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Abstract— System identification and model predictive control
have largely developed as two separate disciplines. Nevertheless,
the major part of industrial MPC commissioning is generation
of data and identification of models. In this contribution we
attempt to bridge this gap by contributing some of the missing
links. Input-output models (FIR, ARX, ARMAX, Box-Jenkins)
as well as subspace models can be represented as state space
models in innovation form. These models have correlated
process and measurement noise. The correct LQG control law
for systems with correlated process and measurement noise is
not well known. We provide the correct finite-horizon LQG
controller for this system and use this to develop a state space
representation of the closed-loop system. This representation
is used for closed-loop frequency and covariance analysis.
These measures are used in tuning of the unconstrained and
constrained MPC. We demonstrate our results on a simulated
industrial furnace.

I. INTRODUCTION

Surprisingly, model based control such as model predictive
control [1]–[11] and system identification [12]–[22] have
evolved almost independently. Even though system identifi-
cation is the major part of a model predictive control project
and accurate models are essential for good performance of
the resulting controller, little attention is given to system
identification in the model predictive control literature. Mod-
ern linear model predictive control is based on constrained
linear quadratic regulators, state space models, and output
feedback using Kalman filters equipped with disturbance
models to have offset free control [23]–[25]. The system
identification literature is concerned with identification of
input-output models such as finite impulse response models
(FIR), auto regressive models with exogenous inputs (ARX),
auto regressive moving average models with exogenous
inputs (ARMAX), and Box-Jenkins models. Like subspace
identification, these input-output parameterizations may be
realized as a state space model in innovation form. The state
space model in innovation form has correlated process and
measurement noise, while the state space models used in [1]–
[11], [23]–[25] have uncorrelated process and measurement
noise. Most textbooks on linear quadratic Gaussian control
(LQG) do not treat the case with correlated noise [26]–[35]
with [36], [37] being notable exceptions. The first complete
treatments of the LQG with correlated noise structure seems
to be [38], [39]. To apply LQG to linear models obtained
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using methods from system identification, i.e. state space
models in innovation form, the case with correlated process
and measurement noise is essential.

In this paper, we state that FIR, ARX, ARMAX, Box-
Jenkins, and subspace methods give linear time invariant
stochastic state space model in innovation form. To have
offset free control in the face of unknown disturbances,
the model obtained from system identification procedures is
augmented with a disturbance model in ARMA-form. The
combined model is also a linear time invariant stochastic
state space model in innovation form. This model is a
special case of the linear time invariant stochastic state space
model with correlated process and measurement noise. We
state the optimal filter and predictor for the linear time
invariant stochastic state space model with correlated process
and measurement noise. Using the separation principle, we
apply the predictor for the correlated case to formulate the
finite horizon unconstrained predictive controller and develop
an explicit expression for the optimal control. Due to the
cross correlation of the process and measurement noise, the
feedback part in this optimal control is a linear combination
of the filtered state as well as the filtered process noise. We
use the explicit expression of the feedback control law to
develop a state space model for the closed-loop system. This
model is used in tuning of both the unconstrained and the
constrained predictive controllers. The system has bounds
on its inputs and its rate of input movement. Therefore,
we develop a finite horizon predictive controller with input
constraints using the predictor based on correlated process
and measurement noise.

This paper is organized as follows. Section II discusses
input-output model parameterizations and their realization as
state space models. Section III briefly develops the Kalman
filter for the case with correlated process and measurement
noise. Section IV presents receding-horizon regulators with-
out constraints and with hard input constraints. Section V
demonstrates the tuning of the controller on a simulated
industrial furnace. Conclusions are presented in Section VI.

II. INPUT-OUTPUT MODELS AND REALIZATIONS

The model used by the predictive controller in this paper
is an input-output model with ARMAX structure

A(q−1)yk = B(q−1)uk + C(q−1)ek (1)
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in which A(q−1), B(q−1), and C(q−1) are polynomials in
the backward shift operator

A(q−1) = I +A1q
−1 +A2q

−2 + . . .+Anq
−n (2a)

B(q−1) = B1q
−1 +B2q

−2 + . . .+Bnq
−n (2b)

C(q−1) = I + C1q
−1 + C2q

−n + . . .+ Cnq
−n (2c)

The model (1) may be identified from input-output data
{yk, uk} using system identification technologies [13]–[19].
(1) is sufficiently general to include FIR, ARX, ARMAX,
and Box-Jenkins models. Like models identified using sub-
space methods, (1) can be realized as a state space model in
innovation form.

To have offset free control in the face of unmeasured step
disturbances, the model (1) is augmented with a disturbance
model. The disturbance considered in this paper is an ARMA
type model

F (q−1)ek = G(q−1)εk εk ∼ N(0, Rε) (3)

with

F (q−1) = I + F1q
−1 + F2q

−2 + . . .+ Fmq
−m (4a)

G(q−1) = I +G1q
−1 +G2q

−2 + . . .+Gmq
−m (4b)

While the time series literature [14], [15] suggests simul-
taneous identification of the polynomials in (1) and (3), the
predictive control literature [6, Section 4.6] recommends that
the disturbance model (3) is used to tune the closed-loop
properties and robustness of the resulting predictive control
system. To have steady-state offset-free control, F (q−1) =
I−Iq−1, and the closed-loop performance is typically tuned
by selection of G1 in G(q−1) = I + G1q

−1. (3) may be
realized as a state space model in innovation form.

The combined model (1) and (3) may be realized as a
linear time invariant state space model in innovation form

xk+1 = Axk +Buk +Kεk (5a)
yk = Cxk + εk (5b)

with εk ∼ N(0, Rε).

III. FILTERING AND PREDICTION

In this section, we develop the filter and predictor for the
stochastic linear time invariant system [40]

xk+1 = Axk +Buk +Gwk (6a)
yk = Cxk + vk (6b)

with

x0 ∼ N(x̂0|−1, P0|−1) (7a)[
wk

vk

]
∼ Niid

([
0
0

]
,

[
Rww Rwv

Rvw Rvv

])
(7b)

It is important to notice that the process noise, wk, and the
measurement noise, vk, are correlated, i.e. Rwv = R′vw 6= 0.

Let I0 = y0 and Ik = {Ik−1, uk−1, yk} for k =
1, 2, . . .. Then the conditional variables are normally dis-
tributed, i.e. xk+j |Ik ∼ N(x̂k+j|k, Pk+j|k), wk+j |Ik ∼
N(ŵk+j|k, Qk+j|k), and yk+j |Ik ∼ N(ŷk+j|k, Ry,k+j|k)

for j = 0, 1, 2, .... Filtering and prediction in (6)-(7) corre-
spond to computation of the conditional means, x̂k+j|k =
E {xk+j |Ik}, ŵk+j|k = E {wk+j |Ik}, and ŷk+j|k =
E
{
yk+j |Ik

}
, and the conditional co-variances, Pk+j|k =

V {xk+j |Ik}, Qk+j|k = V {wk+j |Ik}, and Ry,k+j|k =
V
{
yk+j |Ik

}
, for j = 0, 1, 2, . . ..

Remark 1: The model in innovation form (5) is a special
case of the linear model (6). (5) may be expressed in the
form (6) using G = K, wk = vk = εk. Consequently, the
model in innovation form (5) has correlated noise: Rww =
Rvv = Rwv = Rvw = Rε.

Remark 2: FIR, ARX, ARMAX, and Box-Jenkins models
may be realized in innovation form (5). State space models
obtained using subspace identification are also in innovation
form (5). Therefore, all these models have correlated process
and measurement noise.

Remark 3: When the process and measurement noise are
independent, Rwv = R′vw = 0, wk+j |Ik ∼ N(0, Rww) for
j = 0, 1, 2, . . .. This is a special case of the situation treated
in this paper.

Theorem 1 (Riccati Equation Convergence): Let Rvv >
0 and define

Ae = A−GRwvR
−1
vv C (8a)

Qe = Rww −RwvR
−1
vv R

′
wv (8b)

Assume that 1) (C,Ae) is detectable, 2) (Ae, GQ
1/2
e ) is

stabilizable, and 3) P0|−1 ≥ 0 (positive semi-definite).
Then the sequence,

{
Pk|k−1

}N
k=0

, generated by

Pk+1|k = APk|k−1A
′ +GRwwG

′

− (APk|k−1C
′ +GRwv)

(Rvv + CPk|k−1C
′)−1(APk|k−1C

′ +GRwv)′
(9)

converges to
lim
k→∞

Pk+1|k = P (10)

in which P is the solution of the discrete algebraic Riccati
equation (DARE)

P = APA′ +GRwwG
′

− (APC ′ +GRwv)(Rvv + CPC ′)−1(APC ′ +GRwv)′

(11)

By assumption 1) and 2), this limit, P , is unique, positive
semi-definite, and stabilizing (i.e. A−KpxC is stable).

Proof: See [40].
In the following, we assume that the system is stochastic

stationary, i.e. that P0|−1 = P . P is computed as specified
in Theorem 1. Then the gain matrices used by the filter and
the one-step-ahead predictor may be computed as

Rfe = CPC ′ +Rvv (12a)

Kfx = PC ′R−1fe (12b)

Kfw = RwvR
−1
fe (12c)

Kpx = AKfx +GKfw = (APC ′ +GRwv)R−1fe (12d)
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The filtered estimates, x̂k|k and ŵk|k, are computed by

ek = yk − Cx̂k|k−1 (13a)
x̂k|k = x̂k|k−1 +Kfxek (13b)
ŵk|k = Kfwek (13c)

and the one-step-ahead prediction of the states, x̂k+1|k, as
well as the (j + 1)-step-ahead predictions may be obtained
using

x̂k+1|k = Ax̂k|k +Buk +Gŵk|k (14a)
x̂k+1+j|k = Ax̂k+j|k +Buk+j j = 1, 2, . . . , N − 1

(14b)
ŷk+j|k = Cx̂k+j|k j = 1, 2, . . . , N (14c)

Combining (13b), (13c) and (14a), the one-step prediction
may also be expressed as

x̂k+1|k = Ax̂k|k−1 +Buk +Kpxek (15)

Remark 4: Models in innovation form with P0|−1 = 0
converges to limk→∞ Pk|k−1 = P = 0. Therefore, Kfx =
0, Kfw = I , Kpx = K, x̂k|k = x̂k|k−1, ŵk|k = ek, and
x̂k+1|k = Ax̂k|k−1 +Buk +Kek.

Remark 5: A key observation is that when the process
and measurement noise are correlated (Rwv 6= 0), the gain
Kfw 6= 0 and the process noise term in (14a) are in general
non-zero. When using the separation principle and deriving
the optimal regulator, it is important to include this term. For
the usual case with uncorrelated process and measurement
noise, Rwv = 0 and Kfw = 0 such that ŵk|k = 0. In this
case, the term Gŵk|k in (14a) is zero and drops out.

IV. MODEL PREDICTIVE CONTROL

In this section, we use the predictions (14) to develop
receding horizon optimal regulators. We state the optimal
control law for the case without constraints. We also state
the quadratic optimization problem for the case with hard
input constraints.

A. Unconstrained MPC

Define the objective function by

φ =
1

2

N−1∑
j=0

∥∥ŷk+1+j|k − rk+1+j|k
∥∥2
Q

+ ‖∆uk+j‖2S (16)

The first term penalizes deviations of the predicted
outputs,

{
ŷk+j+1|k

}N−1
j=0

from the anticipated set-points,{
rk+j+1|k

}N−1
j=0

. The second term is a regularization term
that penalizes excessive movement, ∆uk = uk − uk−1, of
the manipulated variable. It used to ensure smoothness of the
solution.

The finite horizon optimal control problem with the ob-
jective function (16) and the predictions (14) may be stated
as

min
{uk+j}N−1

j=0

φ s.t. (14) (17)

The solution to this quadratic program may be stated explic-
itly as

uk = Lxx̂k|k + Lwŵk|k + LRRk + Luuk−1 (18)

Rk =
[
rk+1|k; rk+2|k; . . . ; rk+N |k

]
is a vector with

the anticipated future set-points. The derivation and the
expressions for the gains, {Lx, Lw, LR, Lu}, are provided in
Appendix I. Appendix II derives the corresponding closed-
loop properties.

Remark 6: For a model in innovation form with P0|−1 =
0, the innovation is, ek = yk − Cx̂k|k−1, the controller is

uk = Lxx̂k|k−1 + Lwek + LRRk + Luuk−1 (19)

and the one-step prediction is x̂k+1|k = Ax̂k|k−1 + Buk +
Kek.

Remark 7: Note that the optimal control law (18) includes
the term Lwŵk|k. This term arises due to the correlation
between the process and the measurement noise. In most
derivations of the LQG controller this term has been ne-
glected. Therefore, such control laws are not applicable
to models with correlated process and measurement noise.
Accordingly, they are not applicable to state space models
in innovation form.

B. Input Constrained MPC

In practical control applications, the inputs are bounded
in size and rate of movement. Consider the input bound
constraints

umin ≤ uk+j ≤ umax j = 0, . . . , N − 1 (20)

and the rate of input movement constraints

∆umin ≤ ∆uk+j ≤ ∆umax j = 0, . . . , N − 1 (21)

Then the open-loop finite horizon optimal control problem
with the objective function (16), the predictions (14), and
the input constraints (20)-(21) may be stated as the convex
quadratic program

min
{uk+j}N−1

j=0

φ (22a)

s.t. (14), (20), (21) (22b)

Only the first input, uk, of the optimal input sequence,
{uk+j}N−1j=0 , is implemented. Consequently, this regulator
can be stated as the function

uk = µ(x̂k|k, ŵk|k,
{
rk+j|k

}N
j=1

, uk−1) (23)

in which it is understood that the function, µ, involves
solution of a convex quadratic program. It should be noted
that (14a) is included as a constraint in (22) and that is has
a term, Gŵk|k, due to the correlation of the process and
measurement noise. In most MPC descriptions, this term is
neglected. Consequently, these MPCs are not applicable to
systems with correlated process and measurement noise. The
computational steps in this controller are stated in Algorithm
1.
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Algorithm 1 MPC for Systems with Correlated Noise

Require: yk,
{
rk+j|k

}N
j=1

, x̂k|k−1, uk−1
Filter:
ek = yk − Cx̂k|k−1
x̂k|k = x̂k|k−1 +Kfxek
ŵk|k = Kfwek
Regulator:
uk = µ(x̂k|k, ŵk|k,

{
rk+j|k

}N
j=1

, uk−1)
One-step predictor:
x̂k+1|k = Ax̂k|k +Buk +Gŵk|k
Return: uk, x̂k+1|k

V. SIMULATED FURNACE EXAMPLE

To illustrate the controllers suggested in this paper, we
control discrete-time systems

xk+1 = Axk +Buk +Gwk + Edk (24a)
zk = Czxk (24b)
yk = Cxk + vk (24c)

using model predictive controllers designed based on state
space models in innovation form

x̄k+1 = Āx̄k + B̄uk + K̄ek (25a)
yk = C̄x̄k + ek (25b)

We consider an industrial furnace example [41]. The furnace
is described by

Z(s) = G(s)U(s) +H(s)(D(s) + W (s)) (26a)
y(tk) = z(tk) + v(tk) (26b)

in which z is the output, u is the manipulated variable, d
is the deterministic unknown disturbances, w is a stochas-
tic disturbance, y is the measurement, and v is measure-
ment noise. u, d, and w are assumed to be piecewise
constant within a sample period (Ts = 2). [wk; vk] ∼
Niid([0; 0], [Rww Rwv;R′wvRvv]) with Rww = 0.32, Rwv =
0.012, and Rwv = 0. The transfer functions are

G(s) =
20

(40s+ 1)(4s+ 1)
e−50s (27a)

H(s) =
−5

(5s+ 1)2
e−10s (27b)

This model of the system is realized in the state space form
(24). The model used by the controller is (1) and (3) with

A(q−1) = 1− 1.5578q−1 + 0.5769q−2 (28a)

B(q−1) = 0.2094q−26 + 0.1744q−27 (28b)

C(q−1) = 1 (28c)

F (q−1) = 1− q−1 (28d)

G(q−1) = 1− αq−1 (28e)

A(q−1) and B(q−1) are obtained by an exact discretization
of G(s) with the sampling time Ts = 2. The filter (3) is
used to ensure steady-state offset free control. The tuning

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Ru

R
z

 

 

α = 0.99
α = 0.95
α = 0.9
α = 0.7
α = 0.01

Fig. 1. Output variance, Rz , versus input variance, Ru, for different values
of α. The curves are generated by varying S. In all cases the lowest output
variance is obtained by turning the controller off (i.e. S → ∞).

parameter α is selected to trade off sensitivity to noise versus
speed of estimation of unknown disturbances. The model
(1) and (3) with (28) is realized as a state space model in
innovation form (25). |uk| ≤ 1 and the control and prediction
horizon, N = 150, is long to emulate an infinite horizon
controller and thereby eliminate the effect of discrepancies
between open-loop and closed-loop profiles. The penalty
on set-point deviation is Q = 1 such that the only tuning
parameters of the controller are S ∈ [0,∞[ and α ∈ [0, 1[.

Fig. 1 illustrates the closed-loop variance of z and u for
the system. In contrast to systems without long time delay,
the output variance cannot be reduced by control. The lowest
output (and input) variance is obtained from a completely
detuned controller. The filter (3) with (28d)-(28e) provides
steady-state offset free control for α < 1. α = 0 corresponds
to a pure integrator while α = 1 implies no filter, i.e.
G(q−1)/F (q−1) = 1. No or low filtering (α ≈ 1) provides
the lowest output variance but at the expense of steady-state
offset or rejecting step disturbances very slowly.

Fig. 2 and 3 illustrate the effect of a sinusoidal disturbance,
w, with different frequencies on the magnitudes of u and z
for two values of α and different values of S. These computa-
tions are for the unconstrained controller. The step responses
of the constrained controller for the same tuning parameters
are also illustrated in Fig. 2 and 3. While the responses to
step disturbances indicate that a low value of S should be
selected, the frequency response analysis indicates that an
aggressive tuning (low values of S) magnifies disturbances
at high frequencies dramatically. Therefore, one should de-
tune the controller as suggested by the frequency response
analysis and the closed-loop variance analysis (Fig. 1). From
the step response simulation, the best tuning seems to be
(S, α) = (0.1, 0.95), while the combined frequency response
analysis and step response simulation suggest the tunings
(S, α) = (105, 0.7) or (S, α) = (103, 0.95). The frequency
response analysis for all these tunings reveal that the closed-
loop magnitude of the output at certain frequencies is larger
that output magnitude of the open-loop system. To avoid this,
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(b) Closed-loop response of input constrained MPC.

Fig. 2. The closed loop effects on u and z of process disturbances, w, at
different frequencies (a) and a step disturbance, d (b) for different tunings.
α = 0.7.

S must be increased significantly at the price of very slow
disturbance rejection.

Fig. 4 illustrates the response to an unknown
step for the closed loop system with stochastic
process and measurement noise for the three tunings
(S, α) =

{
(0.1, 0.95), (105, 0.7), (103, 0.95)

}
. The

closed loop variances of the three tunings are
(Rz, Ru) = {(0.52, 0.23), (0.28, 0.00071), (0.34, 0.0026)}.
While the outputs of three different tunings are similar, the
input of the first tuning is very plant unfriendly. Simulations
not shown also demonstrate that this tuning is very sensitive
to plant-model mismatch. Consequently, what from a
deterministic step response simulation point of view seemed
to be a very attractive tuning is useless from a practical point
of view when stochastic noise and model-plant mismatch are
considered. The tunings (S, α) =

{
(105, 0.7), (103, 0.95)

}
give similar performance. The first tuning has a lower
variance at the price of a slightly longer time to reject a step
disturbance. Fig. 5 illustrates the closed-loop response to a
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(a) Closed-loop frequency response analysis. Amplitude of u and z.
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(b) Closed-loop response of input constrained MPC.

Fig. 3. The closed loop effects on u and z of process disturbances, w, at
different frequencies (a) and a step disturbance, d (b) for different tunings.
α = 0.95

deterministic step disturbance at time t = 2 for the tuning
(S, α) = (105, 0.7) when the model used by the controller
(28a)-(28b) corresponds to the gains K = 40 (blue), K = 20
(red, plant gain), and K = 10 (green). The tuning chosen
by the combined frequency response analysis, closed-loop
variance analysis, deterministic- and stochastic simulations
gives a controller that is robust to large gain uncertainties.
Similar, studies have been performed for the time delay and
the dominant time constant. The controller with the tuning
(S, α) = (105, 0.7) is robust to plant-model mismatch. The
controller which from a deterministic simulation point of
view appears the most promising, (S, α) = (0.1, 0.95), is
useless in the face of stochastic noise and is very sensitive
to model-plant mismatch.

VI. CONCLUSION

In this paper, we derived and provided the correct finite-
horizon control law for linear quadratic systems with cor-
related Gaussian process and measurement noise. The cor-
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Fig. 5. The closed-loop response of the constrained MPC with (S, α) =
(105, 0.7) and a model corresponding to the gains K = 40 (blue), K = 20
(red), and K = 10 (green). The plant has gain K = 20. This controller is
robust to plant-model mismatch.

relation gives a term, Lwŵk|k, in the optimal control law
that is usually not considered. We use the correct optimal
control law to develop a state-space model for the closed-
loop system. This closed-loop state space model explicitly
allows the controller model to be different from the plant
model. Such plant-model mismatch is almost always present,
due to the introduction of a disturbance model (filter) with
an integrator in the controller model to ensure that the
controller yields steady-state offset free control in the face
of unknown step disturbances. Similarly, we develop the
correct input constrained predictive controller for correlated
process and measurement noise. The closed-loop expression
for the unconstrained controller facilitates tuning of the input
constrained MPC controller.

FIR, ARX, ARMAX, Box-Jenkins may be realized as
state space models in innovation form. Similarly, subspace

methods yield state space models in innovation form. State
space models in innovation form have correlated process and
measurement noise.

APPENDIX I
FINITE-HORIZON LQ REGULATOR

The finite horizon predictive linear quadratic regulation
problem may be stated as

min
{uk+j}

φ =
1

2

N−1∑
j=0

∥∥ŷk+1+j|k − rk+1+j|k
∥∥2
Q

+ ‖∆uk+j‖2S

(29a)
s.t. x̂k+1|k = Ax̂k|k +Buk +Gŵk|k (29b)

x̂k+1+j|k = Ax̂k+j|k +Buk+j j = 1, ..., N − 1
(29c)

ŷk+j|k = Cx̂k+j|k j = 1, . . . , N
(29d)

By including the possible non-zero filtered process noise,
ŵk|k in (29b), this LQ regulator allows for possible cross-
couple process and measurement noise in the stochastic
linear state space model describing the system. In most text-
books and treatments, the LQ regulator is developed for
ŵk|k = 0, and such LQ regulators are not valid for systems
with cross-coupled noise. In particular, such LQ controllers
are not valid for systems in innovation form.

Define the vectors as

Yk =


ŷk+1|k
ŷk+2|k

...
ŷk+N |k

 Rk =


rk+1|k
rk+2|k

...
rk+N |k

 Uk =


uk
uk+1

...
uk+N−1


Then the constraints (29b)-(29d) may be used to express the
outputs by the affine relation

Yk = ΓUk + bk (30)

with
bk = Φxx̂k|k + Φwŵk|k (31)

and

Γ =


H1 0 . . . 0
H2 H1 . . . 0

...
...

...
HN HN−1 . . . H1

 (32)

Φx =


CA
CA2

...
CAN

 Φw =


CG
CAG

...
CAN−1G

 (33)

The impulse response coefficients (Markov parameters) used
to assemble Γ are

Hi = CAi−1B i = 1, 2, . . . , N (34)
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Define

∆Uk =


∆uk

∆uk+1

...
∆uk+N−1

 =


uk − uk−1
uk+1 − uk

...
uk+N−1 − uk+N−2


such that

∆Uk = ΦuUk − I0uk−1 (35)

with

Φu =


I 0 0 . . . 0 0
−I I 0 . . . 0 0
0 −I I . . . 0 0
...

...
...

...
...

0 0 0 . . . −I I

 I0 =


I
0
0
...
0

 (36)

Using (30) and (35), the objective function in (29) may be
expressed as the quadratic function

φ =
1

2

N−1∑
j=0

∥∥ŷk+1+j|k − rk+1+j|k
∥∥2
Q

+ ‖∆uk+j‖2S

=
1

2
‖Yk −Rk‖2Q +

1

2
‖∆Uk‖2S

=
1

2
‖ΓUk + bk −Rk‖2Q +

1

2
‖ΦuUk − I0uk−1‖2S

=
1

2
U ′kHUk + g′kUk + ρk

(37)

with Q = IN ⊗Q, S = IN ⊗ S, and

H = Γ′QΓ + Φ′uSΦu (38a)
gk = − (Γ′Q(Rk − bk) + Φ′uSI0uk−1) (38b)

ρk =
1

2
‖ck‖2Q +

1

2
‖uk−1‖2S (38c)

Consequently, by state elimation (29) may be expressed as
an unconstrained convex quadratic optimization problem

min
Uk

φ =
1

2
U ′kHUk + g′kUk + ρk (39)

Provided the weights (Q,S) are chosen such that H is
positive definite, this unconstrained convex quadratic opti-
mization problem has the solution

Uk = −H−1gk = L̄xx̂k|k + L̄wŵk|k + L̄RRk + L̄uuk−1
(40)

with the gain matrices defined as

L̄x = −H−1Γ′QΦx (41a)

L̄w = −H−1Γ′QΦw (41b)

L̄R = H−1Γ′Q (41c)

L̄u = H−1Φ′uSI0 (41d)

The optimal control, uk, to implement on the system is

uk = I ′0Uk = Lxx̂k|k + Lwŵk|k + LRRk + Luuk−1 (42)

with

Lx = I ′0L̄x = −I ′0H−1Γ′QΦx (43a)

Lw = I ′0L̄w = −I ′0H−1Γ′QΦw (43b)

LR = I ′0L̄R = I ′0H
−1Γ′Q (43c)

Lu = I ′0L̄u = I ′0H
−1Φ′uSI0 (43d)

The term Lwŵk|k in the optimal control law (42) should be
noticed. In many textbooks, this term is missing. Therefore,
the corresponding control laws are not valid for system with
cross-correlated noise. In addition, the stated control law
depends on the anticipated reference trajectory,

{
rk+j|k

}N
j=1

.
This implies that the current control, uk, may change due to
future anticipated reference changes.

APPENDIX II
CLOSED-LOOP PROPERTIES

Consider the stochastic linear time invariant system

xk+1 = Axk +Buk +Gwk + Edk (44a)
zk = Czxk (44b)
yk = Cxk + vk (44c)

and the corresponding time invariant output feedback LQ
controller

ek = yk − Ĉx̂k|k−1 (45a)
x̂k|k = x̂k|k−1 +Kfxek (45b)
ŵk|k = Kfwek (45c)
uk = Lxx̂k|k + Lwŵk|k + LRRk + Luuk−1 (45d)

x̂k+1|k = Âx̂k|k + B̂uk + Ĝŵk|k (45e)

Note that we allow the model (Â, B̂, Ĝ, Ĉ) used by the
controller and in the design of (Kfx,Kfw, Lx, Lw, LR, Lu)
to be different from the system (A,B,G,E,C). In particular,
the disturbances, dk, are unknown to the controller and
the controller model may be augmented with a disturbance
model to ensure offset free control.

Define

Λ = LxKfx + LwKfw (46a)

Λ̂ = ÂKfx + ĜKfw + B̂Λ (46b)
Acl = A+BΛC (46c)

Then the closed-loop evolution, i.e. the evolution of (44) and
(45), may be described by xk+1

x̂k+1|k
uk

 =

Acl B(Lx − ΛĈ) BLu

Λ̂C Â+ B̂Lx − Λ̂Ĉ B̂Lu

ΛC Lx − ΛĈ Lu

 xk
x̂k|k−1
uk−1



+

G BΛ BLR E

0 Λ̂ B̂LR 0
0 Λ LR 0



wk

vk
Rk

dk


(47a)
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and the resulting output, yk, and input, uk, are given byzkyk
uk

 =

Cz 0 0
C 0 0

ΛC Lx − ΛĈ Lu

 xk
x̂k|k−1
uk−1



+

0 0 0 0
0 I 0 0
0 Λ LR 0



wk

vk
Rk

dk


(47b)

A. Variance and Transfer Function

The state space representation (47) of the closed loop
system is of the form

xk+1 = Axk +Buk (48a)
yk = Cxk +Duk (48b)

The discrete transfer function model

Y (z) = G(z)U(z) (49)

with the transfer function

G(z) = C(zI −A)−1B +D (50)

may be used to compute the gains from various inputs
to various outputs at different frequencies. (50) is used to
compute |G(z)| for z = eiωTs for various frequencies, ω. Ts
is the sampling time. (50) may also be used for computation
of the spectral density.

Assuming that A is stable, the stationary variance of the
outputs, Ry , may be computed by

Rx = ARxA
′ +BRuB

′ (51a)
Ry = CRxC

′ +DRuD
′ (51b)

Ru is the variance of the input signal. Rx is computed by
solving a discrete Lyapunov equation.
G(z) and Ry are useful in analyzing the properties of the

closed loop system (47) for different values of the controller
tuning parameters.
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