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Abstract— The problem of approximating systems with finite
input and output alphabets by finite memory systems for
verification or certified control has received much deserved
attention in the recent past. The present paper is a further
step in that direction, building upon a robust control inspired
notion of approximation we recently proposed. A constructive
algorithm for deriving deterministic finite state machine (DFM)
approximations of a given system over finite alphabets is
proposed, based on a partitioning of its input/output behavior
into equivalence classes of finite length snapshots. The algorithm
is analyzed, and the resulting nominal models and corre-
sponding approximation errors are shown to have desirable
properties. An algorithm for conservatively quantifying the
resulting approximation error in a manner consistent with
the objective of control synthesis is also proposed. Several
simple illustrative examples are presented to demonstrate the
approach.

I. INTRODUCTION

Modern control systems are increasingly complex due
to the confluence of nonlinearities [9], quantization effects
[5], [6], [11], [21], [2], and interacting analog and discrete
(hybrid) dynamics [4], [28]. This complexity, coupled with
stringent performance objectives and the need for verifiably
safe systems, gives rise to a new set of analysis and synthesis
challenges. Lower complexity models that are more easily
amenable to analysis and optimization, and that adequately
abstract or approximate the complex systems in question,
provide a potential means for addressing these new chal-
lenges. Accordingly, the problem of finding lower complexity
models of hybrid systems with quantized inputs and outputs,
particularly finite state models (which are tractable in prin-
ciple though not always practically so!), has received much
attention in the recent past [1], [34], [3], [35], [36].

One direction of active research in this area, inspired by
the theory of formal verification in computer science [20],
[17], aims to construct finite deterministic abstractions of
the underlying hybrid system that are related to the original
system by a simulation or bisimulation relation [8], or an
approximation theoreof [26], [27], [7], [22]. Since simula-
tions and bisimulations fundamentally relate the underlying
state-spaces of the plant and the abstraction, construction
of the approximate model typically involves partitioning or
otherwise covering the state-space of the original system. A
second direction of active research in this area, inspired by
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the behavioral approach to systems in control theory, aims
to derive non-deterministic finite state models whose output
or input/output behavior contains that of the original system
[13], [10], [14], [15], [18], [19], [16].

In our past work, we proposed an approach for deriving
and quantifying deterministic finite state machine (DFM) ap-
proximations for a class of hybrid systems, namely switched
second order homogeneous systems under binary sensing
constraints [31], [33]. We also developed a streamlined min-
imax optimization based synthesis approach, thus demon-
strating the use of these approximations for synthesizing
certified-by-design finite memory controllers for the switched
plant. Construction of the approximate models in this setting
involved constructing finite coverings of the state-space of
the plant meeting certain criteria. More recently, we formally
proposed a robust control inspired notion of control oriented
finite state approximation for plants with discrete actuation
and sensing [29], of which the work in [31], [33] is a
specific instance. The objective of the present contribution
is to explore an alternative procedure for deriving control
oriented DFM approximations by explicitly partitioning the
plant’s input/output behavior over finite length time horizons.

The idea of using finite length snapshots of inputs and
outputs to generate models of dynamical systems is of
course widely used in system identification [12]. However,
the underlying assumptions in the setting of interest to
us here are very different from those in a typical system
identification setup. Specifically: (i) the dynamics of the
system are assumed to be exactly known, (ii) the input and
output data is uncorrupted by noise, and (iii) complete data
of length L can be generated for any choice of integer L.

In related work, an approach for constructing finite behav-
ioral abstractions of systems by associating the states of the
nominal models with finite length sequences of input/output
behavior of the original system (assumed to have quantized
inputs and outputs) was proposed in [23] and later refined in
subsequent developments [19], [16]. The approach appears
to have been inspired by Willems’ approach for computing
realizations of l-complete systems [37]. The resulting non-
deterministic finite state automaton can then be used in
conjunction with a synthesis procedure [18] inspired from
the Ramadge/Wonham framework [24], [25] to synthesize
supervisory controllers for the plant. While the idea of
associating the states of the nominal model with finite length
input/output snapshots is utilized in this paper, our contri-
bution is fundamentally different from the above referenced
work in the considered class of nominal models, the notion of
approximation employed, as well as the proposed approach
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for describing and quantifying the quality of the approximate
model. Likewise, our earlier work addressing a first order
case study [30] fundamentally differs from the contributions
of the present paper in the notion of approximation employed
as well as the structures of the approximate models and
corresponding approximation errors.

Organization of the Paper: We begin in Section II by
reviewing some basic concepts and highlight the definition
of approximation of interest to us. We formally state the
problem considered and summarize our approach and contri-
butions in Section III. We present the details of the proposed
construction of the deterministic finite state machine (DFM)
model in Section IV. We analyze the properties of the
resulting approximate model and those of the corresponding
approximation error in Section V. We propose a computa-
tionally efficient approach for computing an upper bound
on the gain of the approximation error in Section VI. We
end with simple illustrative examples in Section VII and we
conclude with a brief discussion of directions for future work
in VIII.

Notation: A word on notation: Z+ and R+ denote the set
of non-negative integers and non-negative reals, respectively.
Given a set A, AZ+ denotes the set of all infinite sequences
(indexed by Z+) over A. An element of A is denoted by a
while an element of AZ+ is denoted by (boldface) a. For a ∈
AZ+ , a(i) denotes the ith term. For f : A → B and subset
C of B, f−1(C) = {a ∈ A|f(a) ∈ C}. The cardinality of a
finite set A is denoted by |A| while its power set is denoted
by A2.

II. PRELIMINARIES

We begin by reviewing some background that will be
needed in our development. Interested readers are referred to
[32], [29] for an in-depth treatment of the various notions. A
(discrete-time) signal is understood to be an infinite sequence
over some prescribed “alphabet” set, while a (discrete-time)
system S is simply a set of pairs of feasible signals, S ⊂
UZ+ × YZ+ , where U and Y are given input and output
alphabets. System properties of interest are captured by
means of ‘integral’ constraints on the feasible signals.

Definition 1. Consider a system S ⊂ UZ+ × YZ+ and let
ρ : U → R and µ : Y → R be given functions. S is ρ/µ
gain stable if there exists a finite non-negative constant γ
such that the following inequality is satisfied for all (u,y)
in S:

inf
T≥0

T∑
t=0

γρ(u(t))− µ(y(t)) > −∞. (1)

In particular, when ρ and µ are non-negative (and not
identically zero), a notion of ‘gain’ can be defined in the
usual manner, meaning as the infimum of γ such that (1) is
satisfied.

We are typically interested in discrete-time plants that
interact with their controllers through fixed discrete alphabets
(i.e. plants with finite-valued actuators and sensors), which
we refer to as ‘systems over finite alphabets’. More precisely,

a system over finite alphabets S is a discrete-time system
S ⊂ (U ×R)Z+ × (Y ×V)Z+ whose alphabets U and Y are
finite. r ∈ RZ+ , u ∈ UZ+ , v ∈ VZ+ , and y ∈ YZ+ represent
the exogenous input, the control input, the performance
output and the sensor output of the plant, respectively. No
restrictions are placed a-priori on the internal dynamics of the
plant: The underlying state-space may be analog, discrete or
hybrid. Likewise, alphabetsR and V may be finite, countably
infinite or simply infinite in general. We will use the notation
S|uo,yo to denote the subset of feasible signals of S defined
by

S|uo,yo =
{

(u,y)
)
∈ S

∣∣∣u = uo and y = yo

}
.

Note that S|uo,yo may be an empty set or an infinite set for
specific choices of uo and yo.

The nominal models of interest to us are deterministic fi-
nite state machine (DFM) models, which are simply discrete-
time systems with finite input and output alphabets and
whose feasible signals are related by

q(t+ 1) = f(q(t), u(t))

y(t) = g(q(t), u(t))

for some functions f and g and some finite state set Q,
q(t) ∈ Q.

The underlying assumption generally is that the purpose
of deriving a DFM approximation of a system over finite
alphabets P is to simplify the process of synthesizing a
controller K such that the closed loop system (P,K) is ρ/µ
gain stable with γ = 1 for some given functions ρ and µ.
The notion of approximation of interest to us is given by
Definition 2.
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Fig. 1. A finite state approximation of P

Definition 2 (Notion of DFM Approximation [29]). Con-
sider a system over finite alphabets P ⊂ (U ×R)Z+ × (Y ×
V)Z+ and a desired closed loop performance objective

inf
T≥0

T∑
t=0

ρ(r(t))− µ(v(t)) > −∞ (2)

for given functions ρ : R → R and µ : V → R. A sequence
{Mi} (i ∈ Z+) of deterministic finite state machines

Mi ⊂ (U × R̂i ×W)Z+ × (Ŷ × V̂i ×Z)Z+

with R̂i ⊂ R and V̂i ⊂ V is a ρ/µ approximation of P
if there exists a corresponding sequence of systems {∆i},
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∆i ⊂ ZZ+×WZ+ , and non-zero functions ρ∆ : ZZ+ → R+

and µ∆ :WZ+ → R+, such that for every i:
1) There exists a surjective map ψi : P → P̂i satisfying

P |uo,yo ⊆ ψ−1
i

(
P̂i|uo,yo

)
for all (uo,yo) ∈ UZ+ × YZ+ , where

P̂i ⊂ (U × R̂i)
Z+ × (Ŷ × V̂i)Z+

is the feedback interconnection of Mi and ∆i as shown
in Figure 1.

2) For every feasible signal
(

(uo, r̂o)(ŷo, v̂o)
)
∈ P̂i,

and every corresponding feasible signal(
(u, r), (y,v)

)
∈ ψ−1

i (
{(

(uo, r̂o), (ŷo, v̂o)
)}

),
we have

ρ(r(t))−µ(v(t)) ≥ ρ(r̂o(t))−µ(v̂o(t)), ∀t ∈ Z+ (3)

3) ∆i is ρ∆/µ∆ gain stable, and moreover, the corre-
sponding ρ∆/µ∆ gains satisfy γi ≥ γi+1.

Intuitively, condition (1) of Definition 2 establishes a 1-
1 correspondence between certain equivalence classes of
input/output behaviors of the plant and the approximate
model, which is needed for certified-by-design control syn-
thesis. Condition (2) reflects our need to approximate the
performance specifications in general, as the plant may have
analog input while the nominal model may not. Condition (3)
reflects our need to approximate the dynamics of the plant,
and to quantify the quality of approximation in a manner
consistent with control design. Interested readers are referred
to [29] for the details of this notion of approximation and
its significance.

III. SETUP OF THE PROBLEM
A. Problem Statement

In this paper, we consider a simplified setup in order to
focus on the problem of approximating the plant dynamics
while momentarily overlooking the problem of approximat-
ing the performance objectives. Specifically, we consider
plants with a single input channel, namely the control input,
and a single output channel, namely the sensor output.
Moreover, we will assume that a state-space model of the
plant P is available, given by

x(t+ 1) = f(x(t), u(t))

y(t) = g(x(t))

where t ∈ Z+, x(t) ∈ Rn, u(t) ∈ U and y(t) ∈ Y , U and Y
are given finite alphabets with cardinality m and p, respec-
tively. Alphabets U and Y may represent quantized values
of analog inputs and outputs, or may simply be symbolic
inputs and outputs in general. Functions f : Rn × U → Rn

and g : Rn → Y are given.
Our first objective is to construct a sequence of DFM

models {Mi} and a corresponding sequence of approxima-
tion errors {∆i} that approximate plant P , in the sense of
satisfying properties (1) and (3) of Definition 2. Our second
objective is to quantify the quality of approximation, by
quantifying the gain of the approximation error.

B. Overview of Main Contributions

The contributions of the paper are as follows:
1) We propose a constructive procedure for generating the

approximate models and the corresponding approximation
error. The proposed approach associates the states of the
approximate model at every time instant with the past inputs
and outputs of the system over a finite time horizon of fixed
length L. The structure of the corresponding approxima-
tion error is inspired from the ‘observer-like’ structure first
proposed in [31], [33]. The details of this contribution are
presented in Section IV.

2) We analyze the proposed algorithm to highlight some
of its features, as well as the positive features of the re-
sulting approximate models. The details of this analysis are
presented in Section V.

3) We propose a tractable, LP based algorithm for veri-
fying an upper bound on the gain of the resulting approx-
imation error system. The details and development of this
algorithm are presented in Section VI.

IV. CONSTRUCTION OF THE DFM
APPROXIMATION

A. Internal Structure of Mi and ∆i

∆i

y

z w

M̂i

P

ỹ

β
uy = y

Fig. 2. The internal structure of ∆i

We will construct a sequence of DFM systems {Mi} and
a corresponding sequence of error systems {∆i} with the
internal structures shown in Figures 3 and 2, respectively,
for each index i. Alphabet Z in this construct simply equals
the control input alphabet U . Functions β : Y×Y → W and
α :W ×Y → Y are chosen to satisfy

α
(
β(y, ỹ), ỹ

)
= y (4)

for all choices of y, ỹ in Y . Note that since Y is a finite alpha-
bet, construction of such maps is always possible provided
W (which is a design parameter) is chosen to have suffi-
ciently large cardinality. Also note that the approximation
error ∆i is an infinite memory system in general. Moreover,
its internal structure is meaningful in a control setting as
system M̂i will typically be used an a finite memory observer
for the plant as detailed in [33], and hence has access to both
the control input and the sensor output. The only a priori
constraint placed on DFM system M̂i is that it is not allowed

3968



to admit direct feedthrough from its input uy to its output ỹ,
otherwise the proposed setup becomes meaningless.

ŷ

z

u

w

ỹM̂i

uy = ŷ

Mi

α

Fig. 3. The internal structure of Mi

B. Construction of System M̂i

For each index i, system M̂i is a DFM with two inputs,
namely uy ∈ Y and u ∈ U , and a single output, namely ỹ ∈
Y . Letting L = i, the intention is to construct a deterministic
transition system M̂i whose state at time t ≥ L effectively
keep track of the past L inputs and outputs of the plant, as
well as the current output of M̂i at time t, namely:

q(t) =



ỹ(t)
y(t− 1)

...
y(t− L)
u(t− 1)

...
u(t− L)


Introduce the notation fu(x) as shorthand for f(u, x), and
fu1◦u2

as shorthand for fu1
◦ fu2

, the construction of M̂i

proceeds as follows:

Step1 [Construction of the Set of Feasible States] By
definition, a state

q = (ỹ, y1, . . . , yL, u1, . . . , uL)′ ∈ YL+1 × UL

is feasible if there exists a state xo ∈ Rn satisfying the
following set of L+ 1 equalities:

yL = g
(
xo

)
yL−1 = g

(
fuL

(xo)
)

yL−2 = g
(
fuL−1◦uL

(xo)
)

(5)

... =
...

y1 = g
(
fu2◦...◦uL

(xo)
)

and
ỹ = g

(
fu1◦...◦uL

(xo)
)

(6)

Intuitively, a state q is a feasible state of the ma-
chine if there exists an initial state xo of the plant
with corresponding output yL such that, under input se-
quence {uL, uL−1, . . . , u2, u1} we observe output sequence

{yL−1, yL−2, . . . , y1, ŷ}. We will denote the set of all feasi-
ble states by Qf .

Step 2 [Feasible Transitions] Consider the map

F : Qf × U × Y → Q2
f

(where Q2
f denotes the power set of Qf ) defined as follows:

Letting qa = (ỹa, y1,a, . . . , yL,a, u1,a, . . . , uL,a)′ and qb =
(ỹb, y1,b, . . . , yL,b, u1,b, . . . , uL,b)

′ denote two states in Qf ,
qb ∈ F (qa, u, y) iff u1,b = u, y1,b = y, uk,b = uk−1,a and
uk,b = uk−1,a for k ∈ {2, . . . , L}. Note that for any choice
of (qa, u, y), the cardinality of F (qa, u, y) ranges from 0
to p: Cardinality 0 corresponds to the case where the plant
simply cannot exhibit a particular input/output signal pair of
length L + 1. We therefore introduce a new state q∅ of the
machine, we let Qe = Qf ∪ {q∅}, and we construct a new
map

F : Qe × U × Y → Q2
f ∪ {q∅}

by defining

F (q∅, u, y) = {q∅},

F (q, u, y) =

{
{q∅} when |F (q, u, y| = 0

F (q, u, y) otherwise

Step 3 [Initial States]: For any t < L, the plant can only
memorize t−1 past input sequences. As such, it is necessary
to define an additional set of initial states. Considering
equivalence relations R1,...RL−1 on Qf defined by

qaRkqb ⇔ ui,a = ui,b, yi,a = yi,b for 1 ≤ i ≤ k
we can construct equivalence classes Ek = Qf \ Rk, with
E0 denoting the equivalence class of all feasible states. We
can now define a set Q0 of initial states to be the union
of E0,...,EL−1. We arbitrarily associate with every state q ∈
Q0 an output ỹ ∈ Y , since the choices we make here only
influence the input/output behavior of the finite state model
for the first L−1 time steps, and hence are of limited impact.
We extend the transition map F to this set of states in the
(unique !) natural way.

Step 4 [Construction of the DFM Model]: We can now
construct a DFM M̂i whose states are given by

Q̂i = Q0 ∪Qe

whose state transition function

f̂i : Q× U × Y → Q
is arbitrarily defined provided

f̂i(q, u, y) ∈ F (q, u, y),

and whose output function

ĝi : Q̂i → Y
is defined by

ĝi(q) = ỹ when q = (ỹ, y1, . . . , yL, u1, . . . , uL)′ ∈ Qf

and arbitrarily fixed otherwise.
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C. Remarks on the Proposed Algorithm

Remark 1. Notice that for any choice of index i, the
algorithm described in Section IV-B leads to a finite number
of possible systems M̂i, usually more than one. As such, the
algorithm does not result in a unique sequence of {Mi}, but
rather an infinite number of such choices.

Proposition 1. Let N be the cardinality of the state space
of M̂i. N is bounded by:

1 + p
[m−mL+1

1−m
]
≤ N ≤ 1 +

pm− pLmL

1− pm + pL+1mL

Proof: The state space of M̂i is the union of {q∅}, the
feasible states Qf , and the equivalence classes E0, ..., EL−1

encoding the initial states. A lower bound can be derived
for Qf by observing that each control sequence of length L
and each initial state, hence initial output, have to appear at
least once. We thus conclude that pmL ≤ |Qf | ≤ pL+1mL.
Similar observations allow us to conclude that mkp ≤ |Ek| ≤
mkpk for k ∈ {2, . . . , L − 1. Finally, noting that |E0| =
|{q∅}| = 1 and combining these bounds, we get the formula
presented. �

This observation, particularly the lower bound, suggest
that this approach may only be computationally efficient
when the cardinality of the input set is relatively small.
However, this statement is tempered by the caveat that it
may be possible to aggregate the states of the approximate
model at a later stage.

V. PROPERTIES OF THE APPROXIMATE SYSTEMS

Now associate with each state q ∈ Q̂i two subsets of Rn,
Xo

q and X+
q , defined as follows:

• When q ∈ Qf , q = (ỹ, y1, . . . , yL, u1, . . . , ul), define:

Xo
q =

{
x ∈ Rn|x satisfies (5)

}
and

X+
q = fu1◦...◦uL

Xo
q

• When q ∈ E1,...,Ek, the sets Xo
q and X+

q can be
similarly defined by simply considering the appropriate
subset of equality constraints and appropriately trun-
cated input sequences, respectively.

• When q ∈ Eo, set Xo
q = X+

q = Rn

• When q = q∅, Xo
q = X+

q = ∅

Proposition 2. Consider the interconnection of M̂i and P
as in Figure 2, and let x(t) and q(t) denote the state of P
and M̂i, respectively, at time t. We have x(t) ∈ X+

q(t), for
all t ≥ 0.

Proof: By construction, X+
q(0) = Rn and hence x(0) ∈

X+
q(0). Moreover by construction, if x(t) ∈ X+

q(t) ⇒ x(t +

1) ∈ X+
q(t+1). The proof thus follows by induction on t. �

This simple observation substantiates our previous state-
ment that M̂i may be used as a finite memory (set-valued)
observer for the plant.

Theorem 1. For any DFM Mi and corresponding approx-
imation error ∆i constructed as described in Section IV
there exists a ψi : P → P̂i, where P̂i denotes the feedback
interconnection of Mi and ∆i, such that ψi is surjective and
ψ−1
i (P̂i|u,y) ⊇ P |u,y.

Proof: The proof is constructive. Fix index i. Consider
ψ1 : P → M̂i defined by ψ1(u,y) = ((u,y), ỹ) ∈ M̂i,
where ỹ is the unique (initial conditions is fixed!) output of
M̂i to inputs u and uy = y.

Also consider ψ2 : ψ1(P )→ P̂i defined by

ψ2

(
((u,y), ỹ

)
= (u,y)

Let ψi = ψ2 ◦ψ1. ψi is surjective, since ψ2 is surjective and
ψ−1

2 (P̂i) = ψ1(P ) by definition. Moreover, ψi(P |u,y) ⊆
P̂i|u,y:

ψi(P |u,y) = ψ2(ψ1(P |u,y)) ⊆ ψ2(ψ1(P )|u,y) ⊆ P̂i|u,y
Hence, Pu,y ⊆ ψ−1

i (P̂i|u,y). �

VI. QUANTIFYING THE APPROXIMATION ERROR

Ideally, we would like to be able to derive a priori bounds
on the gain of the error system, much like what is done in
traditional model order reduction schemes such a balanced
truncation or Hankel reduction. What we provide in this
section is an approach for computing upper bounds on the
gain of the error system ∆i, for any given choice of functions
ρ∆ and µ∆. The relevance of this result stems from the fact
that ∆i is generally an infinite memory system with a hybrid
(analog-discrete) state space. Hence direct computation of
the gain is difficult in general.

We will consider the scenario where we are interested
in computing an upper bound for the ρ∆/µ∆ gain of the
approximation error system ∆i for some choice of functions
ρ∆ : U → R+ and µ∆ : Y → R+ (not identically zero).
We will mark a special element of W , namely wo. Without
loss of generality, we will assume that β(y, y′) = wo iff
y = y′. Note that this assumption does not prevent us from
defining a pair of memoryless function α and β satisfying
(4). Further, we will assume that µ∆(w) = 0 iff w = wo. The
rationale is that in quantifying ∆i, we are typically interested
in penalizing the mismatched outputs of M̂i and P , and only
the mismatched outputs.

Under these assumptions, consider the map

d : Q̂i × U × Y → R+

defined by

δ(q, u, y) = max
q+∈F (q,u,y)

µ∆

[
β
(
ỹ(q+), ỹ(f̂i(q, u, y)

)]
Note that by definition, δ(q, u, y) = 0 whenever

|F (q, u, y)| = 1, and in particular when q = q∅ or q ∈ Ek
for some k.

Theorem 2. If M̂i satisfies the inequality constraint:

inf
T≥0

T∑
t=0

γρ∆(u(t))− δ(q(t), u(t), y(t)) > −∞ (7)
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for some γ > 0, then the corresponding ∆i is ρ∆/µ∆ gain
stable with gain bound not exceeding γ.

Proof: Let x(t) and y(t) denote the state and output
trajectories, respectively, of P under input u(t), and let q(t)
be the corresponding state trajectory of M̂i, interconnected
with P as shown in Figure 2. By Proposition 2, x(t) ∈ X+

q(t)

for all t ≥ 0. Now, when t ≥ L: If |F (q(t), u(t), y(t)| = 1,
there is no ambiguity in the transition or outputs. Hence the
outputs of P and M̂i must match, and

µ∆(w(t+ 1)) = 0 = d(q(t), u(t), y(t))

Otherwise, y(t + 1) = ỹ(xo) for some xo ∈
F (q(t), u(t), y(t)), and we thus have

µ∆(w(t+ 1))

= µ∆

[
β(ỹ(xo), ỹ(f̂(iq(t), u(t), y(t))

]
≤ maxq+∈F (q,u,y) µ∆

[
β
(
ỹ(q+), ỹ(f̂i(q(t), u(t), y(t))

)]
= d(q(t), u(t), y(t))

Summing up along state trajectories from t = 0 to T and
taking the infimum, we thus get

inf
T≥0

T∑
t=0

γρ∆(u(t))− µ∆(w(t))

≥ C + inf
T≥0

T∑
t=0

γρ∆(u(t))− δ(q(t), u(t), w(t))

where C is a finite constant that accounts for transient effects
(t < L) and for the 1 step time shift in the summation. Hence,
if M̂ satisfies equation (7), then ∆ is ρ∆/µ∆ gain stable with
gain at most equal to γ. �

The problem of verifying an ‘integral constraint’ for a
deterministic finite state machine was shown to be tractable
in [32]: The problem reduces to the search for an appropriate
storage function, which in turn can be formulated as linear
program. Computing an upper bound for the gain for the
gain of ∆i thus reduces to solving a linear program in N +
1 decision variables, where N is the number of states of
the approximate model Mi. In practice, the computational
burden may be alleviated by first appropriately aggregating
the states of M̂i prior to running the linear program.

VII. ILLUSTRATIVE EXAMPLES

A. LTI System with Input and Output Quantizers

We begin by revisiting the simple case study we addressed
in [30]. Consider a discrete-time, analog-state system P
consisting of a stable first order system described by{

x(t+ 1) = ax(t) + u(t)
y(t) = Q(x(t))

(8)

The input of the system is restricted to take on integer values,
u(t) ∈ U = {−1, 0, 1}. Q is a given uniform quantizer with

quantization step l = 2:

Q : y(t) =



...

−l if −3l
2 < x(t) ≤ −l2

0 if − l
2 < x(t) <

l
2

l if l
2 ≤ x(t) <

3l
2

...

(9)

The initial state of the system is assumed to lie in compact set
I = [ −1

1−|a| ,
1

1−|a| ], which is an invariant subset of the state
space. The output y(t) takes on values in Y ⊂ {−2, 0, 2}.

Simulation results for three values of a are shown in Table
I. Three definitions for ρ∆ and µ∆ were considered: “γ” cor-
respond to ρ∆(u) = |u| and µ∆(w) = µ∆(β(y, ỹ)) = |y−ỹ|.
“γ” correspond to ρ∆(u) = |u|, µ∆(w) = µ∆(β(y, ỹ)) =
d(y, ỹ), where d denotes the discrete metric, and “γdd”
corresponds to the choice ρ∆(u) = 1 for all u, µ∆(w) =
µ∆(β(y, ỹ)) = d(y, ỹ). The decreasing gain bounds for γdd
seem to capture the intuition that the “average number” of
mismatches decreases as L increases.

B. Tank with Bimodal Pump

TABLE III
SIMULATION RESULTS FOR EXAMPLE 2: THE SAMPLING TIMES ARE

T=45 AND 60 SECONDS

T=45 T=60
L Nf N0 γ γi Nf N0 γ γi

1 6 1 1 1 6 1 1 1
2 14 5 1 1 12 5 0 0
3 30 17 0.3333 0.3333 24 17 0 0
4 62 42 0.3333 0.25 48 41 0 0
5 126 93 0.2 0.1667 96 89 0 0
6 254 192 0.2 0.2 192 185 0 0
7 510 385 0.1429 0.125 384 377 0 0
8 1022 757 0.1429 0.1429 768 761 0 0
9 2046 1474 0.1111 0.1 1536 1521 0 0
10 4094 2864 0.1111 0.1111 3072 3065 0 0

Consider a tank with cross-sectional area A = 100 sq.cm.
and height h = 30 cm. The level in the water tank is
controlled by a pump with two operating modes: Mode ‘+’
in which the pump feeds water at a rate of 1 liter/minute and
mode ‘-’ in which the pump removes water at a rate of 1
liter/minute. The available sensor simply monitors whether
the water level has crossed the 15 cm mark.

The dynamics of this simple system, sampled at intervals
of T seconds, are described by

x(t+ 1) =

 min
{
x(t) + 1

6T, 30
}
, u(t) = +

max
{
x(t)− 1

6T, 0
}
, u(t) = −

y(t) =

{
F, x(t) ∈ (15, 30]
E, x(t) ∈ [0, 15]
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TABLE I
SIMULATION RESULTS FOR QUANTIZED LTI SYSTEM

a=0.551 a=0.612 a=0.671
L Nf N0 γ γd γdd Nf N0 γ γd γdd Nf N0 γ γd γdd
2 47 10 2 1 0.5 47 10 2 1 0.5 47 10 2 1 1
3 153 49 2 1 0.4 153 49 2 1 0.5 47 10 2 1 0.67
4 477 180 2 1 0.3333 491 180 2 1 0.5 47 10 2 1 0.5
5 1459 639 2 1 0.3333 1523 645 2 1 0.5 47 10 2 1 0.375
6 4421 2112 2 1 0.3333 4665 2129 2 1 0.5 47 10 2 1 0.375

TABLE II
SIMULATION RESULTS FOR EXAMPLE 2: THE SAMPLING TIMES ARE T=15, 30 AND 40 SECONDS

T=15 T=30 T=40
L Nf N0 γ γi Nf N0 γ γi Nf N0 γ γi

1 6 1 1 1 6 1 1 1 6 1 1 1
2 14 5 1 1 14 5 1 1 14 5 1 1
3 32 17 1 1 32 17 1 1 31 17 0.3333 0.3333
4 70 45 1 1 70 45 0.5 0.3333 64 45 0.3333 0.3333
5 152 109 1 1 152 106 0.5 0.5 133 95 0.2 0.2
6 323 249 1 1 324 234 0.3333 0.22 268 219 0.2 0.2
7 682 553 0.7143 0.6667 686 497 0.3333 0.3333 545 471 0.1429 0.1429
8 1424 998 0.7143 0.7143 1438 1033 0.25 0.18 1091 979 0.1429 0.1429
9 2957 2362 0.5556 0.5 2998 2115 0.25 0.25 2199 1999 0.1111 0.1111
10 6103 5204 0.5556 0.5556 6212 4297 0.2 0.1538 4394 4043 0.1111 0.1111

Simulation results are provided in Tables II and III for
various values of T . The system is interesting as for T
sufficiently large, it input/output behavior is l-complete. As
expected, our simulations shown that for T = 60, the gain
is non-zero for L = 1 but 0 for larger values of L: The
deterministic finite state machine constructed following our
proposed algorithm thus faithfully reproduces the input/ouput
behavior of the tank.

As expected, the computed gain bounds are improved
at the expense of larger approximate models. The column
labelled “γi” corresponds to the gain bounds of a “refined”
approximate model: In this case, we explicitly used the
current state (set-valued) estimate X+

q to refine the transi-
tions of the system. The improvement sometimes seen in the
computation of the upper bounds comes at the expense of the
much larger computational effort expended in constructing
M̂i. It is unclear at this point whether the improvement has
significant repercussions, particularly in the control setting.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a constructive algorithm for deriving de-
terministic finite state machine (DFM) approximations of a
given system over finite alphabets, based on a partitioning
of its input/output behavior into equivalence classes of finite
length snapshots. We analyzed the algorithm to highlight
the desirable properties of the resulting nominal models
and corresponding approximation error systems. Finally, we
proposed an algorithm for conservatively quantifying the
resulting approximation error in a manner consistent with
the objective of control synthesis.

Future work will focus on further investigating this ap-
proach by considering a more general setup where both the
plant dynamics and performance specifications are approx-

imated, allowing us to synthesize closed loop controllers
based on the approximate finite state models.
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