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Abstract— Illiquidity and market impact refer to the situation
where it may be costly or difficult to trade a desired quantity of
assets over a desire period of time. In this paper, we formulate
a simple model of dynamic portfolio choice that incorporates
liquidity effects. The resulting problem is a stochastic linear
quadratic control problem where liquidity costs are modeled
as a quadratic penalty on the trading rate. Though easily
computable via Riccati equations, we also derive a multiple time
scale asymptotic expansion of the value function and optimal
trading rate in the regime of vanishing market impact costs.
This expansion reveals an interesting but intuitive relationship
between the optimal trading rate for the “illiquid” problem
and the classical Merton model for dynamic portfolio selection
in perfectly liquid markets. It also gives rise to the notion of
a “liquidity time scale” which shows how trading horizon and
market impact costs affect the optimal trading rate.

I. INTRODUCTION

Market impact and illiquidity refer to situations where
it may be costly or difficult to trade a desired quantity of
assets in a desired period of time. In this paper, we present
a simple model of portfolio choice with liquidity effects.
Our model is a linear-quadratic stochastic control problem
where the objective is the sum of quadratic utility of terminal
wealth and a new quadratic penalty on the trading rate which
accounts for liquidity effects. It is a generalization of the
classical Merton problem for dynamic portfolio choice [1]
in which liquidity effects are ignored (see also the recent
papers [2], [3], [4], [5], [6], [7], [8] for other models of
liquidity in portfolio choice and risk management).

Several highlights of our paper are as follows. Firstly,
we show that our model is equivalent to another problem
where the objective is to trade at rate such that the risky
asset holding tracks the optimal holding of the perfectly
liquid Merton problem with minimal cost. This gives an
intuitively appealing relationship between two approaches
for accounting for illiquidity. Secondly, we derive a multiple
time scale asymptotic expansion of the value function and
optimal trading rate in the case of vanishing market impact
costs, which allows us to understand the relationship between
the “illiquid problem” and the perfectly liquid Merton prob-
lem. The asymptotic expansion shows that to a first order, the
investor trades to decrease the gap between his/her current
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position and optimal holding for the Merton problem, and
that the trading rate is increasing in the volatility of the
risky asset, the risk-aversion of the investor, the market depth,
and the remaining trading time. Additionally, the asymptotic
expansion leads to the introduction of a “liquidity time scale”
(T − t)/

√
λ which captures the intuitive notion that the

(remaining) trading horizon T − t should be evaluated not
only in “calendar time”, but also in the context of market
impact costs λ and the ease of trading.

An outline of the paper is as follows. We introduce the
classical Merton problem in Section II for optimal dynamic
portfolio selection in perfectly liquid markets. Our model
of portfolio selection with market impact costs, which are
modeled as a penalty on the trading rate, is introduced in
Section III. This model is shown to be equivalent to another
portfolio choice problem in Section IV, where the goal is to
track the optimal portfolio of the (perfectly liquid) Merton
problem with minimal market impact costs. In Section V,
we derive a multiple time scale asymptotic expansion of the
value function and optimal portfolio for the market impact
problems in the regime of vanishing liquidity cost, which
leads to the important and intuitive notion of the liquidity
time scale. Examples are presented in Section VI.

Due to limitations in space, longer proofs have not been
included. The interested reader is referred to [9].

II. PORTFOLIO SELECTION PROBLEM IN LIQUID
MARKET

We recall the classical Merton problem [1] for frictionless
markets.

Asset Dynamics

For simplicity, we consider a market with one risky
asset and one risk-free asset. Our results can be extended
to multiple assets with no essential difficulty. We model
uncertainty using Brownian motion which is assumed to live
on a filtered probability space (Ω, F , P, {F t}) over a finite
time horizon [0, T ]. The risky asset price s(t) is assumed to
follow geometric Brownian motion

ds(t) = µs(t)dt +σs(t)dw(t), (1)

with expected return µ and volatility σ . The risk-free asset
price process s0(t) satisfies

ds0(t) = rs0(t)dt

with risk-free rate of return r.
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The Merton problem

Let n(t) be the number of shares of the risky asset at time
t. The wealth x(t) of a self-financing investor satisfies

dx(t) = {x(t)r+n(t)s(t)(µ− r)}dt +n(t)s(t)σdw(t)

We rewrite the wealth dynamics in terms of the dollar value
π(t), n(t)s(t) of the risky asset holding

dx(t) =
{

x(t)r+π(t)(µ− r)
}

dt +π(t)σdw(t). (2)

The classical Merton problem maximizes expected utility of
terminal wealth

sup
π(·)

E{Φ(x(T ))}

subject to:

dx(t) = {x(t)r+π(t)(µ− r)}dt +π(t)σdw(t)

x(0) = x0.

(3)

The value function V (t, x) for (3) is the solution of the
dynamic programming equations Vt + sup

π

{
xrVx +π(µ− r)Vx +

1
2

π
2
σ

2Vxx

}
= 0

V (T,x) = Φ(x(T )).
(4)

Explicit solutions for the Merton problem and the associated
dynamic programming equation can be found when the
utility function is of power, exponential, logarithmic and
quadratic type. In the case of quadratic utility the Merton
problem is a linear quadratic problem and we have the
following result.

Proposition 2.1: The value function for the Merton prob-
lem (3) with quadratic utility function Φ(x(T )) = x(T )−
η

2 x(T )2 is

VM(t,x) =−1
2

AM(t)x2 +BM(t)x+CM(t) (5)

where

AM(t) = ηe(2r− (µ−r)2

σ2 )(T−t)
,

BM(t) = e(r−
(µ−r)2

σ2 )(T−t)
,

CM(t) =
1

2η
(1− e−(

µ−r
σ

)2(T−t)).

The optimal investment policy is

π
∗
M(t,x) =

µ− r
σ2

(BM(t)
AM(t)

− x
)
. (6)

(The subscript M is added for future reference.)

III. ILLIQUID PORTFOLIO SELECTION: MODEL I

In this section, we account for liquidity effects by formu-
lating a modification of the Merton problem in which fast
trading is expensive. In this model, trading rate is the control
variable while the wealth and the risky asset position are the
states.

Trading rate

Let n(t) denote the number of shares in the risky asset, n0
be the initial risky asset holding, and ρ(t) denote the rate at
which shares in the risky asset are being purchased at time t,
which is controlled by the investor. The risky asset holding
satisfies

dn(t) = ρ(t)dt, n(0) = n0. (7)

As in the Merton problem (3) let π(t) , n(t)s(t) denote
the dollar value of the risky asset holding. In contrast to
the Merton problem, where π(t) is the control variable, the
assumption that n(t) satisfies (7) means that π(t) can only
be controlled through the trading rate ρ(t) and needs to be
treated as a state. Ito’s formula together with (1) and (7)
imply that

dπ(t) = {ρ(t)s(t)+π(t)µ}dt +π(t)σdw(t).

Defining ρ̄(t), ρ(t)s(t), it follows that

dπ(t) = {ρ̄(t)+π(t)µ}dt +π(t)σdw(t) (8)

where ρ̄(t) can be interpreted as the trading rate, in dollars
per unit time, of the risky asset. The equation (8) tells us
that changes in the dollar value of the risky asset holding
equals the increase due to inflow at rate ρ̄(t) = ρ(t)s(t)
per unit time from the money market account and the
change π(t)µdt+π(t)σdw(t) due to fluctuations in the value
of assets already being held. The self-financing condition
implies that the wealth process x(t) remains unchanged from
the Merton problem and is given by (2).

Liquidity costs

To incorporate the idea that it is costly to trade large
quantities of an asset in small periods of time, we consider
the problem

sup
ρ̄(·)

E
{
−
∫ T

0

λ

2
ρ̄(t)2dt +Φ(x(T ))

}
subject to:

dx(t) = {x(t)r+π(t)(µ− r)}dt +π(t)σdw(t)

dπ(t) = {ρ̄(t)+π(t)µ}dt +π(t)σdw(t)

ρ̄(·) ∈A , x(0) = x0, π(0) = π0

(9)

where A is the class of admissible controls defined as

A =
{

ρ̄ : [0, T ]×Ω→ R
∣∣∣ such that ρ̄(·) is {Ft}-adapted

and E
∫ T

0
|ρ(t)|2dt < ∞

}
Aside from the dynamics, which we have already discussed,
a key modification relative to the Merton problem (3) is the
introduction of the quadratic penalty on the trading rate

E
∫ T

0

λ

2
ρ̄(t)2dt (10)

in the objective. Optimizing (9) involves a trade-off between
maximizing expected utility E[Φ(x(T ))] and minimizing the
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cost of trading. The quadratic |ρ̄(t)|2 in (10) means that
marginal cost of trading increases in the trading rate. The
illiquidity coefficient λ > 0 is large when illiquidity frictions
are large. Similar models for liquidity costs have been
proposed for dynamic models of active portfolio investment
([10], [11]). To our knowledge, this paper is the first in
which such a model is used in the context of a Merton-
type problem. It can be shown that the value function for (9)
satisfies the dynamic programming equations

Vt + sup
ρ̄

{
− 1

2
λρ̄

2 + xrVx +π(µ− r)Vx +πµVπ + ρ̄Vπ

+
1
2

π
2
σ

2(Vxx +2Vxπ +Vππ)
}
= 0

V (T,x,π) = Φ(x).
(11)

When the utility function is quadratic, the value function and
the optimal trading rate can be characterized as follows.

Proposition 3.1: Suppose that the liquidity cost parameter
λ is positive and the utility function is quadratic with risk-
aversion parameter η > 0:

Φ(x) = x− η

2
x2.

Then the value function for the portfolio selection problem
(9) is

V (t,x,π) =− 1
2
[

x π
][ A11(t) A12(t)

A12(t) A22(t)

][
x
π

]
+
[

B1(t) B2(t)
][ x

π

]
+C(t), (12)

and the optimal trading rate satisfies

ρ̄
∗(t,x,π) =

1
λ
(B2(t)−A12(t)x−A22(t)π). (13)

The coefficients

A(t) =
[

A11(t) A12(t)
A12(t) A22(t)

]
, B(t) =

[
B1(t)
B2(t)

]
and C(t)

are the solutions to the system of ODEs:
Ȧ(t)+R′A(t)+A(t)R+Σ

′A(t)Σ− 1
λ

A(t)SS′A(t) = 0

A(T ) =
[

η 0
0 0

]
(14)

Ḃ(t)+R′B(t)− 1
λ

A(t)SS′B(t) = 0

B(T ) =
[

1
0

] (15)

 Ċ+
1

2λ
(S′B(t))2 = 0

C(T ) = 0
(16)

where R =

[
r µ− r
0 µ

]
, Σ =

[
0 σ

0 σ

]
, S =

[
0
1

]
.

Although the value function and optimal trading rate for
(9) can be characterized and easily computed numerically
when the utility function Φ(x) is quadratic, the expressions

(12)-(16) are not particularly insightful. For instance, it is by
no means clear how the presence of market impact effects in
(9) modify the value function and optimal policy relative to
the solution of the Merton problem. To clarify these issues
we introduce an alternative formulation of the market impact
problem which provides us a simple and intuitive relationship
between the market impact problem and the Merton problem.

IV. ILLIQUID PORTFOLIO SELECTION: MODEL II

Model II

Let q : [0, T ]→ (0, ∞) be a deterministic strictly positive
function of time, ξ (t) denote the trading rate, x(t) the
investor’s wealth, and π(t) his position in the risky asset.
Consider the problem

inf
ξ (·)

E
{∫ T

0

λ

2
ξ (t)2 +

1
2

q(t){π(t)−π
∗
M(t,x(t))}2dt

}
subject to:

dx(t) = {x(t)r+π(t)(µ− r)}dt +π(t)σdw(t)

dπ(t) = {ξ (t)+π(t)µ}dt +π(t)σdw(t)

ξ (·) ∈A , x(0) = x0, π(0) = π0.
(17)

In this problem, the goal is to track the solution

π
∗
M(t, x(t)) =

µ− r
σ2

(BM(t)
AM(t)

− x(t)
)

of the Merton problem (3) at minimal cost. Observe that
the dynamics of this problem are identical to those of the
illiquid problem (9). The value function H(t, x, π) of (17) is
the solution of the dynamic programming equations

Ht + inf
ξ

{1
2

λξ
2 +

1
2

q(t){π−π
∗
M(t,x)}2 + xrHx

+π(µ− r)Hx +πµHπ +ξ Hπ

+
1
2

π
2
σ

2(Hxx +2Hxπ +Hππ)
}
= 0

H(T,x,π) = 0.

(18)

Linearity of πM(t, x(t)) in x(t) together with the form of
the objective and state equations also imply that the value
function for (17) is quadratic in the state variables (x, π).

Relationship to the Merton problem

Let

W (t,x,π),VM(t,x)−V (t,x,π) (19)

denote the difference between the value functions for the
Merton problem and the illiquid problem (9). Direct substi-
tution of (5) and (12) gives

W (t,x,π) =
1
2

[
x
π

]′
α(t)

[
x
π

]
−β (t)′

[
x
π

]
− γ(t),

(20)
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where α(t),β (t) and γ(t) satisfy
α(t) = A(t)−

[
AM(t) 0

0 0

]
,

β (t) = B(t)−
[

BM(t)
0

]
,

γ(t) =C(t)−CM(t).

(21)

Since A(t),B(t) and C(t) satisfy (14)-(16), it follows that
α(t),β (t) and γ(t) solve

α̇(t)+R′α(t)+α(t)R+Σ
′
α(t)Σ− 1

λ
α(t)SS′α(t)

+

[
( µ−r

σ
)2 µ− r

µ− r σ2

]
AM(t) = 0

α(T ) =
[

0 0
0 0

]
(22)

β̇ (t)+R′β (t)− 1
λ

α(t)SS′β (t)+
[

( µ−r
σ

)2

µ− r

]
BM(t) = 0

β (T ) =
[

0
0

]
(23) γ̇ +

1
2λ

(S′β (t))2− 1
2
(

µ− r
σ

)2 BM(t)2

AM(t)
= 0

γ(T ) = 0.
(24)

It is interesting to note that (22) is a Riccati equation. This
suggests that W (t, x, π) may be related to the value function
of some linear quadratic control problem and it is natural to
attempt constructing this problem from the equations (22)-
(24) and to interpret it from a financial perspective. Along
these lines, it can be shown that W (t, x, π) is the value
function of the linear-quadratic control problem

inf
ρ̄(·)

E
{∫ T

0

λ

2
ρ̄(t)2 +

1
2

AM(t)

[
x(t)− BM(t)

AM(t)
π(t)

]′

×
[

( µ−r
σ

)2 µ− r
µ− r σ2

][
x(t)− BM(t)

AM(t)
π(t)

]
dt
}

subject to the same constraints in (9). Observing that the
optimal solution of the Merton problem π∗M(t, x) is given by
(6), this problem can be written as

inf
ξ (·)

E
{∫ T

0

λ

2
ξ (t)2 +

1
2

σ
2AM(t){π(t)−π

∗
M(t,x(t))}2dt

}
subject to:

dx(t) = {x(t)r+π(t)(µ− r)}dt +π(t)σdw(t)

dπ(t) = {ξ (t)+π(t)µ}dt +π(t)σdw(t)

ξ (·) ∈A , x(0) = x0, π(0) = π0,
(25)

which is exactly (18) with q(t) = σ2AM(t). The dynamic
programming equation for this problem is

Wt + inf
ξ

{1
2

λξ
2 +

1
2

σ
2AM(t){π−π

∗
M(t,x)}2 + xrWx

+π(µ− r)Wx +πµWπ +ξWπ

+
1
2

π
2
σ

2(Wxx +2Wxπ +Wππ)
}
= 0

W (T,x,π) = 0,
(26)

for which W (t, x, π) is the solution.
In summary, we have related two formulations (9) and (25)

of portfolio selection problems with market impact costs and
the Merton problem (3). The following result summarizes
these observations and also relates the optimal trading rate
policy of (25) to that of the illiquid problem (9).

Theorem 4.1: Let V (t, x, π) and W (t, x, π) denote the
value functions for the market impact problems (9) and (25),
respectively, and VM(t, x) denote the value function for the
Merton problem (3). Then

W (t, x, π) =VM(t,x)−V (t,x,π).

Moreover, both problems (9) and (25) have identical optimal
trading policies:

ρ̄
∗(t,x,π) = ξ

∗(t,x,π) =
1
λ
(β1(t)−α12(t)x−α22(t)π).

(27)
Proof: We have already shown that W (t, x, π) =

V (t, x, π)−VM(t, x) satisfies (20) and (22)-(24), and can
be shown by direct substitution that (20)-(24) solves the
dynamic programming equations (26) for the problem (25)
and that the optimal trading policy ξ ∗(t, x, π) is given by
(27), which by Proposition 3.1 is also the optimal trading
rate for the illiquid problem (9).

V. ASYMPTOTIC EXPANSIONS

Although Theorem 4.1 establishes an interesting rela-
tionship between the Merton problem and two seemingly
different formulations of portfolio selection problems that
account for market impact costs, the relationship between the
optimal trading rate (27) and the solution of the fully liquid
Merton problem is not particularly clear. In this section, we
utilize multiple time scale perturbation methods to derive
an approximation of the system (22)-(24) and the optimal
trading rate (27) that is exact as the trading cost parameter
λ vanishes. This analysis establishes an intuitive connection
between the optimal trading rate and the value function of
the illiquid problem and the frictionless Merton problem.

Intuitively, we expect that the value function W (t,x,π)
of the problem (25) will go to zero as the trading cost
λ becomes small. This motivates us to derive asymptotic
expansions of W (t,x,π) in terms of λ . As a first step,
we have the following result on the limiting behavior of
α(t),β (t) and γ(t). We adopt definitions of O(ε) and o(ε)
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as follows: a real function f (t,ε) is O(ε) over an interval
[t1, t2] if there exist positive constants k and ε∗ such that

| f (t,ε)| ≤ kε ∀ε ∈ [0,ε∗], ∀t ∈ [t1, t2],

and f (t,ε) is o(ε) as ε approaches ε0 if limε→ε0
| f (t,ε)|

ε
= 0.

Lemma 5.1: α(t),β (t) and γ(t) are O(
√

λ ) over the in-
terval [0,T ].
Lemma 5.1 allows us to write

α(t) =
√

λa(t)+o(
√

λ ),

β (t) =
√

λb(t)+o(
√

λ ),

γ(t) =
√

λc(t)+o(
√

λ ).

where a(t),b(t) and c(t) are O(1) for all t ∈ [0,T ]. The
coefficients a(t),b(t) and c(t) can be calculated using mul-
tiple time scale perturbation techniques [12]. The result is
summarized in the following proposition.

Proposition 5.1: As λ approaches zero, the functions
α(t),β (t),γ(t) satisfy

α(t) =
√

λ σ
√

AM(t) tanh
(

σ
√

AM(t)
T − t√

λ

)
×

[
(µ−r)2

σ4
(µ−r)

σ2
(µ−r)

σ2 1

]
+o(
√

λ ) (28)

β (t) =
√

λ
σBM(t)√

AM(t)
tanh

(
σ
√

AM(t)
T − t√

λ

)
×
[

(µ−r)2

σ4
(µ−r)

σ2

]
+o(
√

λ ) (29)

γ(t) =
√

λ
σB2

M(t)

2A3/2
M (t)

tanh
(

σ
√

AM(t)
T − t√

λ

) (µ− r)2

σ4

+o(
√

λ ). (30)
Proof: First we assume that the α(t),β (t) and γ(t)

depend on two different time scales which are defined by

u , T − t and v ,
T − t√

λ
, (31)

and write 
α(u,v) =

√
λa(u,v)+o(

√
λ ),

β (u,v) =
√

λb(u,v)+o(
√

λ ),

γ(u,v) =
√

λc(u,v)+o(
√

λ ).

Under this re-parametrization, the time derivative becomes

d
dt
(·) =− ∂

∂u
(·)− 1√

λ

∂

∂v
(·)

and the system (22)-(24) is transformed into a system of

partial differential equations

√
λ

∂

∂u
a(u,v)+

∂

∂v
a(u,v) =− a(u,v)′SS′a(u,v)

+

[
( µ−r

σ2 )2 µ− r
µ−r
σ2 1

]
AM(u)+ o(

√
λ ),

√
λ

∂

∂u
b(u,v)+

∂

∂v
b(u,v) =− a(u,v)SS′b(u,v)

+
[
( µ−r

σ
)2 µ− r

]
BM(u)+ o(

√
λ ),

√
λ

∂

∂u
c(u,v)+

∂

∂v
c(u,v) =

1
2
(S′b(u,v))2

− 1
2
(

µ− r
σ

)2 BM(u)2

AM(u)
+o(
√

λ ).

The system corresponding to O(1) terms is

∂

∂v
a(u,v) =−a(u,v)′SS′a(u,v)

+

[
( (µ−r)

σ2 )2 (µ− r)
(µ−r)

σ2 1

]
AM(u),

∂

∂v
b(u,v) =−a(u,v)SS′b(u,v)+

[
( µ−r

σ
)2 µ− r

]
BM(u),

∂

∂v
c(u,v) =

1
2
(S′b(u,v))2− 1

2
(

µ− r
σ

)2 BM(u)2

AM(u)
.

which is explicitly solved by

a(u,v) = σ
√

AM(u) tanh
(

σ
√

AM(u)v
) [ (µ−r)2

σ4
(µ−r)

σ2
(µ−r)

σ2 1

]

b(u,v) =
σBM(u)√

AM(u)
tanh

(
σ
√

AM(u)v
) [

(µ−r)2

σ4
(µ−r)

σ2

]
c(u,v) =− σB2

M(u)

2A3/2
M (u)

tanh
(

σ
√

AM(u)v
) (µ− r)2

σ4 .

The result in Proposition 5.1 is obtained by replacing u and
v by their definitions in (31).
Observe that the approximation in Proposition 5.1 introduces
a new liquidity time scale T−t√

λ
. Intuitively, the amount of

trading that can be done on the time horizon T − t depends
on the liquidity/market impact costs. For example, one week
of trading could be plenty of time if liquidity costs are small
(i.e. T−t√

λ
is “large”) or barely enough time if trading costs

are large (i.e. T−t√
λ

is “small”), which is precisely the effect
that the liquidity time scale is trying to capture.

The following theorem gives asymptotic expansions of the
value functions V (t,x,π) and W (t,x,π) as well as the optimal
trading policy for the problems (9) and (25).

Theorem 5.1: With small λ , the value function of the
market impact problem (9) satisfies

V (t,x,π) =VM(t,x)−
√

λ
σ
√

AM(t)
2

tanh
(

σ
√

AM(t)
T − t√

λ

)
×
{

π
∗
M(t,x)−π

}2
+o(
√

λ ). (32)
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The optimal trading policy is

ρ̄
∗(t,x,π) =

σ
√

AM(t)√
λ

tanh
(

σ
√

AM(t)
T − t√

λ

){
π
∗
M(t,x)−π

}
+o(1/

√
λ ). (33)

Let x(t) and π(t) be wealth and risky asset holding processes
of an investor who adopts the trading rate (33). The differece
between the holding π(t) and that of the Merton investor is

E
{∫ T

0

[
π
∗
M

(
t, x(t)

)
−π(t)

]2
dt
}

=
√

λ
K
2
(π∗M(0,x(0))−π(0))2 +o(

√
λ ) (34)

where the coefficient

K =
1

2σ
√

AM(0)
tanh(σ

√
AM(0)

T√
λ
)

Proof: (32) and (33) follow immediately from the
characterization (20)-(24) of W (t, x, π), Theorem 4.1 on
the relationship between the value functions of the Merton
problem and the two illiquidity problems, and the expansions
of α(t), β (t) and γ(t) in Proposition 5.1. The proof of (34)
is in [9].
Theorem 5.1 establishes a close relationship between the
portfolio selection problem in an illiquid market and the
Merton problem. Several properties of the value function and
the optimal trading rate are worth noting:
• As the market impact costs λ decreases the value

function V increases, and when λ goes to zero, V
converges to the value function of the Merton problem.

• As λ decreases, the optimal holding π(t) converges to
that of the optimal Merton investor if the initial wealths
of both investors are equal.

• As λ decreases, the optimal trading rate ρ̄∗ increases
and becomes arbitrarily large as λ goes to zero. In-
tuitively, the investor trades infinitely quickly when
trading costs vanish, which allows him/her to track the
optimal Merton portfolio with vanishing error.

• The optimal trading rate ρ̄∗ increases in the difference
between the current risky asset holding and the Merton
optimal holding π∗M−π; investor trades to close the gap
between his/her current position π and the (ideal) posi-
tion π∗M he/she would adopt if there were no liquidity
costs.

• The value function V decreases in the distance |π∗M−π|
between his/her desired position π∗M and his/her actual
holding π . A large distance means that an investor has
to trade more aggressively to reach the desired holding
which incurs more costs.

• The liquidity time scale (T − t)/
√

λ affects the optimal
trading rate ρ̄∗ and the value function only when the re-
maining time is comparable to

√
λ , since the hyperbolic

tangent term will be significant if (T − t)/
√

λ is small.
When the liquidity time is small an investor will reduce
his/her trading rate since market impact costs dominate
potential improvements in utility from rebalalancing. In

contrast to the solution of the classical Merton problem
(Proposition 2.1) the investor needs to consider both
the the liquidity as well as the original time scale when
there are market impact costs.

• A larger volatility σ makes the optimal trade rate ρ̄∗

increase. When the volatility is large, an investor trades
more aggressively to close the gap between his/her
position and the ideal position π∗M .

• A larger risk-aversion parameter causes an investor to
trade faster.

VI. EXAMPLES

In this section we test and compare our portfolio selection
model using simulated stock markets. The markets consist of
one risk-free asset and one risky asset: the risk-free return is
r = 2% per year, the risky asset expected return is µ = 6%
per year, the risky asset volatility is σ = 20% per year, and
he risky asset initial price is one dollar. An investor risk
aversion factor is η = 3.5×10−7 which is chosen according
to the investor initial wealth $1,000,000.

In the simulation, we discretize the problem by allowing an
investor to adjust their trading rates once a day, or their risky
asset holding if he/she is a Merton investor. We make a minor
change in order to capture the real effect of liquidity costs
by subtracting these costs directly from investor wealth every
time he/she executing a trading order instead of subtracting
from the final wealth. Hence the discrete-time version of the
wealth dynamics in the simulation are

∆x(t) = {x(t)r+π(t)(µ− r)}∆t +π(t)σ∆w(t)−λρ̄(t)2
∆t.

Example 1

In this example, the market is assumed to be illiquid. We
compare performances of two types of investor, a Merton in-
vestor who adopts Merton policy (6) and an illiquid investor
who adopts our trading policy (13). Initially, each investor
has $1,000,000 in total wealth and holds the optimal Merton
portfolio in the risky asset.

In Fig. 1, we simulate various illiquid situations using the
value of λ in the range of 10−11−10−6 and plot the average
of the trading rate and the average of the final wealth. As
we see in the upper figure, a Merton investor (dash line),
who trades with the same rate regardless the value of λ ,
trades faster than an illiquid investor (solid line), who reduces
his/her trading rate according to an increase of λ . As a result,
the Merton investor incurs significant amount of liquidity
costs while the illiquid investor does not as shown in the
lower figure.

The plot of the average final wealth in Fig. 1 also provides
a sensible way to calibrate the value of liquidity coefficient
λ . Specifically, we may choose λ according to the difference
between the average final wealth of the Merton investor
and the illiquid investor. For comparison, we choose the
following value of λ throughout the rest of the examples:
• A mildly illiquid market λ = 4.5× 10−10 (a Merton

investor loses 5% compared to a liquid market)
• A moderately illiquid market λ = 1.2×10−9 (a Merton

investor loses 15%)
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• A highly illiquid market λ = 2.3× 10−9 (a Merton
investor loses 30%).

Fig. 2 shows sample paths of the total wealth, the risky
asset holding, the simulated stock price, and the trading rate
from a single simulation when the market is moderately
illiquid. From the plot of the risky asset holding, an illiquid
investor tries to decrease the gap between the Merton optimal
holding and his/her current holding throughout the trading
horizon, however, the randomness of the stock price and the
costs of liquidity prevent him/her from doing that, and hence
the crossing pattern is created as shown in the figure.

Example 2

In this example, we compare performances of investors
in four different markets: a perfectly liquid market, a mildly
illiquid market λ = 4.5×10−10, a moderately illiquid market
λ = 1.2×10−9, and a highly illiquid market λ = 2.3×10−9.
The investor in each market behaves optimally according to
that market situation. Initially, each investor has $1,000,000
in the risk-free asset without any holding in the risky asset.

In Fig. 3 and 4, we plot the cross-sectional average
of portfolio wealth x(t) and risky asset holding π(t). An
investor in a liquid market can purchase the optimal holding
in risky asset according to the Merton optimal policy at
the beginning of trade without liquidity costs and hold it
throughout the trading horizon. On the other hand, investors
in illiquid markets can only accumulate the risky asset over
time to attenuate the liquidity costs. The length of time
needed to build up the risky asset holding depends on the
level of illiquidity in each market. As a result, the average
final wealth is highest in the liquid market and decreases as
λ increases.

VII. CONCLUSION

We study a portfolio selection problem in an illiquid mar-
ket by extending the well-known Merton portfolio selection
problem. The key part of our model is that we capture
illiquidity effects using the penalty term which is quadratic in
the trading rate. In the case of quadratic utility function, our

Fig. 1. The upper figure compares the average of the absolute value of
trading rate obtained by our model (solid line) and by Merton model (dash
line). Similarly, the lower one compares the final wealth.

Fig. 4. The cross-sectional average of the trading rate using the same
setting as in Fig. 3.

problem become a linear-quadratic control problem which
is easy to solve. Then we derive the approximation of the
optimal trading policy in term of the optimal solution of
perfectly liquid market case. The result clearly shows the
relationship between our solution and the solution to the
Merton problem, and how the state variables affect the
optimal trading policy. Our analysis also gives rise to the
notion of a liquidity time scale.

Though this paper focuses on quadratic utility and as-
sumes a single risky asset, our results can be extended to
the multiple asset case quite easily (and will be reported
elsewhere). We also believe that non-quadratic utilities can be
handled by applying similar ideas to the associated dynamic
programming equations. Other interesting extensions are also
possible, including models with stochastic market impact
costs that jump whenever asset prices jump.
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Fig. 2. This figure shows sample paths of the total wealth (top left), the risky asset holding (top right), the simulated stock price (bottom left), and the
trading rate (bottom right) of a Merton investor (dash line) and an illiquid investor (solid line) in a moderately illiquid market (λ = 1.2×10−9).

Fig. 3. This figure shows the cross-sectional average of wealth x(t) (Left) and the risky asset holding π(t) (Right) from four different markets: 1.)
Perfectly liquid market (dotted line) 2.) Mildly illiquid market λ = 4.5×10−10 (solid line) 3.) Moderately illiquid market λ = 1.2×10−9 (dash line) and
4.) Highly illiquid market λ = 2.3×10−9(dash-dotted line).

Fig. 5. This figure shows the sample path of the total wealth (top left), the risky asset holding (top right), the simulated stock price (bottom left), and
the trading rate (bottom right) from four different markets: 1.) Perfectly liquid market (dotted line) 2.) Mildly illiquid market λ = 4.5×10−10 (solid line)
3.) Moderately illiquid market λ = 1.2×10−9 (dash line) and 4.) Highly illiquid market λ = 2.3×10−9(dash-dotted line).
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