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Abstract— In this paper, an adaptive feedback-based stable
fault detection scheme is developed for linear time-invariant
systems with sensor uncertainties and system parameter uncer-
tainties. A parametric sensor uncertainty model with additive
faults and multiplicative faults is introduced. To employ the
model-based fault detection method, the sensor dynamics is
derived. Based on the newly developed sensor dynamic models,
a set of estimation model systems are established to estimate
the sensor signals. Unlike most fault detection schemes which
operate under the assumption that all system signals remain
bounded under sensor uncertainty conditions, the adaptive
sensor detection scheme proposed in this paper is integrated
with an adaptive feedback controller which is designed to ensure
the desired signal boundedness requirement needed for stable
sensor uncertainty detection operation. By observing residuals
between the sensor signals and the estimation model signals,
the sensor uncertainty can be detected and specific uncertainty
patterns can be identified. Desired adaptive sensor uncertainty
detection performance is demonstrated in the simulation study
for a linearized longitudinal aircraft flight control system.

Keywords: Sensor uncertainty, fault detection, fault-

tolerant control, adaptive feedback control.

I. INTRODUCTION

Accuracy of sensor measurement is crucial in safety-

critical and mission-critical systems, such as aircrafts, space-

crafts, power plants, and chemical plants. In particular, for

the systems with feedback control framework, inaccurate

sensor measurements of system signals may cause abnormal

performance of designed controllers, which can have severe

impacts on the performance of systems. Therefore, it is

imperative to detect the malfunctions of sensor for the fault-

tolerant control systems to improve the safety and reliability.

Fault detection and diagnosis problems have been studied

widely in recent years. One of the common approaches is

to use model-based method for fault detection and diagnosis

as summarized in [3]. The model-based method uses state

observers or parameter estimation models to construct some

detector model systems. By comparing residuals between

detector output signals and measured system output signals,

detection criteria can be derived to quickly and reliably

diagnose subtle incipient or abrupt system degradation. The

model-based detection technique depends on mathematical

models of the system. If the system mathematical model

is accurate and known, it can be used to form the basis
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for analytic redundancy model-based designs that simulta-

neously diagnose both sensor and actuator faults ([5] and

[6]). In the presence of uncertainties, modeling errors can

decrease system sensitivity to faults and increase the rate of

occurrence of false alarms. [10] proposed a robust design

to address the presence of system model uncertainty. In

addition, adaptive designs have been presented for the known

nominal plant dynamics (e.g., [2], [9], and [11]) and for the

plants with unknown parameters (e.g., [1] and [4]).

In this paper, we present a new sensor fault detection

methodology for linear systems with parameter uncertainties,

which explicitly includes parametric sensor representations

of additive faults (sensor bias-uncertainty) and multiplicative

faults (sensor scaling). From the sensor uncertainty model

and the system dynamic model, we can derive sensor dy-

namic models [8] which has uncertainties due to unknown

system parameters and unknown sensor faults. Based on

such sensor dynamic models, a set of estimation models

are constructed to detect the sensor uncertainty and identify

some specific uncertainty patterns by observing the residuals

between the sensor signals and the estimation model signals.

For the model-based design, the construction of detector

models requires that the input signals are bounded. In the

presence of sensor faults, nominal feedback control designs

may deteriorate the performance badly, or even make the

closed-loop system unstable. Therefore, in this paper, the

sensor uncertainty detection scheme is integrated with a

self-stabilization feedback control to compensate the sensor

uncertainty and make the system stable. Since the sensors

have uncertainties, we cannot directly apply the sensor

signals to the feedback controller. Thus, sensor compensators

are derived to construct the adaptive feedback controller.

With such an adaptive feedback control design, the closed-

loop signals including sensor signals are bounded. Then,

the sensor detection scheme can be employed by using the

bounded sensor signals and system input signals.

Although the adaptive control design can compensate the

sensor uncertainty, the detection scheme is also needed to

improve the situation awareness of the control personnel and

enhance the system safety and reliability by informing the

control personnel of a potential system reduction.

This paper is organized as follows. The sensor uncer-

tainty detection problem is formulated in Section II where

the sensor uncertainty model is introduced. In Section III,

the feedback-based sensor uncertainty detection scheme is

developed, where a set of sensor estimation model systems
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are designed based on the sensor dynamic models and the

bounded closed-loop system signals ensured by the adaptive

feedback control design. A simulation study on an aircraft

flight control system with sensor uncertainties is conducted

in Section IV to show the desired detection performance.

II. PROBLEM STATEMENT

Consider a single-input and single-output linear time-

invariant system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n, are

unknown constant parameter matrices, and x(t) ∈ Rn,

u(t) ∈ R, and y(t) ∈ R are system state, input, and output

signals. For feedback control designs, construction of the

input signal u(t) is based on sensor measurements of the

state signal x(t) or the output signal y(t). Performance of

the feedback control system can be deteriorated when there

are uncertainties in the sensor measurements.

Sensor uncertainty model. For the detection and com-

pensation designs, a sensor uncertainty model is given as

z(t) = ksϕ(t) +

q∑

i=1

bifi(t), (2)

where ϕ(t) is the actual signal to be measured, which can be

the state x(t) or output y(t), ks > 0 and bi, i = 1, 2, . . . , q,

are some unknown constant sensor uncertainty parameters,

and fi(t), i = 1, 2, . . . , q, are known bounded signals with

bounded derivative ḟi(t).
Remark 1: The sensor uncertainty modeling problem can

be addressed by using redundant sensors. We can use sev-

eral sensors to measure the same signal ϕ(t), and take

the weighted sum of the sensors’ output signals zi(t) as

z(t) =
∑m

i=1 αizi(t), where αi > 0, i = 1, . . . ,m, such

that
∑m

i=1 αi = 1. When there is no uncertainty for all

the sensors, the summed sensor signal z(t) is the exact

measured signal ϕ(t). When there are some sensor uncertain-

ties, e.g., the i1, i2, . . . , ipth sensors fail and generate some

random signals z̄i(t), the summed sensor signal is z(t) =
αsϕ(t) + ds(t), where αs =

∑
i6=i1,i2,...,ip

αi, and ds(t) =∑
i=i1,i2,...,ip

αiz̄i(t). Since the indexes i1, i2, . . . , ip are

unknown, we may express ds(t) =
∑m

i=1 βiz̄i(t), where

some of βi are zero (for the unfailed sensors) while others

are αi, and z̄i is accessible in the bias-uncertainty part of the

uncertainty model (2). �

Feedback-based uncertainty detection problem. Based

on the sensor uncertainty models (2), we will develop a

model-based adaptive diagnosis scheme to detect the mod-

eled sensor uncertainty. More specifically, a set of state

sensor detectors and output sensor detectors are designed,

which are a set of adaptive estimation models to estimate

the unknown parameters in the sensor uncertainty models. By

comparing residuals between the detection models and the

sensor uncertainty models, detection criteria can be derived

to identify and isolate particular uncertainty scenarios.

Feedback uncertainty compensation problem. The con-

struction of detection models requires that the control input

signal u(t), the state sensor signal zx(t), and the output

sensor signal zy(t) are bounded. To ensure the signal bound-

edness requirement, an adaptive feedback control law will

be developed for the system (1) to compensate the sensor

uncertainty and make all the closed-loop signals bounded

including the signals u(t), zx(t), and zy(t).
Since the parameters ks and bi, i = 1, 2, . . . , qi, of the state

or output sensor model (2) are unknown, the state signal x(t)
or the output signal y(t) cannot be retrieved from the sensor

measurement z(t). To overcome this difficulty, we propose to

use sensor compensator signals x̂(t) and ŷ(t) from the sensor

measurement z(t) to construct an adaptive feedback control

law u(t), which can make all the closed-loop signals bounded

and the plant output signal y(t) track a given reference signal

ym(t) ∈ R generated from a reference model system

ym(t) =Wm(s)[r](t), (3)

with r(t) ∈ R being a bounded reference input signal and

Wm(s) is stable.

Assumptions. To proceed the control and detection

scheme designs, for the system (1):

y(t) = C(sI −A)−1B[u](t) =
Z(s)

P (s)
[u](t), (4)

where Z(s) = zms
m+ · · ·+z1s+z0 with zm 6= 0 and P (s)

is a monic polynomial of degree n, we assume that (A1)

Z(s) is a Hurwitz polynomial; (A2) the degree m of Z(s) is

known, and Wm(s) = 1/Pm(s) where Pm(s) is a Hurwitz

polynomial of degree n−m; (A3) the sign of zm is known;

and (A4) (A,B,C) is controllable and observable.

III. FEEDBACK-BASED SENSOR UNCERTAINTY

DETECTION SCHEME

In this section, we will present the detailed adaptive

feedback-based sensor uncertainty detection design. To de-

velop the sensor uncertainty detection scheme, dynamic

models with signals being the state sensor zx(t) and the

output sensor zy(t) will be given first.

State sensor dynamic model. From the sensor uncertainty

model (2), the state sensor signal zx(t) is expressed as

zx(t) = Kxx(t) + ΘT
bxfx(t), (5)

where the unknown parameters K = diag{kx1, . . . , kxn},

ΘT
bx = diag{θTbx1, . . . , θ

T
bxn} with θbxi = [bxi1, . . . , bxiqi ]

T ,

and the signal fx(t) = [fT
x1(t), . . . , f

T
xn(t)]

T with fxi(t) =
[fxi1(t), . . . , fxiqi(t)]

T , i = 1, . . . , n. In view of (5) and the

system (1), we have the state sensor dynamics as [8]

żx(t) = Azzx(t) +Bzu(t) + ΘT
z fx(t) + ΘT

bxḟx(t), (6)

where the unknown parameter matrices are given as

Az = KxAK
−1
x , Bz = KxB,Θ

T
z = −KxAK

−1
x ΘT

bx. (7)

Output sensor parametric model. The output sensor with

uncertainties is given as

zy(t) = kyy(t) + θTbyfy(t) (8)
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where θby = [by1, . . . , byp]
T and fy(t) = [fy1, . . . , fyp]

T .

Operating both sides of the transfer function (4) by a filter

1/Λ(s), where Λ(s) is a chosen stable and monic polynomial

of degree n, we can obtain

y(t) =
Z(s)

Λ(s)
[u](t) +

Λ(s)− P (s)

Λ(s)
[y](t). (9)

Substituting y(t) = 1
ky
zy(t)−

θT
by

ky
fy(t) in (9), we have

zy(t)=θ
T
uφu(t)+θ

T
z φz(t)+θ

T
bffy(t)+

p∑

i=1

θTi φi(t), (10)

where the signals are

φu(t) = [
1

Λ(s)
[u](t),

s

Λ(s)
[u](t), . . . ,

sm

Λ(s)
[u](t)]T ,

φz(t) = [
1

Λ(s)
[zy](t),

s

Λ(s)
[zy](t), . . . ,

s(n−1)

Λ(s)
[zy](t)]

T ,

φi(t) = [
1

Λ(s)
[fyi](t),

s

Λ(s)
[fyi](t), . . . ,

s(n−1)

Λ(s)
[fyi](t)]

T ,

for i = 1, 2, . . . , p, and θu, θz , and θi, i = 1, 2, . . . , p are the

corresponding unknown parameters.

Signal boundedness. The uncertainty detector models will

be developed based on the dynamic models (6) and (10)

with bounded signals. To ensure the signal boundedness

requirement, an adaptive control design will be applied.

A. Self-stabilization Feedback Control Design

Since the state sensors have uncertainties, a state sensor

compensator will be used to constructed the controller.

State sensor compensator. From the state sensor uncer-

tainty model (5), the state signal x(t) can be retrieved as

x(t) = [x1(t), . . . , xn(t)]
T = Θ∗T

x ψx(t), (11)

where the accessible signal ψx(t) is given as

ψx(t) = [ψT
x1(t), . . . , ψ

T
xn(t)]

T with ψxi(t) =
[zxi(t), fxi1(t), . . . , fxiqi(t)]

T and the unknown parameter

Θ∗
x is given as Θ∗T

x = diag{θ∗Tx1 , θ
∗T
x2 , . . . , θ

∗T
xn} with θ∗xi,

i = 1, . . . , n being the corresponding unknown parameters.

Since the parameter Θ∗
x is unknown, the actual signal x(t)

is not accessible. Thus, a sensor compensator is introduced:

x̂(t) = [x̂1(t), . . . , x̂n(t)]
T = ΘT

x (t)ψx(t), (12)

where ΘT
x (t) = diag{θTx1(t), θ

T
x2(t), . . . , θ

T
xn(t)} is the adap-

tively updated estimate of the unknown parameter Θ∗T
x .

Controller structure.We choose the controller u(t) as

u(t) = KT
x (t)ψx(t) + k2(t)r(t), (13)

where KT
x (t) = KT

1 (t)Θ
T
x (t) and k2(t) are the estimates

of the unknown nominal parameters K∗T
x = K∗T

1 Θ∗T
x and

k∗2 . The nominal parameters K∗
1 and k∗2 satisfy the following

plant-model matching equations:

det(sI −A−BK∗T
1 ) =

Z(s)

zmWm(s)
, k∗−1

2 = zm. (14)

Closed-loop system. Substituting the controller signal

(13) in the plant (1) and applying the state signal model

(11), we have the closed-loop system as

ẋ = (A+BK∗T
1 )x+Bk∗2r +BΘ̃Tω, y = Cx, (15)

where Θ̃(t) = Θ(t) − Θ∗,Θ(t) = [KT
x (t), k2(t)]

T ,Θ∗ =
[K∗T

x , k∗2 ]
T , and ω(t) = [ψT

x (t), r
T (t)]T . From the matching

equation (14), if Θ(t) = Θ∗, we have limt→∞(y(t) −
ym(t)) = 0. That is, the controller (13) with nominal

parameter Θ∗ can make the output track the reference output.

However, Θ∗ is unknown, we need to apply the controller

(13) with adaptively updated parameter Θ(t).
To develop an adaptive law for the parameter Θ(t), the

output tracking error information is needed. Since the output

sensors have uncertainties, we cannot obtain the exact output

signal y(t). An output sensor compensator ŷ(t) is introduced

to estimate the output signal y(t).
Output sensor compensator. From the output sensor

uncertainty model (8), we retrieve that

y(t) = θ∗Ty ψy(t), (16)

where θ∗y = [θ∗ky, θ
∗
by1, . . . , θ

∗
byp]

T and ψy(t) =

[zy(t), fy1(t), . . . , fyp(t)]
T with θ∗ky = 1/ky and θ∗byj =

−byj/ky , j = 1, 2, . . . , pi being unknown constant parame-

ters. Then, the output compensation signal ŷ(t) is given as

ŷ(t) = θTy (t)ψy(t), (17)

where θy(t) is an estimate of the unknown parameter θ∗y .

Compensation tracking error. We introduce a compen-

sation output tracking error signal as

ê(t) = ŷ(t)− ym(t) = e(t) + (ŷ(t)− y(t)), (18)

where e(t) = y(t)−ym(t) is the actual output tracking error.

In view of the closed-loop system (15), the reference

system (3), and the matching condition (14), we have

ê(t) = ρ∗Wm(s)[Θ̃Tω](t) + θ̃Ty (t)ψy(t), (19)

where ρ∗ = zm and θ̃y(t) = θy(t)− θ∗y .

Estimation error. We introduce an estimation error as

ǫ̂(t) = ê(t) + ρ(t)ξ(t), (20)

where ρ(t) is an estimate of the unknown ρ∗ and

ξ(t) = ΘT (t)ζ(t) −Wm(s)[ΘTω](t), (21)

with ζ(t) =Wm(s)[ω](t). Substituting (19) in (20), we have

ǫ̂(t) = ρ∗Θ̃T (t)ζ(t) + ρ̃(t)ξ(t) + θ̃Ty (t)ψy(t), (22)

where ρ̃(t) = ρ(t)− ρ∗.

Adaptive laws. With the estimation error model (22),

adaptive laws for Θ(t), ρ(t), and θy(t) are chosen as

Θ̇(t) = −
Γsign(zm)ζ(t)ǫ̂(t)

m2(t)
, (23)

ρ̇(t) = −
γξ(t)ǫ̂(t)

m2(t)
, (24)

θ̇y(t) = −
Γyψy(t)ǫ̂(t)

m2(t)
, (25)
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where ǫ̂(t) is computed from (20), in which ê(t) is computed

from ê(t) = ΘT
y (t)ψy(t) − ym(t), Γ = ΓT > 0 and Γy =

ΓT
y > 0 are adaptation gain matrices, and

m(t) = (1 + ξ2(t) + ζT (t)ζ(t) + ψT
y (t)ψy(t))

1/2

is a standard normalization signal.

Theorem 1: The sensor uncertainty compensation scheme

with the control law (13) updated by the adaptive laws (23)–

(25), when applied to the plant (1), guarantees the closed-

loop signal boundedness and asymptotic compensation out-

put tracking: limt→∞(ŷ(t)− ym(t)) = 0.

The first step of the proof of this theorem is to express

a filtered version of the plant output compensator ŷ(t) in

a feedback framework which has a small gain due to the

L2 properties of Θ̇(t), ρ̇(t), θ̇y(t), and
ǫ̂(t)
m(t) . This step

leads to the closed-loop signal boundedness. The asymptotic

tracking property follows from the complete parametrization

of the error equation (20), the L2 properties, and the signal

boundedness of the closed-loop system. The convergence

of the actual tracking error e(t) = y(t) − ym(t) to zero

is under investigation and it may need some additional

conditions in the adaptive control system, as similar to an

adaptive observer case where the adaptive state estimation

error converges to zero under some persistent excitation

conditions in the case when (A,B) are unknown.

B. Sensor Uncertainty Detection Design

Since the adaptive state feedback controller (13) with

the adaptive laws (23)–(25) can ensure the boundedness of

the closed-loop signals, the bounded control input signal

u(t), state sensor signal zx(t), and output sensor signal

zy(t) are used to construct detector models. By observing

residuals between the sensor signals (zx(t) or zy(t)) and

the corresponding detector model signals, we can determine

whether there exist sensor uncertainties.

1) State sensor uncertainty detection scheme: Based on

the state sensor dynamic model (6), we start with design and

analysis of a benchmark detection model system which will

be used to develop a bank of detector model systems for

different sensor uncertainty patterns.

Total uncertainty sensor estimation model. We intro-

duce an estimation model to estimate the unknown parame-

ters in sensor dynamic model (6), which is given as [8]

żm = Amzm+(Âz−Am)zx+ B̂zu+Θ̂T
z fx+Θ̂T

bxḟx, (26)

where Am is a chosen stable matrix, and Âz(t), B̂z(t),
Θ̂z(t), and Θ̂bx(t) are the adaptive estimates of Az , Bz , Θz ,

and Θbx in the total uncertainty dynamic model (6). From

(6) and (26), we obtain the error dynamic system as

ėx = Amex + Ãzzx + B̃zu+ Θ̃T
z fx + Θ̃T

bxḟx, (27)

where ex(t) = zm(t)− zx(t), Ãz(t) = Âz(t)−Az , B̃z(t) =
B̂z(t)− Bz , Θ̃z(t) = Θ̂z(t)−Θz , Θ̃bx(t) = Θ̂bx(t)− Θbx.

Then, the adaptive laws are chosen as

˙̂
Az = −Γ1Pexz

T
x ,

˙̂
Bz = −Γ2Pexu, (28)

˙̂
ΘT

z = −Γ3Pexf
T
x ,

˙
Θ̂T

bx = −Γ4Pexḟ
T
x , (29)

where Γi = ΓT
i > 0, i = 1, 2, 3, 4, P = PT > 0 satisfying

PAm +AT
mP = −Q with Q = QT > 0.

Since the proposed adaptive control law (13) ensures that

zx(t) and u(t) are bounded, we have

Proposition 1: Given that the signals zx(t), u(t), fx(t), and

ḟx(t) are bounded, the proposed estimation model system

(26) with the adaptive laws (28) and (29) ensures that

zm(t), Âz(t), B̂z(t), Θ̂z(t), and Θ̂bx(t) are bounded, and

limt→∞ ex(t) = limt→∞(zm(t)− zx(t)) = 0, when zx(t) is

of the total sensor uncertainty pattern (5).

The proof of this result is standard. Consider a positive

definite function

V = eTxPex + tr[ÃT
z Γ

−1
1 Ãz] + [B̃T

z Γ
−1
2 B̃z ]

+tr[Θ̃zΓ
−1
3 Θ̃T

z ] + tr[Θ̃bxΓ
−1
4 Θ̃T

bx]. (30)

From the adaptive laws (28) and (29), we obtain its time-

derivative as

V̇ = −eTx (t)Qex(t) ≤ 0. (31)

Then, the properties in Proposition 1 can be derived.

The above estimation model is designed for the general

uncertainty signal ΘT
bxfx(t) in the state sensor model (5).

For a specific situation, some of the terms θTbxifxi(t) may

be not in the sensor uncertainty model (5), that is the

corresponding parameter θbxi = 0. To identify the specific

sensor uncertainty patterns, some partial sensor uncertainty

estimation model system will be designed. A special one is

for the case when no sensor bias uncertainty is present, i.e.

ΘT
bxfx(t) = 0 in the sensor uncertainty model (5).

Bias-uncertainty free sensor estimation model. The

sensor dynamic model without bias-uncertainties is given as

żx(t) = Azzx(t) +Bzu(t). (32)

Based on (32), we design a bias-uncertainty free sensor

estimation model [8]:

żm(t) = Amzm(t)+ (Âz(t)−Am)zx(t)+ B̂z(t)u(t), (33)

where Âz(t) and B̂z(t) are updated from the adaptive laws

in (28). This estimation model has similar properties to that

in Proposition 1, in particular, limt→∞(zm(t)− zx(t)) = 0,

for the bias-uncertainty free sensor dynamic model (32). On

the other hand, when the sensor has bias-uncertainties such

as the model (6), the tracking property may not hold, that is

limt→∞(zm(t)− zx(t)) 6= 0.

Therefore, the bias-uncertainty free sensor output estima-

tion model can be used to detect the sensor bias-uncertainties.

The detection criterion is that if zm(t) from the bias-

uncertainty free estimation model (33) cannot track the state

sensor signal zx(t), the state sensors have bias-uncertainties.

To identify which state sensor has bias-uncertainty, we

need to design a bank of uncertainty-specific sensor output

estimation model systems.

Uncertainty-specific sensor estimation models. The

bias-uncertainty model in (5):

ΘT
bxfx(t) = [θTbx1fx1(t), θ

T
bx2fx2(t), . . . , θ

T
bxnfxn(t)]

T (34)
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contains all possible cases of sensor uncertainties with θbxi =
0 or not. To identify and isolate some uncertainty patterns

where a part of the state sensors do not have bias-uncertainty,

i.e. θbxi = 0, for i = j1, j2, . . . , jk with {j1, j2, . . . , jk} ⊂
{1, 2, . . . , n}, while others have bias-uncertainty, we need to

construct some estimation models to ensure that the error

ex(t) = zm(t)− zx(t) converges to zero only when zx(t) is

of the specific uncertainty patterns.

Then, we will give an illustrative design to isolate the

uncertainty pattern where θbx2 6= 0, θbx4 6= 0, and θbxi = 0,

for i = 1, 3, 5, 6, . . . , n, i.e. only the 2nd and the 4th sensors

have bias-uncertainties. For this particular uncertain sensor

signal zx(t), we have

ΘT
bxfx(t) = [0, θTbx2fx2(t), 0, θ

T
bx4fx4(t), 0, . . . , 0]

T . (35)

Then the state sensor dynamics (6) becomes to be

żx(t) = Azzx(t) +Bzu(t) + ΘT
z2fx2(t) + ΘT

z4fx4(t)

+[0, θTbx2ḟx2(t), 0, θ
T
bx4ḟx4(t), 0, . . . , 0]

T , (36)

where ΘT
z2 = a2θ

T
bx2 with a2 being the second column of

−KxAK
−1
x and ΘT

z4 = a4θ
T
bx4 with a4 being the fourth

column of −KxAK
−1
x . Based on (36), we choose the

estimation model as [8]

żm=Amzm + (Âz −Am)zx + B̂zu+Θ̂T
z2fx2 + Θ̂T

z4fx4

+[0, θ̂Tbx2ḟx2, 0, θ̂
T
bx4ḟx4, 0, . . . , 0]

T. (37)

We obtain the error dynamics from (36) and (37) as

ėx=Amex + Ãzzx + B̃zu+Θ̃T
z2fx2 + Θ̃T

z4fx4

+[0, θ̃Tbx2ḟx2, 0, θ̃
T
bx4ḟx4, 0, . . . , 0]

T , (38)

where Θ̃zi = Θ̂zi−Θzi and θ̃bxi = θ̂bxi − θbxi, for i = 2, 4.

The adaptive laws for Âz and B̂z are chosen as (28), and

the adaptive laws for Θ̂zi and θ̂bxi (i = 2, 4) are chosen as

˙̂
Θ

T

z2 = −Γ5Pexf
T
x2,

˙̂
Θ

T

z4 = −Γ6Pexf
T
x4, (39)

˙̂
θTbx2 = −Γ7p

T
2 exḟ

T
x2,

˙̂
θTbx4 = −Γ8p

T
4 exḟ

T
x4, (40)

where Γi = ΓT
i > 0, i = 5, 6, 7, 8, P = PT > 0 satisfying

PAm +AT
mP = −Q with Q = QT > 0, and pi, i = 2, 4, is

the ith column of P .

Similar with Proposition 1, the residual converges to 0:

limt→∞(zm − zx) = 0 when the bias-uncertainty pattern

is ΘT
bxfx(t) = [0, θTbx2fx2(t), 0, θ

T
bx4fx4(t), 0, . . . , 0]

T . Then,

we have the following detection criteria.

If the residual ex = zm − zx converges to zero, where

zm is from the estimation model (37), we can obtain that

there exist three possible patterns for the sensor zx =
[zx1, zx2, . . . , zxn]

T : (1) all the state sensors zxi do not

have the bias-uncertainty terms; (2) either zx2 has the bias-

uncertainty term θTbx2fx2 or zx4 has the bias-uncertainty

term θTbx4fx4; (3) both zx2 and zx4 have bias-uncertainty

terms. To further isolate the sensor uncertainty pattern,

we need to observe the residuals ex obtained from the

bias-uncertainty free estimation model (33) and the es-

timation models corresponding to the sensor uncertainty

patterns: ΘT
bxfx = [0, θTbx2fx2, 0, . . . , 0]

T and ΘT
bxfx(t) =

[0, 0, 0, θTbx4fx4, 0, . . . , 0]
T respectively. The isolation of par-

ticular uncertainty patterns will be shown in the simulation.

2) Output sensor uncertainty detection scheme: Since

the system only has one output signal, we only detect

whether the output sensor has bias-uncertainty. Based on the

output sensor model (10), we have the following design.

Total uncertainty estimation model. We introduce an

estimation model system to estimate the parameters in (10):

ẑy = θ̂Tuφu + θ̂Tz φz + θ̂Tbffy +

p∑

i=1

θ̂Ti φi, (41)

where θ̂u(t), θ̂z(t), θ̂bf (t), and θ̂i(t), i = 1, . . . , p are the

estimates of corresponding unknown parameters. Then, the

estimation error ey(t) = ẑy(t)− zy(t) is obtained as

ey = θ̃Tuφu + θ̃Tz φz + θ̃Tbffy +

p∑

i=1

θ̃Ti φi, (42)

where θ̃u(t), θ̃z(t), θ̃bf (t), and θ̃i(t) for i = 1, 2, . . . , p, are

the parameter errors. We choose the adaptive laws as

˙̂
θu = −

Γuφuey
m2

,
˙̂
θz = −

Γzφzey
m2

, (43)

˙̂
θbf = −

Γbfφbf ey
m2(t)

,
˙̂
θi = −

Γfiφiey
m2

, (44)

where Γu, Γz , Γbf , and Γfi, i = 1, 2, . . . , p, are positive

definite and symmetric gain matrices, and

m(t) = (1 + φTuφu + φTz φz + φTbfφbf +

p∑

i=1

φTi φi)
1/2.

Proposition 2: Given that the signals zy(t), u(t), fy(t),
and ḟy(t) are bounded, the proposed estimation model

system (41) with the adaptive laws (43)–(44) ensures that

limt→∞ ey(t) = limt→∞(ẑy(t) − zy(t)) = 0, when zy(t) is

of the total sensor uncertainty pattern (10).

Bias-uncertainty free sensor estimation model. The

above estimation model (41) is based on the total sensor

uncertainty pattern (10). To detect the no bias-uncertainty

case, i.e. zy(t) = kyy(t), we build the estimation model as

ẑy(t) = θ̂Tu (t)φu(t) + θ̂Tz (t)φz(t), (45)

where θ̂u(t) and θ̂z(t) are updated from the adaptive laws in

(43). This estimation model has similar properties to that in

Proposition 2, which is limt→∞(ẑy(t)− zy(t)) = 0, for the

case when θTbyfy(t) = 0 in the sensor model (8). When there

is bias-uncertainty, the tracking property may not hold, that

is limt→∞(ẑy(t)−zy(t)) 6= 0. Thus, the detection criterion is

that if ẑy(t) from the bias-uncertainty free estimation model

(45) cannot track the output sensor signal zy(t), the output

sensor has bias-uncertainty.

IV. SIMULATION STUDY

In this simulation study, we consider a linearized aircraft

longitudinal dynamic model with sensor uncertainties and

system parameter uncertainties.

Longitudinal aircraft model. The linearized aircraft lon-

gitudinal model can be described as (1) with state and input
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variables: x = [ub, wb, qb, θ]
T and u = de, where ub and wb

are the x-axis and z-axis velocity components of the body-

axis frame whose units are ft/sec, qb is y-axis angular velocity

component of the body-axis frame whose unit is rad/sec, θ
is the Euler pitch angle whose unit is radian, and de is the

elevator angular position whose unit is degree. In this study,

we choose the pitch angle θ(t) as the output signal y(t).
Sensor uncertainty. The sensors in the simulation are

zx1(t) = x1(t), zx2(t) = kx2x2(t) + bx1 sin(t),

zx3(t) = x3(t), zx4(t) = kx4x4(t) + bx4 sin(2t), (46)

where only the 2nd and the 4th state sensors have bias-

uncertainties. Since the state signal x4 = θ is the output

signal, the sensor zx4 is also used as an output sensor.

Adaptive feedback control. The reference model is

chosen as ym(t) = 1
(s+1)2 [r](t). We apply the adaptive

controller (13) to the longitudinal aircraft model (1) with

sensor uncertainties (46) to ensure the closed-loop signal

boundedness. Then, we can use the sensor estimation models

to detect and identify the sensor uncertainties.

Simulation results of uncertainty detection. Since the

state sensor for pitch angle θ is also used as the output

sensor, in this simulation study, we only consider the state

sensor uncertainty detection problem. To detect the sensor

uncertainties and identify that only the 2nd and the 4th

sensors have bias-uncertainties, we observe the following

four sensor estimation models:

(i) bias-uncertainty free sensor estimation model (33);

(ii) uncertainty-specific sensor estimation model (37) for the

case when ΘT
bxfx(t) = [0, θTbx2fx2(t), 0, θ

T
bx4fx4(t)]

T ;

(iii) uncertainty-specific sensor estimation model (37) for the

case when ΘT
bxfx(t) = [0, θTbx2fx2(t), 0, 0]

T ;

(iv) uncertainty-specific sensor estimation model (37) for the

case when ΘT
bxfx(t) = [0, 0, 0, θTbx4fx4(t)]

T .

Fig. 1 shows the residual norms ||ex(t)|| obtained from the

four estimation models. From Fig. 1, we can see that the

residual from the model (i) (bias-uncertainty free model)

does not converge to 0, which means that there have sensor

uncertainties. Since the residual from the model (ii) con-

verges to 0, we can conclude that the uncertainties are in

the 2nd or the 4th sensors. To further identify the pattern,

we need to check the residuals from (iii) and (iv). If one of

the residuals converges to 0, we can have that only one of

the sensors has uncertainty. But, from Fig. 1, both residuals

do not converge to 0. Thus, it can be concluded that both

sensors have uncertainty.

V. CONCLUSIONS

This paper addressed the design, analysis and evaluation

of the adaptive feedback-based sensor uncertainty detection

scheme. The sensor dynamics has been derived based on the

parametric sensor uncertainty model, and a set of sensor esti-

mation model systems have been constructed to estimate the

uncertain sensor signals. To ensure the signal boundedness

requirement of the estimation model, the adaptive feedback

control design has been applied to the system with the sensor
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Fig. 1. Residuals ||ex(t)|| for the estimation models (i)–(iv)

uncertainty. By comparing the estimation model signals with

the sensor signals, we can determine whether there are sensor

uncertainties or not, and the uncertainty patterns can also be

identified. The simulation study of the linearized longitudinal

aircraft system showed the effectiveness of the proposed

feedback-based sensor uncertainty design.
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