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Abstract— This paper proposes a data-driven parameter
tuning of the internal model controller (IMC) for non-minimum
phase plants. In order to perform the parameter tuning of
the IMC, we utilize the fictitious reference iterative tuning
(FRIT), which enables us to obtain the desired parameter of
the controller with only one-shot experiment data. Particularly,
we propose an embedding of the internal mathematical model
which is described by Laguerre expansion for describing non-
minimum phase plants. Moreover, we show that the proposed
approach enables us to obtain not only a desired controller
but also a well-approximated mathematical model of the actual
non-minimum phase plant simultaneously.

Index Terms— data-driven approach, fictitious reference it-
erative tuning, non-minimum phase, internal model control,
Laguerre expansion

I. INTRODUCTION

Internal model control (IMC)1 is one of the effective

approaches for the achievement of a desired tracking property

[1]. With an internal model implemented in parallel to the

linear plant, the controller can compensate the mismatch

between the actual plant and its model. In the cases where the

internal model exactly reflects the dynamics of the plant, the

IMC completely yields the desired tracking property. Con-

versely, in the cases of no knowledge of a plant, the direct use

of the data (which we call data-driven approach) that have

a fruitful information of the plant yields a more desirable

IMC with respect to the desired specification. Particularly,

there are many cases in which the structure of a controller

has already been fixed with unknown parameters from the

view points on the enhancement of the implementation. From

such points of view, there are some studies on the data-driven

approaches to the controller parameter tuning of the IMC in

[2]-[7].

The application of iterative feedback tuning (IFT) [8] to

the IMC was studied in [2]. The IFT is a tuning method that

iteratively updates the variable parameters of the controller to

minimize the error between the actual output and the desired

one. This minimization can be computed as a non-linear

optimization technique, e.g., the Gauss-Newton method, in

which the approximations of the gradient, the Hessian, and
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1In this paper, the terminology of “IMC ”is used for the “internal model
control” or the “internal model controller”.

so on, consist of the experimental data. This means that IFT

requires many experiments to update the parameters of the

controller. Thus, it spends considerable expense and time,

which are crucial issues with respect to practical points of

view. The application of virtual reference feedback tuning

(VRFT) [9] to IMC was studied in [3]. Differently from IFT,

VRFT requires only one-shot experiment for the achievement

of a desired output, and thus the time and expense for

obtaining the optimal parameters are drastically reduced.

However, in [3], the controller is assumed to be linearly

parameterized which implies that the flexibility and the

freedom of the controller are restricted.

In [4]-[7], FRIT, which was proposed by some of the

authors in [10], is utilized for the controller parameter tuning

of the IMC or the Smith compensator. Similarly to VRFT,

FRIT is also a controller parameter tuning that achieves

the desired output with only one-shot experimental data.

However, FRIT considers the minimization of the error

between the fictitious output and the actual one while the

VRFT focuses on the error between the virtual input and

the actual one, so FRIT is intuitively understandable with

respect to obtaining a desired output. Moreover, the methods

proposed in [4]-[7] treat the controller whose denominator

and numerator are parameterized, which implies that more

effective tuning of the IMC can be performed. In fact, by

focusing the feature that the IMC includes a mathematical

model, the authors provided a method of the simultaneous

attainment of not only a desired controller but also a model

of the plant in [4]-[7] while the results in [2] and [3] can not

be applicable for such a simultaneous attainment. From the

practical points of view, we can utilize the obtained model for

finding out information on model uncertainties, monitoring

the actual status of a plant, detecting an aging variation of

a plant, re-designing more advanced controllers, and so on.

From the theoretical point of view, there is a crucial interplay

which can not be separated between a mathematical model

and a designed controller as stated in [11]. As for this point,

it is natural to treat the data as an interface connect a model

and a controller from more broader perspective. Thus, it

is meaningful to simultaneously obtain not only a desired

controller but also a mathematical model of a plant.

By the way, there are many systems with a non-minimum

phase behavior which can not be neglected in various ap-

plications [12]. For non-minimum phase systems, there exist

studies on data-driven parameter tuning such as [13] with

IFT, [14] with VRFT. Both of them cannot be applied for
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the simultaneous attainment 2. In [6] and [7], we have also

proposed a new approach for non-minimum phase systems

by factorizing the system model into the minimum phase

and non-minimum phase parts under the assumption that we

know the number of unstable zeros. However, in the cases

of no knowledge or only partial knowledge of a system, a

non-minimum phase system can not be parameterized in the

same way as the result in [6] and [7].

From these backgrounds, we propose a data-driven pa-

rameter tuning of the IMC for non-minimum phase plants

by utilizing FRIT under the situation where we do not know

any information of non-minimum phase property. Here, we

propose the embedding of the internal mathematical model

which is described by Laguerre expansion ([16]-[17]) for the

treatment of non-minimum phase plants. We also show that

the proposed results are not only an optimal controller for

the achievement of a desired tracking property but also a

mathematical model of the plant.

The paper is organized as follows: Section 2 are prelim-

inaries and problem setting. Section 3 address a summary

of FRIT scheme, a one-shot data-based method for tuning

controller parameters. The main results of the paper are

expressed in Section 4, a Laguerre expansion approach for

non-minimum phase systems in IMC framework with FRIT.

A numerical simulation in the Section 5 shows the validity of

the algorithm. Finally, some conclusions are given in Section

6.

II. PRELIMINARIES AND PROBLEM SETTING

A. Notations and Assumptions

Let L2 denote a space of squared integrable functions.

Let u and y denote the input and output data (of a closed

loop system) obtained in the finite time, respectively. N
denote a number of the sampled data. A transfer function

from input u to the output y of a system is described by

G(s) = N(s)
D(s) , where N(s) and D(s) are coprime. The output

y of G with respect to u is the solution of the differential

equation D( d
dt
)y = N( d

dt
)u. However, for the enhancement

of the readability, we use the notation y = Gu. Throughout

of this paper, we often omit the notation ′s′ from a rational

function whose indeterminate is s. For a time signal w, we

denote a value of w at the time t as w(t). In order to denote

a delayed signal of the time signal w with a time lag τ , we

use a simple notation e−τsw, i.e., (e−τsw)(t) = w(t − τ)
for all time t, for the enhancement of the readability.

B. Problem Setting

A system we address in this paper is linear, time-invariant,

single-input/single-output, strictly proper, stable and non-

minimum phase. Let P and P̃ denote the actual plant and its

mathematical model implemented in the IMC, respectively.

We consider a closed loop system with IMC in Fig. 1. Since

we have no knowledge of the plant P , so its model P̃ is

parametrized by a tunable vector ρP . For example, each

element of ρP corresponds to an unknown coefficient of

2The method in [14] can identify only zeros.

Fig. 1. A closed loop system with IMC

each term in the polynomials of the denominator/numerator.

Similarly, we suppose that the feedback controller CIMC

are parameterized by a tunable vector ρC . With the notation

ρ = [ρC ρP ]
T, the input u and output y also depend on ρ,

so we denote them as u(ρ) and y(ρ), respectively.

Let Td denote a reference model from r to y of the closed

loop system. Then Tdr denotes the desired output. In ad-

dition, since the controller include the tunable mathematical

model of a plant, it is expected that the internal model in IMC

also leads an appropriate model of the actual plant. Thus, the

objective is to minimize the model-reference criterion as

J(ρ) =
1

N

N
∑

t=1

(y(ρ, t)− Tdr(t))
2. (1)

and simultaneously such that P̃ (ρP ) approximates P as

closely as possible. In other words, the problem is to si-

multaneously attain both of a desired controller and a model

with the direct use of the data.

Moreover, it is preferable that the simultaneous attainment

can be performed with as few data as possible. From this

reason, we utilize fictitious reference iterative tuning (FRIT),

which is briefly explained in the next section, for this

purpose.

III. FICTITIOUS REFERENCE ITERATIVE TUNING

- FRIT

This section is a brief review of FRIT [10] as an effective

tool to solve our problem. This is a data based method

with only one-shot experiment. The main ideas of FRIT

scheme is to construct the model-reference criterion in the

fictitious domain. Consider Fig. 2 for a conventional closed

loop system, here the controller C is parameterized by

C(ρ) =

∑µC

i=0 ρis
i

∑νC

i=1 ρµC+isi + 1
(2)

Fig. 2. A conventional closed loop system
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where ρ = [ρ0 ρ1 . . . ρµC
. . . ρνC

]T ∈ R
µC+νC+1. The

input and output are denoted as u(ρ) and y(ρ), respectively.

First, set an initial parameter vector ρ0 of the controller

and perform a one-shot experiment on the closed loop system

to obtain the data: u0 := u(ρ0) and y0 := y(ρ0). The

controller C(ρ0) is assumed to be able to stabilize the closed

loop so as to yield the bounded input and output. Then, use

the data u0 and y0, compute the fictitious reference signal

r̃(ρ) [15] 3 with a parameter vector ρ as

r̃(ρ) = C−1(ρ)u0 + y0. (3)

Note that the fictitious output responding to the fictitious

reference signal r̃ is always equal to the initial one y0.

Indeed, together with the trivial relation Pu0 = y0, we see

ỹ(ρ) =
PC(ρ)

1 + PC(ρ)
r̃(ρ) := y0. (4)

For a given reference model Td, we introduce the following

cost function described by

JF (ρ) =
N
∑

t=0

(

y0(t)− Tdr̃(ρ, t)
)2

. (5)

Then we minimize JF (ρ) and implement ρ̃∗ :=
argminρ JF (ρ) to the controller. Note that (5) with r̃(ρ)
in (3) requires only u0 and y0. This means that the mini-

mization of (5) can be performed off-line by using only one-

shot experimental data. As for the relationship between the

minimization of (5) and that of (1), we obtain the following

result.

Proposition 1: For a parameter ρ̃∗, J(ρ̃∗) = 0 holds if

and only if JF (ρ̃
∗) = 0 holds. �

See Theorem 3.1 in [10] for the detailed proof and

discussions. This proposition implicitly means that the min-

imization of JF (ρ) is deeply related to that of J(ρ).

IV. A DATA-DRIVEN IMC FOR NON-MINIMUM

PHASE SYSTEMS - LAGUERRE EXPANSION

APPROACH

A. The basic idea

With an unknown non-minimum phase plant P , a model

P̃ of the plant can be parameterized as

P̃ (ρ) = P̃m(ρm)P̃n(ρn) (6)

where

P̃m(ρm) =

∑µ
i=0 ρis

i

∑ν
i=1 ρµ+isi + 1

, µ ≤ ν (7)

P̃n(ρn) =

M
∑

k=1

ηkLk(s, a). (8)

3The fictitious reference was proposed by [15] in the unfalsified control
framework. However, we use it for the different purpose.

In (7), P̃m(ρm) is the parameterized minimum phase part.

On the other hand, (8) describes the parameterized non-

minimum phase part by using the Laguerre expansion

Lk(s, a) =

√
2a

s+ a

(

s− a

s+ a

)k−1

(9)

with coefficients ηk for k = 1, · · · ,M . The reason why we

use the Laguerre expansion for describing the non-minimum

phase part is that the Laguerre function plays a role as the

orthogonal bases for approximation of any stable linear time-

invariant systems [16], [17]. Although it is ideal that M is to

be selected as infinity, the Laguerre expansion is truncated

as the sum of the finite expansion because it should be

implemented in the IMC.

The parameter a > 0 in (9) affects not only to convergence

rate but also to quadratic error of the approximation [18]-

[20]. Moreover, it also impacts on the steady state error of the

tracking property that will be discussed in the next section.

Thus, we here consider a as a tunable parameter.

From the above, the unknown parameter vector for the

internal mathematical model is

ρ :=

[

ρm
ρn

]

(10)

with

ρm = [ρ0 ρ1 . . . ρµ . . . ρν ]
T ∈ R

µ+ν+1. (11)

and

ρn = [η1 . . . ηM a]T ∈ R
M+1. (12)

By the way, since limitation of the tracking property

is deeply related to the non-minimum phase behavior of

a system, the reference model Td would have the same

unstable zeros and/or time delay as the system [13], [14],

[21]. However, it is assumed that we have no information

of the plant model. Thus, we set Td = TdmP̃n(ρn) as the

desired model and it is expressed as

Td = Tdm

M
∑

k=1

ηkLk(s, a). (13)

where Tdm is a reference model which is given by users and

to be with the minimum phase property.

B. Main results

As stated earlier, since the IMC involve the mathematical

model, it is expected that the achievement of the desired

tracking yields the obtainment of the mathematical model of

the actual plant. In order to achieve such a simultaneous at-

tainment of a controllers and models in the IMC architecture.

we give the following result.

Theorem 1: Assume that the controller CIMC(ρ) de-

scribed

CIMC = TdmP̃m(ρm)−1. (14)

Then, the following equivalence holds

P = P̃ (ρ) ⇔ Gry(ρ) = TdmP̃n(ρn). (15)
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Proof. It follows from the basic concept of IMC [1] that

the ‘⇒’ part clearly holds. Thus, we focus on the ‘⇐’ part. In

Fig. 1, the transfer function Gry from r to y can be described

as

Gry =
CIMCP

1 + CIMC(P − P̃ )
. (16)

By substituting (14), (16) yields

Gry =
TdmP̃−1

m P

1− TdmP̃n + TdmP̃−1
m P

. (17)

Since the left hand side of (17) is equal to TdmP̃n(ρn), we

obtain

P̃−1
m P = P̃n − TdmP̃nP̃n + TdmP̃−1

m PP̃n. (18)

Under assumption (1− TdmP̃n(ρn)) 6= 0, P = P̃ (ρ) holds.

�

Theorem 1 implies that we can also obtain a mathematical

model of the actual plant by achieving the desired output.

Fig. 3 illustrates the IMC with the controller described as

(14). Since we use the feedback controller CIMC described

by (14), we do not use the parameter ρC for CIMC and we

use only ρ henceforth.

By rewriting Fig. 3 as Fig. 2, the controller C(ρ) can be

computed as

C(ρ) =
CIMC

1− CIMC P̃ (ρ)
=

Tdm

1− Td

P̃m(ρm)−1. (19)

For eliminating the steady state error of the closed loop

system, the controller C(ρ) must have the integral action.

Regarding this issue, we give the following theorem.

Theorem 2: Assume that a given reference model Tdm(s)
satisfies

Tdm(0) = 1. (20)

Then, the steady state error of the closed loop system

depicted in Fig. 3 is eliminated if and only if the following

equation holds

M
∑

k=1

(−1)k−1ηk =
√

a/2. (21)

Proof. We firstly prove the ‘if’ part. From the equality:
∑M

k=1 (−1)k−1ηk =
√

a/2 and the characteristic of La-

guerre functions, it can be readily shown that

lim
s→0

P̃n = 1. (22)

Fig. 3. IMC with the feedback controller described as (14)

On the other hand, from (19) we have

lim
s→0

C(ρ) = lim
s→0

TdmP̃−1
m

1− TdmP̃n

(23)

Implementing (20) and (22), (23) yields

lim
s→0

C(ρ) = ∞. (24)

Equation (24) means that the controller C(ρ) has the integral

action which can eliminate the steady state error of the

system. Thus, the ‘if’ part is proved.

The ‘only if’ part is easily proved by using the above steps

in reverse order. �

From (21), we have

ηM =
√

a/2−
M−1
∑

k=1

(−1)k−1ηk (25)

for the controller to be the integral action. Thus, ρn is

an intrinsical M -element parameter vector and we use the

following denote henceforth

ρn = [η1 . . . ηM−1 a]T. (26)

C. FRIT for IMC

Apply FRIT for the purpose of obtaining an optimal

parameter vector of the controller in Fig. 3, the fictitious

reference r̃ in (3) can be rewritten as

r̃(ρ) =
1− TdmP̃n(ρn)

Tdm

P̃m(ρm)u0 + y0 (27)

with P̃m described by (7) and P̃n described by (8) , respec-

tively. Implement r̃(ρ) into (5) which is rewritten as

JF (ρ) =
1

N

N
∑

t=1

(y0(t)− Tdm

M
∑

k=1

ηkLk(s, a)r̃(ρ, t))
2 (28)

together with (25). As a result of the minimization of JF (ρ),
we obtain an optimal parameter vector of the controller:

ρ∗ = arg minρJF (ρ). (29)

If the minimized value of JF can be regarded as a small

number, we can regard that the optimal parameters ρ∗ yield

not only a desired controller C(ρ∗), but also a mathematical

model of plant P = P̃ (ρ∗) as a result of Theorem 1.

D. Algorithm

The algorithm of the proposal method is summarized as

following:

1) Parameterize the minimum phase and the non-

minimum phase parts of plant model with arbitrary

order of Laguerre expansion as (7) and (8)

2) The parameter vector ρ is determined by ρm and ρn
as (11) and (26), respectively.

3) Set an initial parameter vector ρ0 and perform a one-

shot experiment to obtain the data u0 and y0.

4) Calculate the fictitious reference signal r̃(ρ) by using

(27), construct the cost function JF (ρ) as (28) and

minimize it by an off-line non-linear technique.
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5) Obtain the optimal parameter vector ρ∗ =
arg minρJF (ρ) which yields both a desired controller

and a mathematical model of the plant.

V. EXAMPLE

In order to show the validity of the algorithm, we apply the

proposed approach for an unknown plant with a time-delay

and unstable zeros as

P =
3(s2 − 5s+ 6)

(3s+ 1)(s2 + 2s+ 5)
e−0.5s.

Parameterize the plant by a first-order MP part P̃m

P̃m(ρm) =
ρ1

ρ2s+ 1
.

and a Laguerre approximation for NMP part

P̃n(ρn) =
M
∑

k=1

ηk(a)Lk(s, a)

The desired model has some tunable parameters

Td(ρn) =
1

2s+ 1

M
∑

k=1

ηkLk(s, a).

Then, the unknown parameter vectors

ρm = [ρ1 ρ2]
T

ρn = [η1 · · · ηM−1 a]T

We set M = 5 and the initial parameter vectors as

ρ0m = [2 2]T and ρ0n = [0.6 0.3 0.3 0.2 3.0]T. We perform

one-shot experiment with the closed loop system, the initial

input u0 and output y0 are respectively illustrated in Fig. 4

and Fig. 5. In Fig. 5, the initial output y0, the reference

signal r and the reference output TdmP̃n(ρ
0
n)r are drawn

as the solid line, the dot-and-dash line, and the dotted line,

respectively. We then apply the proposed algorithm, the

optimal parameters are obtained: ρ∗m = [3.5012 2.8684] and

ρ∗n = [−0.1085 0.3556 1.3071 −1.1121 2.9718]. Implement

these parameters to Fig. 3 and perform the final experiment,

the result is shown in Fig. 6. In this figure, the optimal

output y(ρ∗), the reference signal r and the desired output

TdmP̃n(ρ
∗

n)r are drawn by the solid line, the dot-and-dash

line and the dotted line, respectively. From Fig. 6, we see that

the actual output y(ρ∗) and the desired output TdmP̃n(ρ
∗

n)r
are almost the same, which implies that the desired controller

is achieved by using ρ∗.

In addition, with the obtained parameters, we can compare

the actual plant P and its model P̃ (ρ∗) with respect to

frequency response as Fig. 7 and Fig. 8. In these two

figures, characteristics of P, P̃ (ρ∗), P̃ (ρ0) and TdmP̃n(ρ
∗

n))
are illustrated by the dotted line, the solid line, the dashed

line and the dot-and-dash line, respectively. The frequency

characteristics of P and those of P̃ (ρ∗) are almost the

same in frequency rank of reference model Td. That means

the model P̃ (ρ∗) appropriately reflects the dynamics of the

actual plant.
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0.5

0.7

Time [s]

I
n
p
u
t

Fig. 4. The the initial input u0
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1

1.4

Time [s]

O
u
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p
u
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Fig. 5. The reference signal r (the dot-and-dash line), the initial output

y0 (the solid line) and the desired output TdmP̃n(ρ0n)) (the dotted line)
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Time [s]

O
u
t
p
u
t

Fig. 6. The reference signal r (the dot-and-dash line), the optimal output

y(ρ∗) (the solid line) and the desired output TdmP̃n(ρ∗n)) (the dotted line)

From these results, it is concluded that, by applying the

proposed approach, we can obtain simultaneously a con-

troller for the desired tracking property and a mathematical

model of the actual plant.

VI. CONCLUSIONS

In this paper, we have extended one of applications of

a data-based controller tuning method by utilizing fictitious

reference iterative tuning (FRIT) in the IMC framework.

With the combination of the Laguerre expansion, the ap-

proach has shown its validity for the case of non-minimum

phase systems with no any information of the number of

unstable zeros and/or time delay. The proposed approach

enables us to obtain not only a desired controller but also

a mathematical model of the actual plant.
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Fig. 7. Gain characteristics: P (the dotted line), P̃ (ρ∗) (the solid line),
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