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Abstract— Port-Hamiltonian systems result from port-based
network modeling of physical systems and constitute an impor-
tant class of passive nonlinear state-space systems. In this paper,
we develop a framework for model reduction of large-scale
multi-input/multi-output nonlinear port-Hamiltonian systems
that retains the port-Hamiltonian structure in the reduced
order models. Within this framework, reduced order models are
determined by the selection of two families of approximating
subspaces. We consider two approaches deriving from a) a
POD-based selection of subspaces, and b) an anH2-based quasi-
optimal selection of subspaces. We compare performance of the
reduced order models on a nonlinear lossy LC ladder network.

I. INTRODUCTION

The modeling of complex physical systems often involves
systems of coupled partial differential equations, which upon
spatial discretization, lead to dynamical models with very
large state-space dimension. This creates a need for model
reduction methods that can produce (comparatively) low
dimensional surrogate models that nonetheless are able to
closely mimic the original system’s input/output map. Port-
based network modeling of the original system will lead
directly to a representation as a port-Hamiltonian system as
well, a representation which encodes structural properties
related to the manner in which energy is distributed and
flows through the system. When the related Hamiltonian
function is non-negative, port-Hamiltonian systems constitute
an important class of passive state-space systems.

A. Port-Hamiltonian systems

Modeling and simulation often follows a system-theoretic
network modeling paradigm that formalizes the interconnec-
tion of naturally specified subsystems. If the core dynamic
models of subsystem components arise from variational prin-
ciples, the aggregate system model typically has structural
features that characterize it as a port-Hamiltonian system.
While greater generality is both possible and useful (see,
in particular, the review article [12], and the monograph
[13]), for our purposes we focus on finite-dimensional port-
Hamiltonian systems defined as:

ẋ = (J−R)∇xH(x) + Bu(t)
y = BT∇xH(x),

(1)

where x ∈ Rn is the n-dimensional state vector; H : Rn →
[0,∞) is a continuously differentiable scalar-valued vector
function - the Hamiltonian, describing the distribution of en-
ergy in the system; J = −JT ∈ Rn×n is the structure matrix
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describing the interconnection of energy storage elements in
the system; R = RT ≥ 0 is the n × n dissipation matrix
describing energy loss in the system; and, B ∈ Rn×m is the
input/output matrix describing how energy enters and exits
the system. We will always assume that the Hamiltonian is
positive definite, i.e., H(x) > 0 for all x 6= 0 and H(0) = 0.

The family of systems characterized by (1) generalizes
the classical notion of Hamiltonian systems which can be
expressed in our notation as ẋ = J∇xH(x). The analog of
conservation of energy for Hamiltonian systems becomes for
(1): PH systems are always stable and passive:

H(x(t1))−H(x(t0)) ≤
∫ t1

t0

y(t)Tu(t) dt,

which is to say, the change in the internal energy of the
system, as measured by H , is bounded by the total work
done on the system. Moreover, the class of port-Hamiltonian
systems defined as in (1) is closed under power conserv-
ing interconnection - connecting port-Hamiltonian systems
together produces an aggregate system that is also port-
Hamiltonian, and hence, must be both stable and passive.

This last fact provides compelling motivation to preserve
port-Hamiltonian structure when producing reduced order
surrogate models intended to mimic closely the input/output
response of systems of the sort defined by (1).

B. Petrov-Galerkin reduced models

Most model reduction approaches involve some varia-
tion of a Petrov-Galerkin projective approximation to the
equations describing the system dynamics. This proceeds
by choosing two subspaces of Rn: an r-dimensional trial
subspace, Vr ⊂ Rn, and an r-dimensional test subspace,
Wr ⊂ Rn. It is convenient and generally nonrestrictive
in practice to assume additionally that Vr and Wr have a
“generic orientation” with respect to one another so that
neither subspace contains any nontrivial vectors that are
orthogonal to all vectors in the other subspace. The evolution
of an associated reduced order model may be described in
the following (initially indirect) way:

Find v(t) contained in Vr such that
v̇(t)− (J−R)∇xH(v)−Bu(t) ⊥ Wr;
the associated output is yr(t) = BT∇xH(v).

(2)

The dynamics described by (2) can be represented directly
as a dynamical system evolving in a state-space of reduced
dimension r once bases are chosen for the two subspaces
Vr and Wr. Let Ran(M) denote the range of a matrix M.
Let Vr ∈ Rn×r and Wr ∈ Rn×r be matrices defined so that
Vr = Ran(Vr) and Wr = Ran(Wr). We can represent the
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reduced system trajectories as v(t) = Vrxr(t) with xr(t) ∈
Rr for each t and the Petrov-Galerkin approximation (2) can
be rewritten as

WT
r [Vrẋr(t)− (J−R)∇xH(Vrxr)−Bu(t)] = 0

and yr(t) = BT∇xH(Vrxr).

Since Vr and Wr are assumed to have a generic orientation
with respect to one another, WT

r Vr is invertible and more-
over, we may choose bases for Vr andWr such that, indeed,
WT
r Vr = I.
This leads to a state-space representation of a reduced

order dynamical system:

ẋr = WT
r (J−R)∇xH(Vrxr) + WT

r Bu(t)
yr = BT∇xH(Vrxr),

(3)

Significantly, the definitions of these reduced-order quantities
are invariant under a change of basis for the original state
space, so the quality of reduced approximations evidently
will depend only on effective choices for the subspaces Vr =
Ran(Vr) and Wr = Ran(Wr).

As a cautionary note, although the representation in (3)
portrays the reduced order model as a dynamical system that
evolves in Rr, one may find that due to the lifting of xr to
Rn that is implicit in forming Vrxr, naive implementation
of a direct simulation of this reduced order model may still
have complexity proportional to n � r, and no savings
from reducing the system order are realized. Approaches for
resolving this difficulty are well understood and described in
[1], for example. We defer consideration of this important
aspect of creating efficient reduced order models to a later
time and focus only on what constitute choices that result in
high fidelity models in our setting. Note, in particular, that
(3) does not evidently have the form (1) and so, will not
typically be a port-Hamiltonian system.

II. REDUCTION OF PORT-HAMILTONIAN SYSTEMS

The usual heuristic that is applied in model reduction
involves identifying and eliminating low-value portions of
the state space, or conversely, identifying and preserving
high-value portions of the state space. Adapting this approach
to port-Hamiltonian systems, suppose we have identified two
r-dimensional subspaces, Vr and Wr, that are “high-value”
in the sense that for “most” input signal profiles, u(t), in (1)
• the resulting trajectory, x(t), stays “close” to Vr, so that

x(t) ≈ Vrxr(t) for some trajectory xr ∈ Rr, and
• the internal force, ∇xH(x), stays “close” toWr, so that
∇xH(x(t)) ≈Wrfr(t), for some choice of fr ∈ Rr.

Exactly what comprises “most” input signal profiles and how
one measures “closeness” in this context will vary, and we
consider two possibilities in the following sections. For the
time being, note that if x(t) ≈ Vrxr(t) then plausibly,

∇xH(Vrxr(t)) ≈ ∇xH(x(t)) ≈Wrfr(t).

Notice that these statements amount to assertions about
the subspaces, Vr and Wr, and not about particular bases
for these subspaces, so as long as Vr and Wr have a generic

orientation with respect to one another, bases may be chosen
so that WT

r Vr = I. With this in mind, note further that

fr(t) = VT
r Wrfr(t) ≈ VT

r ∇xH(Vrxr(t)) = ∇xr
Hr(xr(t)),

where we have introduced the reduced Hamiltonian,
Hr(xr) = H(Vrxr). Our discussion leads to

∇xH(Vrxr(t)) ≈Wr∇xr
Hr(xr(t)).

Substituting Vrxr(t) for x(t) and Wr∇xrHr(xr(t)) for
∇xH(x(t)) in (1) and multiplying by WT

r leads to a state-
space representation of a reduced order port-Hamiltonian
approximation:

ẋr = (Jr −Rr)∇xr
Hr(xr) + Bru(t),

yr(t) = BT
r ∇xrHr(xr)

(4)

with Hr(xr) = H(Vrxr), Jr = WT
r JWr, Rr =

WT
r RWr, and Br = WT

r B. Note that Hr : Rr → [0,∞)
is a continuously differentiable scalar-valued vector function;
Jr = −JTr ; and Rr = RT

r ≥ 0, so (4) retains the structure
of (1) and is a port-Hamiltonian system.

[11] and [2] also offer structure-preserving model reduc-
tion methods for nonlinear port-Hamiltonian systems. These
papers elegantly use the concepts of Kalman decomposition
(in [11]) and balanced truncation (in [2]) in deriving reduced
order models of nonlinear port-Hamiltonian systems. How-
ever, obtaining the Kalman decomposition of the full-original
system or balancing it is computationally very demanding for
nonlinear systems; see e.g. [3], [11] and references therein.
These approaches are infeasible for the problem class we
consider — having hundreds to thousands of state-variables.

We consider different approaches here.

A. Structure-preserving POD

A natural notion of “closeness” used in choosing sub-
spaces, Vr and Wr, may be found through the Proper
Orthogonal Decomposition (POD), a popular approach to
(unstructured) model reduction ([7]). We recast POD into
our setting: Fix a square integrable input signal, u(t), for
the system (1). The corresponding trajectory, x(t), will then
also be square integrable. Denoting orthogonal projections,
P and Q, we consider the minimization problem:

P? =
argmin

rank(P) = r

∫ ∞
0

‖ (I−P)x(t)‖2 dt

and

Q? =
argmin

rank(Q) = r

∫ ∞
0

‖ (I−Q)∇xH(x(t))‖2 dt.

We then take Vr = Ran(P?) and Wr = Ran(Q?).
Of course, as it stands this is not a computationally

tractable approach. However, if we truncate the integrals and
approximate them with the Trapezoid Rule, we arrive at a
method for obtaining our approximating subspaces that is
essentially the same as POD.
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Algorithm 1: POD-PH
POD-based reduction of port-Hamiltonian systems

1) Generate a trajectory x(t), and collect snapshots:
X = [x(t0),x(t1),x(t2), . . . ,x(tN )].

2) Truncate an SVD of the snapshot matrix, X, to get a
POD basis, Ṽr, for a “high-value” subspace of the
state space. (x(t) ≈ Ṽrx̃r(t))

3) Simultaneously collect associated force snapshots:
F = [∇xH(x(t0)),∇xH(x(t1)), . . . ,∇xH(x(tN ))].

4) Truncate an SVD of F to get a second POD ba-
sis, W̃r, spanning a second “high-value” subspace
approximating the range of ∇xH(x(t)) ≈ W̃r f̃r(t).

5) Change bases W̃r 7→ Wr and Ṽr 7→ Vr such
that WT

r Vr = I.
6) With Vr and Wr determined in this way, the

POD-PH reduced port-Hamiltonian system is then
specified by (4).

B. Example

We illustrate the POD-PH approach with an M -stage non-
linear ladder network (see Figure 1). The two inputs to
the system are a voltage signal applied to the left-hand
terminal pair and a current injection across the right-hand
terminal pair. The symmetrically paired outputs are the
induced current across the left-hand terminal pair and the
induced voltage signal across the right-hand terminal pair.
For simplicity, we assume that each stage of the ladder net-
work is built from identical components and that the current
injection from the right is zero. Resistors and inductors are
assumed to behave linearly. The capacitors are assumed to
have a nonlinear C-V characteristic of the form

Ck(V ) =
C0 V0
V0 + V

.

Fig. 1. Ladder network circuit topology (capacitors are nonlinear)

Inductors and capacitors are evidently the energy storage
elements of the circuit, so we take as state variables the
magnetic fluxes in the inductors, {φk(t)}Mk=1, and the charges
on the capacitors, {Qk}Mk=1, with labels refering to the Stages
k = 1, . . . ,M , respectively, where they occur. The energy

stored in the Stage k (linear) inductor may be expressed in
terms of its magnetic flux as 1

2L0
φ2k. To determine the energy

stored in the nonlinear capacitors, note first that the charge
on a capacitor may be expressed as a function of the voltage,
V , held across the capacitor:

Qk(V ) =

∫ V

0

C(v) dv = C0 V0 log

(
1 +

V

V0

)
,

which may be inverted to find

Vk(Qk) = V0

[
exp

(
Qk
C0V0

)
− 1

]
.

The energy stored in the capacitor at Stage k of the circuit,
is then given by∫ Qk

0

Vk(q) dq = C0V
2
0

[
exp

(
Qk
C0V0

)
− 1

]
−QkV0,

and the total energy stored in Stage k is then

H [k](φk, Qk) = C0V
2
0

[
exp

(
Qk
C0V0

)
− 1

]
−QkV0+

1

2L0
φ2k.

The Hamiltonian for this system is

H(Q1, . . . , QM , φ1, . . . , φM ) =

M∑
k=1

H [k](φk, Qk).

We order the state variables so that x =
[Q1, . . . , QM , φ1, . . . , φM ]T . Elementary considerations

lead to J =

[
0 S
−ST 0

]
where S is an upper bidiagonal

matrix with 1 on the diagonal and −1 on the superdiagonal;

R =

[
G0I 0
0 R0I

]
; and B = [eM+1, eM ] where ek

denotes the kth column of the identity.
We consider the particular case of a 50-stage (M = 50)

circuit with the following parameters:

L0 = 2µH
C0 = 100pF V0 = 1V
R0 = 1Ω G0 = 10µ0

We applied a Gaussian voltage pulse with a magnitude of 3V,
standard deviation of .5, and a duration of 3µsec to the left
port of the network and observed the induced voltage at the
right port. The output is displayed as a solid green trace in
Figure 2. The induced response of the linearized network
is also displayed as a green dashed line for comparison.
Notice that nonlinearity sharpens the peak of the response
and significantly reduces dispersion. Notice also that there
is a propagation delay in the network of about 0.8µsec. We
took 1000 uniformly spaced samples of the system trajectory
and internal forcing, applied Algorithm 1 (POD-PH ), and
constructed reduced order port-Hamiltonian models of orders
r = 6, 12, and 20. We then forced each reduced order model
(ROM) with a) the same Gaussian pulse used to generate the
POD bases (Figure 2), and b) a positive sinusoid with a peak-
to-peak magnitude of 3V and frequency of 300kHz (Figure
3). The r = 20 POD-PH model provides the best fidelity for
each case, as expected. Lower order models provide coarser
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resolution but interestingly, the r = 6 POD-PH model (blue
solid line) provides better fidelity for the Gaussian pulse
input than what the r = 12 POD-PH model (blue dashed
line) is able to provide, especially during the initial lag.
This discrepancy is even more pronounced for the sinusoidal
input. Notice that for the sinusoidal input, all POD-PH models
have some difficulty capturing certain response features such
as the initial lag period, the asymmetry of the response peaks,
and the response ripple following each peak.
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Fig. 2. ROM time response to Gaussian pulse with pulse-generated POD
basis
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Fig. 3. ROM time response to sinusoid with Gaussian pulse POD basis

III. QUASI-H2-OPTIMAL METHODS FOR
PORT-HAMILTONIAN SYSTEMS

POD provides a method for choosing a Vr andWr that can
be very effective in extracting features that are present in the
original sampled system response. As an empirical method,
it is incapable of providing information about dynamic
response features that are absent in the sampled system
response, but that could have been present had a different
choice of input profile been made. This is the reason the
discrepancies between the original and reduced-order system
outputs were magnified for the sinusoid input — a different
input from the Gaussian pulse that generated the POD basis.

We consider now choices of the subspaces, Vr and Wr,
that are asymptotically optimal for all possible input profiles
that are sufficiently small (and hopefully at least pretty good
for other input profiles). In contrast to POD approaches, no
choice of inputs is necessary; no simulations actually need
to be performed to derive effective approximating subspaces.
The proviso that (virtual) inputs be sufficiently small, but
otherwise arbitrary, allows us to tailor the subspaces Vr
and Wr, so as to provide near-optimal reduction for the
corresponding linearized port-Hamiltonian models. Note that
linearization is used here only as a tool to obtain effective
information that will be encoded in the subspaces, Vr and
Wr, which are then used for reduction of the nonlinear
system (1).

Any input profile, u(t), may be scaled to have sufficiently
small magnitude so that the resulting trajectory, x(t), is small
as well. Then linear terms in the internal forcing dominate,
and ∇xH(x) ≈ Qx for a symmetric positive definite matrix
Q ∈ Rn×n (indeed, the Hessian matrix for H(x) evaluated
at x = 0). This approximation leads to the linear port-
Hamiltonian system:

ẋ = (J−R)Qx + Bu(t), y(t) = BT Qx. (5)

A. Model Reduction of Linear Port-Hamiltonian Systems
In the case of a linear port-Hamiltonian system as in (5),

the goal is to construct a reduced-order system of the form

ẋr = (Jr −Rr)Qrxr + Bru(t), yr(t) = BT
r Qrxr (6)

which is also port-Hamiltonian, i.e. Jr = −JTr , Rr = RT
r ≥

0 and Qr = QT
r > 0. In the linear case, we can associate

(5) and (6) with their transfer functions

G(s) = BTQ(sI− (J−R)Q)−1B (7)

and
Gr(s) = BT

r Qr(sI− (Jr −Rr)Qr)
−1Br, (8)

respectively. Our model reduction problem reduces to a ratio-
nal approximation problem: Find a degree-r rational function
Gr(s) that approximates G(s) well with respect to an ap-
propriate norm. Here, we focus on interpolatory approaches:
Given r interpolation points σ1, . . . , σr in the complex plane
with corresponding tangential directions {b1, . . . , br} ∈ Cm,
the goal is to construct Gr so that Gr not only is port-
Hamiltonian but also tangentially interpolates G, i.e.

Gr(σi)bi = G(σi)bi for i = 1, . . . , r. (9)
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A solution to this problem was recently given in [6] (note
that [6] focusses on linear port-Hamiltonian systems):

Theorem 1: Given interpolation points σ1, . . . , σr and tan-
gential directions b1, . . . , br, construct

Ṽr = [(σ1I− (J−R)Q)−1Bb1, . . . , (σrI− (J−R)Q)−1Bbr].

Let Vr = ṼrL
−1 and Wr = QVr where ṼT

r QṼr =
LTL.

Set
Jr = WT

r JWr, Qr = VT
r QVr = Ir,

Rr = WT
r RWr, Br = WT

r B.

Then the reduced model, Gr :

ẋr = (Jr −Rr)Qrxr + Br u, yr = BT
r Qrxr (10)

is port-Hamiltonian, passive, and satisfies the interpolation
conditions (9).

For information on transfer function interpolation in the
special case of single-input/single-output port-Hamiltonian
systems, see [9], [5], [10]. For an overview of model reduc-
tion methods for linear port-Hamiltonian systems, see [8].

B. Quasi-optimal port-Hamiltonian rational approximation

Even though Theorem 1 shows how to construct
a structure-preserving interpolatory reduced-order port-
Hamiltonian approximation once {σi} and {bi} are given,
it does not give any information on how to choose {σi}
and {bi}. We discuss issues related to finding effective
approximations with respect to the H2 norm: The H2 norm
of G is defined as

‖G‖H2
=

(
1

2π

∫ ∞
−∞
‖G(ıω)‖2F dω

)1/2

.

Let Gr(s) minimize the H2 error ‖G− Gr‖H2
over all

possible degree-r rational functions and suppose that Gr(s)
has a partial fraction expansion Gr(s) =

∑r
k=1

ckb
T
k

s−λ̂k
. Then,

as shown in [4], the interpolation conditions

G(−λ̂k)bk = Gr(−λ̂k)bk, for k = 1, . . . , r (11)

are necessary conditions for H2 optimality (there are addi-
tional conditions that must also be satisfied in general). In
other words, the optimal H2 approximant Gr is a tangential
interpolant to G at the mirror images of the reduced-order
poles. For the full set of necessary conditions required for
optimality, see [4].

Based on (11), a method was introduced in [6] that
produces an interpolatory reduced-order port-Hamiltonian
system satisfying the necessary conditions given in (11).
Since the interpolation points −λ̂k and the tangential di-
rections bk depend on the reduced-model to be computed,
an iterative process is used to correct the interpolation
points and tangential directions until the desired conditions
in (11) are obtained. A brief sketch of the algorithm is
given below in Algorithm 2. We call this method “quasi-
H2-optimal” since it only satisfies a subset of the necessary
conditions required for optimality. The remaining degrees of
freedom are used in maintaining port-Hamiltonian structure.
For details, see [6].

Algorithm 2: QH2OPT-PH
Quasi-optimal reduction of linear

port-Hamiltonian systems ([6])
1) Make an initial shift selection {σi}r1, and tangent direc-

tions {bi}r1.
2) while (not converged)

a) V̂r = [(σ1I− (J−R)Q)−1Bb1, . . . ,
. . . , (σrI− (J−R)Q)−1Bbr].

b) Set Vr = V̂rL
−1 with V̂T

r QV̂r = LTL
(so Qr = VT

r QVr = Ir).
c) Set Wr = QVr . (so VT

r Wr = Ir).
d) Set Jr = WT

r JWr , Rr = WT
r RWr ,

and Br = WT
r B.

e) Calculate left eigenvectors: zTi (Jr −Rr) = λiz
T
i .

f) Set σi ←− −λi and bi ←− BT
r zi for i = 1, . . . , r

3) Calculate final QH2OPT-PH bases:
Find V̂r = [(σ1I− (J−R)Q)−1Bb1, . . . ,

. . . , (σrI− (J−R)Q)−1Bbr].
Set Vr = V̂rL

−1 with V̂T
r QV̂r = LTL.

Set Wr = QVr .
4) With Vr and Wr determined in this way, the QH2OPT-PH

reduced port-Hamiltonian system is then specified by (4).

We use the linearized port-Hamiltonion model only to
obtain the quasi-optimal model reduction subspaces. Once
Vr and Wr are obtained using QH2OPT-PH as outlined in
Algorithm 2, we use them to reduce the original nonlinear
system as shown in (4). See [?], [?] for other approaches that
compute the projection matrices a using a linearized system
for reduction of nonlinear systems.

C. Example

We repeated the same computational experiments on the
ladder network described above using instead quasi-H2-
optimal subspaces obtained with Algorithm 2. Notice that
no simulations are performed and so, unlike POD-PH , the
QH2OPT-PH subspaces are not tied to any particular input
profiles.

We applied Algorithm 2, and obtained quasi-H2-optimal
bases of orders r = 6, 12, and 20. We used these subspaces
to construct reduced order QH2OPT-PH port-Hamiltonian
models and then performed reduced-order simulations, forc-
ing each ROM with a) the same Gaussian pulse used previ-
ously (Figure 4), and b) the same sinusoid used previously
(Figure 5). The r = 6 POD-PH results are displayed on the
same axes for easy comparison (the r = 12 POD-PH case
is omitted since r = 6 POD-PH performed better). The
r = 20 QH2OPT-PH model gave results comparable to
the r = 20 POD-PH case (both quite good) and neither
is displayed to reduce clutter. The most significant feature
that emerges from examination of these results is that the
QH2OPT-PH models were able to capture response features
of true response better at lower order than POD-PH for the
two input profiles applied. Notably for the sinusoid input,
QH2OPT-PH models capture the asymmetry of the response
peaks and the response ripple following each peak even at
low resolution. All models had some difficulty capturing
the initial lag, but the QH2OPT-PH models generally did
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better than the POD-PH models. For the example shown here,
QH2OPT-PH exhibited generally monotone improvement in
fidelity as r increased in sharp contrast with POD-PH on this
example. The advantages of QH2OPT-PH seem most often to
occur at low order on signal profiles that did not participate
in generation of a POD basis; this was the main motivation
to employ input-independent quasi-optimal model reduction
techniques. We have presented an example where POD bases
can give poor results even with precisely the same signal
from which it was generated.
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Fig. 4. ROM time response to Gaussian pulse using QH2OPT-PH bases
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Fig. 5. ROM time response to sinusoid using QH2OPT-PH bases

IV. CONCLUSIONS AND FUTURE WORK

We have introduced a structure-preserving projection
framework for model reduction of large-scale multi-
input/multi-output nonlinear port-Hamiltonian systems lead-
ing to reduced-order port-Hamiltonian models. Projecting
subspaces are constructed with two different approaches: one
is POD-based; the other is related to an H2-based approach

originally targeted for linear port-Hamiltonian systems. Nu-
merical experiments on a nonlinear ladder network illustrate
better performance for the latter method, especially with low
order approximation and in circumstances where simulations
are driven by input profiles that do not participate in the
generation of the POD basis.

Improving the model reduction subspaces further by com-
bining strengths of both approaches considered here, for
example, by selectively merging the two families of sub-
spaces, is the focus of on-going research. Analysis and
experimentation of related methods for the fully nonlinear
case where J and R themselves carry a dependence on state
variables is also under study.
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