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Abstract— We study the problem of heating, ventilation, and
air conditioning (HVAC) control in a typical commercial build-
ing. We propose a model predictive control (MPC) approach
which minimizes energy use while satisfying occupant comfort
and actuator constraints by using predictive knowledge of
weather and occupancy.

The objective of this paper is to investigate the phenomenon
of local optima. In particular, the product between air tempera-
tures and mass flow rates arising from energy balance equations
leads to a non-convex MPC problem. Fast computational
techniques for solving non-convex optimization can only provide
certificates of local optimality.

In the first part of the paper, models and MPC control
design for two common HVAC configurations are introduced.
In the second part, simulation results exhibiting local optima
for both configurations are presented. We perform a detailed
analysis on the different types of local optima and their physical
interpretation. Our ultimate goal is to use this analysis to derive
branch and bound rules which allow a nonlinear programming
solver to converge to globally optimal control sequences.

I. INTRODUCTION

The building sector consumes about 40% of the energy
used in the United States and is responsible for nearly 40%
of greenhouse gas emissions [8]. It is therefore economically,
socially and environmentally significant to reduce the energy
consumption of buildings. Achieving this goal requires the
development of highly efficient heating and cooling systems,
which are more challenging to control than conventional
systems [1], [4], [5].

This work focuses on model predictive control (MPC)
of heating, ventilation, and air conditioning (HVAC) over
networks of thermal zones. We consider two common config-
urations of HVAC systems. The first configuration is known
as dual-duct, single fan [2]. The second configuration is
known as single-duct variable air volume (VAV) with reheat.
These configurations are described in detail in Section II.

Predictive controllers are designed for each of the HVAC
configurations. The resulting optimization problems are gen-
erally non-convex because the system dynamics are nonlin-
ear. Nonlinear programming (NLP) solvers based on sequen-
tial quadratic programming [9] or interior point methods [11]
cannot guarantee global optimality. In this work, we study the
local optima of the MPC optimization problem for the two
aforementioned HVAC configurations. We make use of exist-
ing NLP solvers in order to handle the system nonlinearities.
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The set of locally optimal solutions is thoroughly explored
by repeatedly running a NLP solver using a large number of
initial guesses, distributed throughout the optimization space.
Physical explanations are presented for each local optimum.
The ultimate goal is to use this analysis to develop tailored
branch and bound algorithms with guarantees of convergence
to global optimality.

We remark that the evaluation of optimal controllers for
building climate regulation has been studied in the past by
several authors (see [3], [6], [10] and references therein).
Compared to existing literature this paper focuses on the
specific issue of global vs local optima of MPC optimization
problems for nonlinear systems.

II. CONFIGURATION DESCRIPTIONS

This section describes the two HVAC system configura-
tions we focus on.

A. Configuration A

The HVAC system configuration known as dual-duct, sin-
gle fan is shown in Figure 1. Supply air is heated and cooled
to desired temperatures in two separate duct systems by a
pair of coils (air-to-water heat exchangers). The two separate
duct systems route hot and cold air to mixing boxes at each
thermal zone (typically one or several rooms). A mixing
box contains a pair of linked dampers (position-controlled
louvers), designed so that when the hot side damper closes,
the cold side damper opens and vice-versa. We refer to these
as the zone dampers. The zone dampers serve as a control
actuator to provide the desired mixed supply air temperature
to a zone. The supply air can be set anywhere in the range
between the cooling coil outlet temperature and the heating
coil outlet temperature.
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Fig. 1. Dual-duct, single fan HVAC system schematic
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Mixed zone air returns to the central air handling unit
(AHU) through a return duct. A set of AHU dampers can
either exhaust the return air to ambient and use fresh outdoor
air as input to the supply fan, or recirculate the return air, or
some combination of the two.

We consider systems where the supply fan is equipped
with a variable frequency drive (VFD), so the fan speed
and therefore the total flow rate can be controlled. Since the
mixing box dampers for each zone are linked, the individual
zone flow rates are not independently controllable. As a first-
order approximation, we treat the flow splits to each zone as
constant. This system will be denoted Configuration A in the
remaining sections.

In summary, the control inputs in this system are: the total
supply fan flow rate, the outdoor air flow rate into the AHU,
the cooling coil outlet temperature setpoint, the heating coil
outlet temperature setpoint, and the zone mixing box supply
temperature setpoints. The states in this system are the zone
temperatures.

B. Configuration B

In this section we introduce an alternative HVAC system
configuration, known as single-duct variable air volume
(VAV) with reheat. We consider an air handling unit serving
multiple zones, as before. The AHU in this configuration
is capable of using either recirculated zone exit air, fresh
outside air, or a mix of the two. As shown in Figure 2, all
of the supply air flows through a cooling coil. The cool air
is distributed by a fan to the “VAV boxes” at each zone.
A VAV box consists of a damper and a heating coil. The
damper position in a VAV box controls the flow rate of air
supplied to an individual zone. The heating coil is used to
warm the supply air if that zone requires heating.
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Fig. 2. Single-duct variable air volume with reheat HVAC system schematic

Compared to Configuration A, this single-duct system has
local control over heating rather than one central heating
coil, and the VAV dampers provide individual control over
the supply flow splits delivered to each zone.

In summary, the control inputs in this system are: the flow
rates of air supplied to each zone, the outdoor air flow rate
into the AHU, the cooling coil outlet temperature setpoint,
and the heating coil outlet temperature setpoints at each zone.
The states in this system are the zone temperatures.

III. SYSTEM MODELING

In order to develop control-oriented thermal models of
limited order and reduced complexity, we make the following
assumptions:
A1 The average air temperature dynamics of the thermal

zones can be reasonably approximated as first-order. We
therefore combine the thermal capacitance of the air,
walls, furnishings, and other contents of zone i into a
single lumped parameter denoted (mc)i.

A2 Humidity is not explicitly included in our model.
A3 All dynamics except those of the thermal zones are

neglected. Actuators are assumed to instantly meet their
control setpoints.

A4 A prediction of the thermal loads Q̇i in each zone due
to occupants, equipment, and all heat transfer to or from
ambient and other zones is known in advance. Predicted
outside ambient temperature Toa is also known.

A. Thermal Zone Model

A first order energy balance gives the following continuous
time system dynamics for the temperature Tzi of zone i

(mc)i
d

dt
Tzi = Q̇i + ṁzicp(Tsi − Tzi), (1)

where cp is the specific heat capacity of air and Tsi is the
temperature of the supply air delivered to zone i. The flow
rate ṁzi and supply temperature Tsi are inputs to this model
from the HVAC system.

If we neglect heat transfer by radiation, the thermal loads
Q̇i can be represented as an affine function of the zone
temperatures

Q̇ =

 Q̇1

...
Q̇n

 = R

 Tz1

...
Tzn

+ Q̇offset,

where n is the number of thermal zones served by the
same AHU, R is a symmetric n× n matrix of heat transfer
coefficients and Q̇offset is a n × 1 vector of constant terms
from the predicted thermal load.

The compact form of (1) for all n zones together is

M
d

dt
Tz = R Tz + Q̇offset + cp diag(ṁz)(Ts − Tz), (2)

where M = diag((mc)1, . . . , (mc)n), Tz = [Tz1, . . . , Tzn]
T ,

ṁz = [ṁz1, . . . , ṁzn]T , and Ts = [Ts1, . . . , Tsn]T .
Let uz = {ṁz, Ts}, A(uz) = M−1(R − cp diag(ṁz)),

B(uz) = cpM
−1 diag(ṁz)Ts, and w = M−1Q̇offset, then

(2) has the following state-affine form

d

dt
Tz = A(uz)Tz +B(uz) + w.

Assuming ṁz and Ts are zero-order held at sample rate
∆t, we discretize this using the trapezoidal method

T+
z − Tz

∆t
= A(uz)

T+
z + Tz

2
+B(uz) +

w+ + w

2
, (3)
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where T+
z and w+ denote the corresponding values at the

next discrete time step t+∆t. We choose the trapezoidal dis-
cretization as a compromise between simplicity and stability
(which is critical since ∆t may be large).

This zone thermal model is used for both HVAC configu-
rations, however the mass flow rates ṁz and temperatures Ts
of supply air differ depending on the HVAC configuration.

B. HVAC System Model

1) Configuration A: The HVAC control inputs in this
configuration are: the total mass flow rate at the supply
fan ṁs, the outdoor air flow rate into the AHU ṁoa, the
cooling coil setpoint Tc, the heating coil setpoint Th, and
the zone mixing box supply temperature setpoints Ts =
[Ts1, . . . , Tsn]T .

The portion of the total supply flow delivered to each zone,
denoted ϕi for zone i, is constant so that

ṁzi = ϕiṁs. (4)

In configuration A, only part of the supply flow passes
through the heating and cooling coils. The partial flow rates
depend on the zone supply temperatures and flow splits.

ṁh =

n∑
i=1

ṁzi(Tsi − Tc)
Th − Tc

, and ṁc = ṁs − ṁh, (5)

where ṁh and ṁc are respectively the mass flow rates
through the heating and cooling coils. The coil flows do not
directly influence the zone temperature dynamics, but will be
important for the coil energy consumption in Section III-C.

2) Configuration B: The HVAC control inputs in this
configuration are: the mass flow rates of air supplied to each
zone ṁz = [ṁz1, . . . , ṁzn]T , the outdoor air flow rate into
the AHU ṁoa, the cooling coil setpoint Tc, and the heating
coil setpoints at each zone Th = [Th1, . . . , Thn]T . The supply
air temperature Tsi delivered to zone i is equal to the VAV
box heating coil setpoint, Tsi = Thi.

All of the supply flow passes through the cooling coil in
configuration B, but only the flow to a single zone passes
through each heating coil. The coil flow rates are then

ṁhi = ṁzi, and ṁc = ṁs =

n∑
i=1

ṁzi, (6)

where ṁhi is the flow rate through the heating coil at zone
i, and ṁc is the flow rate through the cooling coil.

3) Common Aspects: In both configurations, we assume
the ratio of supply flow rate to return flow rate is the same
for all zones. The return air temperature Tr is therefore given
by a flow-rate-weighted average

Tr =

∑n
i=1(ṁziTzi)∑n

i=1 ṁzi
. (7)

The AHU mixed air temperature Tm is similarly a flow-
weighted average of outdoor air temperature Toa and return
temperature Tr

Tm =
ṁoaToa + (ṁs − ṁoa)Tr

ṁs
. (8)

In our model the return and mixed air temperatures influence
the coil energy consumption, but not the zone dynamics.

C. Cost Function: Energy Consumption and Price

Energy use of the cooling and heating coils is calculated as
air-side thermal power ṁ cp∆T , based on the models in the
previous section. We represent the operating characteristics
of the cold and hot water circuits with two parameters:
efficiency ηh for the hot side, and coefficient of performance
ηc for the cold side. The two HVAC configurations A and
B have different flow rates and delta temperatures across the
coils, so the expressions for the power used by the coils
depend on the configuration.

For both configurations cooling coil power Pc has the form

Pc =
cp
ηc
ṁc(Tm − Tc), (9)

where ṁc is given by (5) for configuration A and by (6) for
configuration B.

For configuration A the heating coil power Ph is

Ph =
cp
ηh
ṁh(Th − Tm), (10)

where ṁh is given by (5).
For configuration B the total power of all heating coils is

Ph =

n∑
i=1

(
cp
ηh
ṁzi(Tsi − Tc)

)
. (11)

In both configurations the electrical power Pf used by the
supply fan is

Pf =
ṁs ∆p

ρ ηf
, (12)

where ∆p is the pressure difference across the fan, ρ is the
air density, and ηf is the efficiency of the fan. Assuming
incompressible flow gives ∆p ∝ ṁ2

s, where the ratio of
proportionality depends on the flow resistance of all the
downstream zone dampers.

In configuration A we assume the flow resistance of the
mixing boxes is constant, so we can take ∆p = ρ ηfκAṁ

2
s

where the parameter κA captures the fan efficiency and duct
pressure losses. Equation (12) then becomes

Pf = κAṁ
3
s. (13)

In configuration B however, the flow resistance of the VAV
dampers depends on their positions. At higher flow rates with
the dampers more open, the overall flow resistance is lower.
So the increase of pressure drop with flow rate will be slower
than quadratic, and fan power increases slower than cubic.
For simplicity we restrict our model to polynomial form, so
we take ∆p = ρ ηfκBṁs. With this form of simplification
for configuration B, we have

Pf = κBṁ
2
s. (14)

We introduce several parameters to reflect utility pricing.
The cost in dollars per unit energy content is denoted re for
electricity, rh for heating fuel (typically gas, or steam from
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a central plant). The total utility cost from time t to time
t+N∆t, where N is the prediction horizon length, is

J =

∫ t+N∆t

t

(rePf + rePc + rhPh)dτ. (15)

D. Constraints

The system states and control inputs are subject to con-
straints due to control requirements and actuator limits. Since
the control inputs differ for the two HVAC configurations,
some of these constraints only apply to one configuration.

1) Configuration A:
• Th ≥ Tm, heating coil can only increase temperature.
• Th ≤ Th, heating coil capacity (hot water temperature).
• Tsi ≤ Th ∀ i ∈ {1, . . . , n}, hottest supply temperature.
2) Configuration B:
• ṁzi ≤ ṁzi ≤ ṁzi ∀ i ∈ {1, . . . , n}, minimum ventila-

tion requirement and maximum VAV box capacity.
• Tsi ≤ Th ∀ i ∈ {1, . . . , n}, heating coil capacity.
3) Common Constraints:
• ṁs ≤ ṁs ≤ ṁs, minimum overall ventilation require-

ment and maximum fan capacity.
• ṁoa ≤ ṁoa ≤ ṁs, minimum set by required fresh air

for indoor air quality, maximum is entirely fresh air.
• Tc ≤ Tm, cooling coil can only decrease temperature.
• Tc ≥ T c, cooling coil capacity (cold water temperature).
• Tsi ≥ Tc ∀ i ∈ {1, . . . , n}, coldest supply temperature.
• T zi ≤ Tzi ≤ T zi ∀ i ∈ {1, . . . , n}, comfort range.

E. Model Summary

Combining the HVAC system model from Section III-B
and the discretized thermal zone model from Section III-A,
the consolidated model can be expressed as

f(xk+1|t, xk|t, uk|t, wk+1|t, wk|t) = 0. (16a)

where xk|t is the value of Tz at time t + k∆t predicted at
time t, uk|t is the value of all control inputs at time t+k∆t
predicted at time t, and wk|t is the value of the disturbance
inputs Q̇offset and Toa at time t+ k∆t predicted at time t.

The constraints from Section III-D can be expressed as

g(xk+1|t, xk|t, uk|t, wk+1|t, wk|t) ≤ 0. (16b)

Define the continuous step cost as

Jc
k|t =

∫ t+(k+1)∆t

t+k∆t

(rePf + rePc + rhPh)dτ. (16c)

The integral is approximated according to the trapezoidal
discretization for consistency with the discretization of the
state dynamics (3). Let Jk|t be the discretization of (16c).

The system model f , control inputs u, cost J , and con-
straints g are different for the two HVAC configurations.

For configuration A, the model f applies the zone sup-
ply temperatures and flows, with flow splits from (4), to
the thermal zone model (3). The control inputs are u =
{ṁs, ṁoa, Tc, Th, Ts}. The cost function J combines (5),
(7)-(10), and (13). The constraint function g combines Sec-
tion III-D.1, Section III-D.3, (7), and (8).

For configuration B, the model f applies the zone supply
temperatures (with Ts = Th) and flows to the thermal zone
model (3). The control inputs are u = {ṁz, ṁoa, Tc, Th}.
The cost function J combines (6)-(9), (11), and (14). The
constraint function g combines Section III-D.2, Section III-
D.3, (7), and (8).

IV. CONTROL DESIGN

Model predictive control solves at each time step t the
following optimization problem

min
U,X

N−1∑
k=0

Jk|t (17)

subj. to, ∀ k ∈ {0, . . . , N − 1},
f(xk+1|t, xk|t, uk|t, wk+1|t, wk|t) = 0

g(xk+1|t, xk|t, uk|t, wk+1|t, wk|t) ≤ 0

x0|t = Tz(t)

where U = {u0|t, . . . , uN−1|t} is the set of predicted control
inputs at time t, X = {x1|t, . . . , xN |t} is the set of predicted
system states at time t, starting from initial state x0|t =
Tz(t) and applying the input sequence U to the system
model (16a).

Let the optimal solution of problem (17) at time t be
denoted by U? = {u?0|t, . . . , u

?
N−1|t}. Then, the first step of

U? is input to the system, u(t) = u?0|t. The optimization (17)
is repeated at time t + ∆t, with the updated new state
x0|t+∆t = Tz(t+∆t) yielding a moving or receding horizon
control strategy.

The optimization problem (17) has nonlinear cost and
nonlinear constraints. In order to solve this optimization
problem we use the interior-point NLP solver Ipopt [11] via
the YALMIP [7] toolbox. Ipopt and most other NLP codes
are generally not global solvers for non-convex problems, so
these algorithms can converge to a local optimizer.

V. LOCAL OPTIMA ANALYSIS

In this section we show simulation data exhibiting local
optima for HVAC configurations A and B. The local optima
are found by repeated execution of a NLP algorithm. Each
execution of the NLP algorithm is started from a randomly
selected initial guess, uniformly distributed within the allow-
able range of states and control inputs. Clearly this method
is not guaranteed to find every single local optimum point.
However it is expected that over many samples we will find
the local optima with the largest regions of attraction.

We take simple instances of the models (16) with three
zones and a prediction horizon of 2 steps. For full details
regarding paramater values used in this section and complete
tabular simulation results, see the technical report available at
www.mpc.berkeley.edu/people/tony-kelman.

A. Configuration A

Our simulations revealed the presence of local optima for
configuration A in a scenario with small zones (low thermal
capacitance) subject to large loads. We found 6 distinct
families of local optima in this scenario. Local optima within
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the same family have the same cost, and those belonging to
different families have different associated optimal costs. The
six families can be further explained as follows.

At the first time step there are two different control modes:
a heating mode and a cooling mode. At the second time
step, there are three different control modes: a heating mode,
a cooling mode, and a third “intermediate” mode. Every
combination of modes for the first and second time step was
feasible, so over the horizon of 2 steps we have six families
of local optima. Points belonging to the same family have
different heating or cooling coil setpoints. The cost value,
states, and all other control inputs are equal within a family.
The families are illustrated in Figure 3 and the corresponding
cost values are given in Table I.
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Fig. 3. Families of local optima for HVAC configuration A.

TABLE I
COST VALUES OF LOCAL OPTIMA, CONFIGURATION A

Family # 1 2 3 4 5 6
J? ($) 0.095 0.113 0.133 0.143 0.177 0.21

In this scenario the zones have positive thermal loads Q̇i

so the supply temperatures must be lower than the zone
temperatures in order to counteract the loads and remain
within the comfort range. The ambient temperature here is
Toa = 16 ◦C, which is cooler than the zone temperatures.
Free cooling is available by using outside air instead of
recirculated return air at the AHU, reducing coil energy.

In the cooling mode the cooling coil setpoint Tc < 16 ◦C
and the heating coil setpoint Th = 16 ◦C (no heating of the
outside air). In the heating mode the heating coil setpoint
Th > 16 ◦C and the cooling coil setpoint Tc = 16 ◦C (no
cooling of the outside air). The intermediate mode is a special
case where a single supply temperature can meet all of the
different thermal loads. That specific supply temperature for
this case is 18 ◦C which is warmer than ambient temperature,
so this mode can be realized by mixing ambient air with
recirculated air. When AHU mixed temperature Tm = 18 ◦C,
the cooling and heating coil setpoints can both be set to 18
◦C requiring no coil energy at all. This mode requires zones
with different loads to be at different temperatures, so it is

not possible at the first time step when all of the zones have
the same initial condition temperature.

Note that in cooling mode, the cooling coil setpoint Tc can
have any value between 5 and 16 ◦C as long as it is cooler
than the lowest required zone supply temperature. Likewise
in heating mode, the heating coil setpoint Th can have any
value between 16 and 40 ◦C as long as it is warmer than the
highest required zone supply temperature. When Tc is cooler
or Th warmer than necessary, the zone dampers compensate
to maintain the same mixed supply temperatures Ts.

Cooling mode is feasible for low supply flow rates, where
all required zone supply temperatures are below 16 ◦C (oth-
erwise the heating coil would also need to be active). Heating
mode is feasible at higher flow rates, where all required
supply temperatures are above 16 ◦C. The intermediate mode
is only feasible for very specific zone temperatures, and had
the highest flow rate of the three modes here.

Table I confirms that the modes requiring lower flow rates
have lower overall cost (accounting for coil energy as well).
The lowest-cost family of local optima is in cooling mode at
both time steps. Due to the initial conditions, heating mode at
the second time step requires less flow than heating mode at
the first time step to remain inside the comfort bounds. So the
second-lowest-cost family of local optima is in cooling mode
at the first step, then heating mode at the second step. The
third-lowest-cost family is the reverse: heating mode then
cooling mode. The fourth-lowest cost family is in heating
mode at both steps. The fifth-lowest cost family is in cooling
mode then the intermediate mode. The highest-cost family of
local optima is in heating mode then the intermediate mode.

B. Configuration B

Our simulations revealed the presence of local optima
for configuration B in a scenario with large zones (high
thermal capacitance) subject to small loads and a time-
varying comfort bound. We found 6 distinct local optima for
configuration B in this scenario. Each of the local optima
here was a single point, rather than a connected family of
solutions as in configuration A.

For all six local optima, only outdoor air is used so ṁs =
ṁoa, and the heating and cooling coils are inactive with
Tc = Th = 16 ◦C at all times. In this scenario outside air is
sufficient to counteract the zone loads and cool the zones to
remain within the time-varying comfort bounds.

The six optima are qualitatively very similar to each other:
in the first time step, one zone is cooled to slightly below
24 ◦C, another zone is cooled to approximately 25 ◦C, and
the third zone remains at the initial upper bound of 26 ◦C
(see the upper row of Figure 4). In the second time step,
all 3 zones are controlled to reach the reduced upper bound
at 24 ◦C. Mass flow rates are large for time steps when a
zone requires a 2 ◦C temperature change, intermediate for
steps when a zone requires a 1 ◦C temperature change, and
small for steps when the zone temperature change is small
(see the lower row of Figure 4). The difference between the
local optima here is a matter of sequencing: the local optima
correspond to the 6 different permutations of 3 zones.
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Fig. 4. Local optima for HVAC configuration B.

TABLE II
COST VALUES OF LOCAL OPTIMA, CONFIGURATION B

Point # 1 2 3 4 5 6
J? ($) 0.11738 0.11751 0.11753 0.11779 0.11783 0.11796

Table II gives the corresponding cost values for the 6
locally optimal points. The cost values show very little varia-
tion between the local optima, only 0.5% difference between
the lowest cost and highest cost points. The differences in
cost are due to the thermal load values for each zone.

For a constant supply temperature (16 ◦C), less flow is
required to counteract a positive thermal load when zone
temperature is higher due to (1). So the control strategy that
cools the zones with the lowest thermal loads first is the
most efficient here, keeping the high-load zones at higher
temperatures for longer. This strategy is point 1, so the results
confirm this statement. Point 2 partially cools the highest-
load zone before the intermediate-load zone, and point 3 fully
cools the intermediate-load zone before the lowest-load zone.
Point 4 fully cools the lowest-load zone last instead of first
but is otherwise in order, and point 5 fully cools the highest-
load zone first instead of last but is otherwise in order. Point
6 is the reversed order from point 1.

The small difference in cost between points 2 and 3, and
between points 4 and 5, is due to which zone is fully cooled
at the first time step. That zone (zone 1 for points 1 and
2, zone 2 for points 3 and 4, zone 3 for points 5 and 6)
then uses exactly the lower bound minimum flow rate at the
second time step. At the minimum flow rate, the change in
zone temperature during the second time step is larger for
higher thermal loads. Therefore the higher the thermal load,
the more a zone must be overcooled at the first time step in
order to remain below 24 ◦C at the second time step. This
additional energy is another factor causing points 5 and 6 to
have higher cost than points 3 and 4, and points 3 and 4 to
have higher cost than points 1 and 2.

VI. CONCLUSIONS

We have studied the problem of using model predictive
control (MPC) for heating, ventilation, and air conditioning

(HVAC) systems in a typical commercial building for two
common HVAC configurations. We investigated the phe-
nomenon of local optima by solving the nonlinear MPC
problem using the local nonlinear programming solver Ipopt.
We have shown by simulation that the resulting optimization
problem exhibits local optima for both configurations. We
performed a detailed analysis of the different types of local
optima and their physical interpretation.

For HVAC configuration A, the local optima had notably
different energy costs, so finding a globally optimal control
strategy has obvious significance. In configuration B, the
local optima were very similar in cost for our particular
scenario. We are working to identify which factors can make
the differences more pronounced. Even the presence of local
optima with practically equivalent costs but significantly dif-
ferent control strategies could have important consequences.
For example, switching between local optima at successive
time steps could cause oscillatory control inputs, which is
typically undesirable and detrimental to actuator reliability.

Our future research will focus on applying the type of
analysis presented in this work to a generic scenario (in terms
of number of zones, length of horizon, system parameters,
and operating conditions). We expect the number of local
optima to grow for models with more zones over longer
horizons, which will exacerbate the issue. Our ultimate goal
is to use the proposed analysis in order to derive branch
and bound rules which allow a NLP solver to converge to
globally optimal control sequences.
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