) in terms of robustness. The root locus diagram shows

that the flutter modes are well damped at U=69 m/s. In this

case the index given in (15) had a value of 1.2717 indicating

that the smallest distance, across all frequencies, to the -1

point, is 0.7863 that is only a marginal improvement over

the first-order case (0.7851).

IV. CONCLUSIONS

This paper addresses the problem of stabilizing flutter

instabilities in long-span suspension bridges by employing

controllable leading- and trailing-edge flaps. Our results

show that passive heave velocity feedback can be used to

increase the critical wind speed for flutter with improved

robustness characteristics. This paper also removes the wind

direction dependence of the control system given in [2],

which uses deck pitch angle feedback. Insensitivity to the

wind direction is achieved using identical flaps driven by

the same passive heave velocity (of the deck) driven com-

pensator. It is noted that the compensator presented here is

ineffective in increasing the critical wind speed for torsional

divergence (because the flap arrangement produces a low net

moment on the deck), but in many cases this is already above

that of any wind likely to be encountered.
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