
  

  

Abstract—The output regulation problem is a classic problem 

which needs updated machinery to be effectively applied in a 

switched or blended controller setting.  For stabilizing 

controllers approaches with Youla parameterization has been 

crucial to the solution of many complex controller switching 

problems.  This paper seeks similar benefits by developing a 

state-space based parameterization of output regulating 

controllers.  A critical step in this approach involves 

augmenting the plant with the unstabilizable exogenous input.  

Lastly, a controller switching example for an active suspension 

quarter car model is considered where a switched controller 

based on the developed parameterization framework is shown 

to significantly minimize switching transients in comparison to 

one with Youla parameterization.  

I. INTRODUCTION 

HE output regulation problem, also known as the 

servomechanism problem, is a classic and important 

controls problem.  It concerns developing controllers that not 

only internally stabilize the plant but also reject disturbances 

and track signals of which both are generated by an 

exogenous system.  Applications of output regulation apply 

to various areas, such as performance regulation in the 

controller switching of hypersonic vehicles [14], power 

regulation in controller switching of wind turbines [8], and 

track-following servo systems of disk drives [1].   

The study of output regulation began with the authors in 

[3] who laid out fundamental concepts such as the internal 

model principle.  More recently, Saberi et al. [11] have 

written a comprehensive book on linear output regulation.  

Their techniques, based on transforming the controller 

synthesis problem with regulation constraints into a synthesis 

problem without constraints, are capable of solving complex 

controller synthesis problems in state-space involving 

multiple performance metrics and saturation constraints.  

However, not much detail is given towards controller 

parameterization and dealing with switched or blended 

control systems [10], [16], [4] which are important for 

accommodating changing objectives and operating 

conditions. 

In terms of controller parameterization, Youla 

parameterization [15] has been very popular because it  

classifies of all stabilizing controllers in terms of a 
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convenient stable controller parameters which have 

applications in terms of controller interpolation and 

optimization.  Youla parameterization was initially studied in 

the transfer function context but has been carried over into 

the state space context to solve complex time-varying 

problems and to utilize powerful linear matrix inequality 

(LMI) techniques such as in Scherer’s work [13] to design 

multiobjective controllers.  Further examples, include how 

Hespana and Morse [5] leverage Youla parameterization to 

show that there always exists a switched controller that 

stabilizes a linear time-invariant plant for any arbitrarily fast 

switching signal [5].  The Youla parameterization framework 

has also contributed to developing H2 and H∞ synthesis [17] 

as well as L1 robust control [12], distributed control [9], and 

robust controller switching [4].   

Literature on parameterization of output regulating 

controllers [6], [7] is limited.  The authors in [7] approach 

parameterization problem by classifying the set of Youla 

parameters which satisfy output regulation.  The authors in 

[6] approach the parameterization problem through 

constructing an augmented plant embedded with a regulator 

and parameterizing the set of controllers which stabilize the 

augmented plant.  These papers are limited in scope to the 

transfer function context which is inadequate in dealing with 

switched control systems and cannot utilize LMI 

optimization techniques.   

There currently appears to be a gap in the literature for 

defining a convenient parameterization of output regulating 

controllers in the state space context.  This paper seeks to fill 

the gap and provide new insight to this problem.  The 

obvious approach is to incorporate the exogenous system 

into the P and parameterized the set of stabilizing 

controllers.  However, the problem is that the exogenous 

system is defined as unstabilizable and thus cannot find a 

stabilizing solution to the augmented system, let alone tackle 

the parameterization problem.  In the subsequent sections, 

we clarify how to get around this difficulty and explain why 

it is not a problem. 

This paper is organized in the following way.  Section 2 

defines a set of regulating controller parameterization 

criteria.  Section 3 discusses relevant controller 

parameterization and output regulation background.  Section 

4 develops a framework for output regulating controller 

parameterization.  Section 5 presents a vehicle dynamics 

example presenting a seamless transition among controllers 

due to an output regulation guarantee and highlighting the 

potential of an output regulating controller parameterization 

framework.        Section 6 presents some concluding remarks 

and directions for future research. 
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For nomenclature, the notation K1~K2 denotes that systems 

K1 and K2 are input-output equivalent.  The two systems K1 

and K2 are input-output equivalent if ||K1-K2||∞ = 0 where ||· ||∞ 

denotes the induced L2 norm. 

II. PROBLEM DEFINITION 

Consider the plant 
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driven by the exogenous system 
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and interconnected with the controller 
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where x n∈ℝ , w wn∈ℝ , u un∈ℝ , e en∈ℝ , y yn∈ℝ  and xK
Kn∈ℝ .  

This interconnection forms the closed loop system denoted 

as Tew(K) via the lower fractional transformation (LFT) as 

shown in Fig. 1.  

 

Augmenting the dynamics of P with PE creates the 

following unstabilizable augmented plant  
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The interconnection of P  and K forms the closed loop 

system denoted as ( )ewT K  and shown in Fig. 1.   

 
In order to simplify the ensuing calculations, we make the 

following standard assumptions that Dyu=0 without loss of 

generality and, 

A1) (A, Bu) is stabilizable; 

A2) S is anti-Hurwitz stable; 

A3) ( , )yC A  is detectable; 

A4) (Π,Γ) exists solving the regulator equation 
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as done in [11].  Assumption (A2) states that the dynamics of 

PE do not stabilize over time; otherwise, regulation is merely 

a consequence of internal stabilization.  Assumption (A1) 

and (A3) assures that P can be internally stabilized.  Adding 

(A4), there exists a regulating controller with a regulating 

strategy mapped from (Π,Γ).  

An output regulating controller is defined as satisfying the 

following output regulating controller criteria: 

B1) Internal stability: For w(t) = 0 the states of the 

closed loop system Tew(K) are exponentially stable 

for all x(0) n∈ℝ .

 B2) Output Regulation: For all x(0) n∈ℝ  and w(0) wn∈ℝ , 

the output e(t) of the closed loop system Tew(K) 

satisfies e(t) → 0 as t → 0. 

Criterion (B1) requires that the closed loop system remain 

stable for all initial conditions when all external inputs are 

removed.  Criterion (B2) ensures output regulation for any 

initial conditions. 

 The purpose of this paper is to find a convenient 

parameterization satisfying the following output-regulating 
controller parameterization criteria for all output regulating 

controllers with common (Π,Γ): 

C1) For all output regulating controller K with common 

(Π,Γ), there exists a mapping to a stable control 

parameter Q, such that K and the parameterized 

controller K(Q) are input-output equivalent.  

C2) For all stable Q, K(Q) satisfies the output regulating 
controller criteria. 

Criterion (C1) ensures that parameterization does not affect 

the input-output traits of the original controller.  Criterion 

(C2) asserts that any parameterized controller from this 

mapping is internally stabilizing and output regulating.  

III. BACKGROUND INFORMATION 

A. LFT  Parameterization Formulas 

LFT parameterization provides a convenient way to 

characterize controllers in terms of control parameters.  In 

the following formulas we explore how to parameterize a 

general controller and later apply these concepts to 

parameterizing an output regulating controller. 

Consider a linear controller K parameterized by the 

controller parameter Q from Fig. 2a, where the central 

controller J and the controller parameter Q are defined as 
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For any J and K of appropriate input-output dimensions, we 

would like to determine Q such that K ~ LFT(J,Q).  To find 

this, first assume DJ12 and DJ21 are square invertible and 

DJ22=0, then consider the system 
1

ˆ ˆ1 2 12

1
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where 

            
Fig 1.  Closed loop system Tew(K) = LFT(P,K) and 

( , )ewT LFT P K= formed via lower linear fractional transformation 
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1
1 2 2 12 1

ˆ ˆ
J J J J J J JA A B C B D C−= − − , 1

1 1 21 2 11
ˆ ˆ

J J J J JB B D B D−= + , 

1
1 12 1 11 2

ˆ ˆ( )J J J J JC D C D C−= − +  ,  and  1 1
11 12 11 21

ˆ
J J J JD D D D− −= − . 

Now consider the following lemma which claims that 
ˆ( , )Q LFT J K=  satisfies K ~  LFT(J,Q). 

 
Lemma 1:   Given an LTI system K and J with DJ22 = 0 and 

square invertible DJ12 and DJ21.  Then LFT(J, Q) is input-

output equivalent to K for ˆ( , )Q LFT J K= . 

The proof, which can be found in Lemma 1 of [4], is 

associated with showing that this special construction of the 

systems of Ĵ  and J allows the output of K at steady state to 

pass through both systems to the plant P. 

B. Output Regulation Formulas 

Output regulation is defined as driving the output e(t) in (1)

to zero given an anti-Hurwitiz stable input w(t).  The 

following lemma presents the conditions for regulation a 

controller of form (3) must satisfy. 

Lemma 2:   Given K of the form in (3) that internally 

stabilizes P in (1) satisfying assumptions (A1-A4) and has a 

solution (Π,Θ) to the extended regulator equation in (9), 

then K is also output regulating for P. 
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(9) 

Proof: Consider the closed loop system ( )ewT K  and assume 

Dc = 0 without loss of generality.  Then, apply a similarity 

transformation to this closed loop system such that the 

resulting alternate realization is 
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.    (10)  

The matrices M1, M2, and M3 are exactly the extended 
regulator equation in (9) with Dc = 0.  Thus these matrices 

are equal to zero and output regulation of e(t) now relies on 

the internal stability of K  which is given.   □ 

Remark 1: The extended regulator equation in (9) reduces 

to the regulator equation in (5) with the following 

substitution:  

( )C y yw CD C D CΓ = Π + + Θ .       (11) 

A controller’s regulating strategy is said to be mapped from 

(Π,Γ) if it can be mapped from a (Π,Θ) satisfying (9). 

IV. OUTPUT REGULATING CONTROLLER 

PARAMETERIZATION 

In this section, a controller parameterization scheme for 

output regulating controllers is developed which satisfies 

criteria (C1-C2).  First we prove the existence of a stable Q 

for every regulating controller K with common (Π,Γ), and 

then prove the existence of an input-output equivalent 

parameterized controller based on that Q.  Lastly for 

completeness, we show for every stable Q there exists a 

unique regulating parameterized controller with regulating 

strategy (Π,Γ). 

A. Input-Output Equivalence of K(Q) and K 

A Youla-like parameterization approach on the augmented 

plant P   is taken.  This approach differs from traditional 

Youla parameterization because we relax the criterion that 

A BF+  is exponentially stable to merely A+BF being 

exponentially stable.  The relaxation of this criterion causes 
ˆ: ( , )Q LFT J K=  to be unstable; and thus, requires a 

reformulation of an admissible control parameter. 

First, we construct an observer based J and Ĵ  for P  in the 

form of (6) and (8), respectively, where (Π,Θo) satisfies (9) 

for the observer-based J.  The resulting systems are as 

follows: 
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As stated earlier, ˆ: ( , )Q LFT J K=  is unstable because 

A BF+  is unstable.  However, the unstable dynamics are 

shown to be unobservable and disconnected. 

Lemma 3:  Given a control parameter ˆ: ( , )Q LFT J K= , 

where K satisfies (B1-B2) for the plant P  in (1) satisfying 

(A1-A4) and Ĵ  is of the form (13) with (Π,Γ) in common 

with K, there exists a stable realization of ~Q Qɶ , where 
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Fig 2. [a] Input-output equivalent controller parameterization via LFT; 

[b] Controller parameter Q in terms of the original K 
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Proof:  It can be shown there exists a (Π,ΘK) satisfying (9) 

since K is output regulating and internally stabilizing.  Now, 

consider a similarity transform on Q involving (Π,ΘK) with 

the following resulting alternate realization: 
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The matrix MQ1 and MQ2 are equal to zero since they are 

exactly the equations of (9).  Moreover given that J has a 

(Π,Γ) in common with K, MQ3 can be shown to be zero by 

applying (11) and canceling terms.  These terms in (15) 

being zero causes the state q2 to be unobservable and 

disconnected.  Thus, Q can now be truncated into (14) and 

still maintain the same output. 

The dynamics of Qɶ  are stable because Ãq is equivalent to 

the closed loop A-matrix of Tew(K) for which K is given as 

internally stabilizing.  Thus, Qɶ  is admissible.     □   

Having a mapping to a stable Q we can now state the 

following theorem for an input-output equivalent 

parameterized controller. 

Theorem 1:  For every controller K with common (Π,Γ) 

satisfying (B1-B2) for the plant P  in (1) satisfying 

assumptions (A1-A4), there exists a mapping to a stable Qɶ  

such that K~ K( Qɶ ).  

Proof:  From Lemma 1 we can find that a controller 

~ ( , )K LFT J Q  for ˆ: ( , )Q LFT J K= , where J and Ĵ  are 

defined in (6) and (8), respectively.  From Lemma 3, we can 

find a stable ~Q Qɶ , where Qɶ
 
is defined as (14).  Input-

output equivalence allows Q to be replaced with Qɶ  and have 

~ ( , )K LFT J Qɶ .                  □ 

B. Internal Stability for any Stable Q 

From Lemma 2, a controller satisfies output regulation 

(B2) if it meets two criteria: achieving internal stability and 

having (Π,Θ) that satisfies (9).  In this subsection we 

consider the criterion of internal stability for a parameterized 

controller. 

Lemma 4:  Given a stable parameter Q and a J of the form 

(12), the K(Q) := LFT(J,Q) achieves internal stability for the 

plant P in (1) satisfying assumptions (A1-A4). 

Proof:  Achieving internal stability require that the closed 

loop dynamics  Tew(K(Q)) are stable when the disturbance 

input is w = 0.  With w = 0 and simple matrix 

transformations, we get the following dynamics: 
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From the upper triangular matrix, it is clear the above closed 

loop system is exponentially stable if uA B F+ , yA LC+  and 

Aq are stable.  We know uA B F+  and yA LC+  to be stable 

from the construction of J, and Q is given as stable.   Thus, 

K(Q) achieves internal stability.           □ 

C. Output Regulation for any Stable Q 

In this subsection, we first present the existence of (Π,ΘK)  

satisfying (9) for any parameterized controller K(Q) with a 

stable Q.  Then, we prove for any stable Q, there exists a 

parameterized controller K(Q) that satisfies (B1-B2) with 

regulating strategy (Π,Γ).  Last, we present a summarizing 

algorithm of the developed parameterization. 

Lemma 5:  Given a parameterized controller K(Q) defined 

as LFT(J,Q), where J has the form (12) and Q has the form 

(7), there exists (Π,ΘK) satisfying (9) for P and K(Q) where,   

[ 0]T
K oΘ = Θ        (16) 

and ( )J q wn n n
K

+ ×Θ ∈ℝ . 

Proof:  Consider the regulating observer based controller 

K0=LFT(J,Q=0); and note that (Π,Θo) satisfies (9) for P and 

Ko.  Then, consider a pair (Π,ΘK) in  (9) for P and K(Q) 
where Π is the same but ΘK has the form ΘK := [Θo   Θq].  

For Q≠0, Θq must be zero for (9) to be satisfied.  Thus, ΘK is 

equal to (16).                  □ 

 Having internal stability and (Π,ΘK) satisfying (9) for any 

K(Q) with stable Q we can now state the follow theorem 

guaranteeing K(Q) satisfies output regulation. 

Theorem 2:  Given any stable controller parameter Q, there 

exists an output regulating parameterized controller K(Q) := 

LFT(J, Q)  for the plant P in (1) satisfying (A1-A4). 

Proof:  Given P in (1) satisfying (A1-A4), we can find a 

central controller J  from (12).  Having J, Lemma 5 states 

that there exists a (Π,ΘK) satisfying (9) form any 

parameterized controller where ΘK is defined in (16).    

Moreover, Lemma 4 guarantees that any stable Q results in 

an internally stable K(Q) := LFT(J, Q).  With these two 

results, we can invoke Lemma 2 to prove that K(Q) is output 

regulating.                   □ 

The framework for parameterization of output regulating 

controllers with common (Π,Γ)  can be summarized in the 

following algorithm. 

Algorithm 1 (Construction of a controller K(Q) ): Given P 

satisfying assumptions (A1-A4) and K satisfying criteria 

(B1-B2), the following steps lead to an input-output 

equivalent parameterized controller: 

1. Construct P  in the form of (4). 

2. Find F,L  such that A BF+  and A LC+  are Hurwitz. 

3. Construct J and Ĵ  in the form of (6) and (8).  

4. Construct stable Q in the form of (14).  

5. Construct K(Q) := LFT(J, Q). 

V. EXAMPLE 

Many approach multi-objective control problems through 

designing multiple local controllers and switching among 

them.  However, transients from controller switching can 

cause poor performance and even instability.  The following 
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example utilizes the parameterization framework established 

in section IV to construct a switched controller that 

maintains regulation during arbitrarily fast switching.  These 

simulated results are compared with the nominal Youla 

parameter switching framework discussed in [5]. 

A. Simulation Problem Definition 

 
Consider the following simplified 1D representation of an 

active suspension system for a quarter car model in Fig. 3 

where the variables are described as follows:  

x1(t), v1(t), m  position, velocity, mass of car/driver  

x2(t), v2(t), M  position, velocity, mass of tires/axles 

u(t)       hydraulic actuator 

r(t)       roadway height 

k1, c1     spring, damper of passive shocks  

k2       stiffness of the tires. 

The primary performance criterion is the regulation of a 

constant vertical position for the driver subject to a roadway 

disturbance characterized by r(t).  In this example  r(t)=w1(t) 
is characterized as an exogenous system representing a 

sinusoidal-shaped roadway.  

 The following plant represents the dynamics of in Fig. 3, 
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where v is sensor noise, 
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The measurement noise v is white with intensity Σ = 10
-4

 

m
2
/(Hz)

1/2
.  The roadway is represented by an exogenous 

system of the form in (2), where 
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An output regulating Youla-like parameterized switched 

controller, KR(Q),  and Youla parameterized switch 

controller, KY(Q), is designed to maintain a constant driver 

position with minimal acceleration while subjected to a 

persistent roadway disturbance w(t) and sensor noise v(t).  

B. Local Controller Design 

Two observer-based measurement controllers K0 and K1 
were designed (as describe in chapter 2 of [11]) to both 

achieve internal stabilization and output regulation but 

separately achieve good noise rejection and good tracking, 

respectively.  The controllers have the following structure: 

ˆˆ
:
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u i i y i ii

i
i

A B F L C L xx
K

F yu
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ɺ

 

where, ˆix , iL , and iF  are the state estimates, augmented 

observer gains, and augmented feedback gains of the i
th

 

controller, respectively.  These two controllers utilize 

standard LQR methods to find the feedback and observer 

gains. The feedback gains for the system in (17) assuming no 

disturbances were calculated by minimizing the cost function 

 
( )2 2

0
: ( ) ( )regJ x u dτ ρ τ τ

∞

= +∫
 
     (18) 

where ρ was chosen to be 10
-1

 and 10
2
 for K0 and K1 

respectively.  This feedback gain was then translated to an 

augmented feedback gain for the augmented plant in (4) 

using the following output regulating state-feedback 

controller law u Fx= , where 

   [ ( )]F F F= Γ − Π   and [ ] T T Tx x w= . 

Next, the augmented observer gains were calculated by also 

performing LQR but on the dual problem of the augmented 

plant in (4) using a similar cost function as in (18) but with ρ 

chosen to be 10
-4

 and 10
1
 for K1 and K0 respectively.   The 

simulated results of K1 and K0 in Fig. 4 motivates controller 

switching for better performance. 
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Fig 4. Active suspension simulation comparing controller performance 

of K0 (dotted line) vs. K1 (solid line) under sensor noise at t ϵ [30,50] 

seconds and a constant roadway disturbance, r(t)=0.1sin(t) meters. 
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Fig. 3.  A simplified representation of an active suspension system for 

a quarter car model. 
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C. Parameterized Controller Design 

The controller K1 gains were also used to construct the 

central controller J in the form of (6).  Then, the controllers 

K0 and K1 were parameterized to the form of (14) to get 

regulating control parameters Q0 and Q1 respectively, where, 

K(Q0) ~ K0 and K(Q1) ~ K1. 

For comparison K0 and K1 were also parameterized in the 

nominal Youla parameterization framework described in [5], 

[15] and [17] to construct a parameterized controller. 

D. Simulation Results 

 
In Fig. 4 we present the results of K0 and K1 subjected to a 

persistent road disturbance w(t) and to sensor noise for 

t=[30,50].  Controller K1 is very responsive but performs 

poorly under large sensor noise in terms of minimizing 

driver vertical acceleration. Controller K0 is less responsive 

but performs very well under large sensor noise.  These 

differences motivate development for a switched controller 

with better performance.      

In Fig. 5 we apply the same conditions as in Fig. 4 and 

compare the performance of KY(Q) and KR(Q).  Also, for all 

switches of both controllers we perform a control parameter 

reset as done in [5].    Controller KR(Q) maintains regulation 

during both switches in Fig. 5 whereas KY(Q) does not; it is 

because the central controller in KR(Q) is inherently output 

regulating but not in KY(Q).  This result gives credence to the 

proposed parameterization framework over the traditional 

Youla parameterization framework for parameterization 

output regulating controllers. 

VI. CONCLUSION 

This paper presents a state-space based parameterization 

framework of output regulating controllers.  A set of 

parameterization criteria is established define when a 

mapping from controller to a controller parameter to an 

input-output equivalent controller exists.  The advantage of 

the proposed parameterization is demonstrated on a 

simulated vehicle active suspension system that shows how 

switched controllers constructed from the proposed 

parameterization can significantly reduce switching 

transients in comparison to traditional Youla 

parameterization.  Future research involves developing a 

parameterization framework for output regulating controllers 

with H2 and/or Hinf performance guarantees. 
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Fig 5. Active suspension simulation comparing Youla parameterized 

(solid line) vs output regulating Youla-like parameterized (dotted line) 

switch controllers under sensor noise at t ϵ [30,50] seconds and a 

persistent roadway disturbance, r(t)=0.1sin(t) meters. 
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