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Abstract— The main difference between centralized and de-
centralized control is the communication. Controllers in a
decentralized system can communicate with each other to
achieve their common goal. In this paper, we argue that
even linear time-invariant controllers in a decentralized linear
system “communicate” via linear network coding to stabilize
the plant. To justify this argument, we propose an algorithm to
“externalize” the implicit communication between controllers
that we believe must be occurring to stabilize the plant. Based
on this, we show that the stabilizability condition for decentral-
ized linear systems comes from an underlying communication
limit, which can be described by an algebraic mincut-maxflow
theorem.

I. INTRODUCTION

This paper is inspired by the similarity between the

algebraic characterization of fixed modes [1] and the min-cut

bound in information theory [2]. The algebraic condition for

λ to be a fixed mode [1, Theorem 4.1] is

min
V⊆{1,2,··· ,v}

rank

[

A− λI BV

CV c 0

]

≥ dim(A). (1)

The information-theoretic min-cut bound [2, Theorem

15.10.1] is

min
V⊆{1,2,··· ,v}

I(XV ;YV c |XV c) ≥
∑

i∈V,j∈V c

Rij . (2)

We can see that the left-hand sides of both (1) and (2) have

a minimization over all subsets. Moreover, in noiseless relay

networks the mutual information is essentially equal to the

rank of the channel matrix1 [3, Theorem 4.4]. Therefore,

the left-hand sides of (1) and (2) can be considered to be

exactly the same. Identifying the right hand sides of (1) and

(2) with each other, we can see that the dimension of A

corresponds to a rate of information flow. Moreover, fixed

modes are closely connected to stabilizability. Thus, we can

conjecture that a decentralized system is stabilizable if and
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1Information is traditionally measured in bits and the rate of bits that
a channel can carry is computed by the mutual information I(X;Y ).
However, in continuous-alphabet channels like the AWGN (additive white
Gaussian noise) channel, the mutual information depends crucially on the
signal-to-noise ratio and scales as log SNR. It was noticed that when the
channel has multiple-inputs and multiple-outputs (MIMO) — like when
there are multiple antennas involved in wireless communication — the
mutual information increases as the rank of the channel matrix times log
SNR. This fact inspired the creation of the finite-field noiseless MIMO
channel model, within which the mutual information is equal to the rank
of the channel matrix multiplied by the log of the field size. Therefore, the
rank can be considered another measure for information, as measured in
units of dimensions or degrees-of-freedom.
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Fig. 1. “Butterfly” example that shows the benefit of network coding in
multicast problems.

only if enough information flow can be supported to stabilize

the plant. In this paper, we make this conjecture rigorous.

First, let’s review perspectives on information flow in com-

munication networks. Historically, information in a network

was believed to behave like a physical commodity. The

network was modeled using a graph, and the information

flow was thought of as commodities to be transported from

the source to the destination by routing them through the

nodes. The most important result is the celebrated mincut-

maxflow theorem [4], [5], which reveals that the maximum

amount of commodity flow through a graph is equal to the

minimum cut of the graph. Moreover, this maximum flow is

achievable by a routing scheme. This optimality result made

researchers stick to routing solutions for decades.

However, in [6] it was found that information flow in

networks does not really behave like physical commodities

do. The “butterfly” example of Fig. 1 (introduced in [6])

shows this. The source S has two bits of binary data a, b

which both destinations D1, D2 want to receive. Every edge

has unit capacity as we see in the left side of Fig. 1. We can

easily check that by routing alone, it is impossible to send

a, b to both destinations. The link between R3 and R4 is a

bottleneck. D2 wants it used to send the bit sent from S to

R1, and D1 wants it to send the bit from S to R2.

Instead of routing, let the relay R3 mix its incoming data

a, b and relay a+b (XOR in the binary field). As shown in the

right side of Fig. 1, the destinations D1 and D2 receive a, a+
b and b, a+b respectively. Thus, both destinations can decode

a, b. The paradigm that allows processing or mixing data at

the nodes is called network coding. The set of problems like

Fig. 1 which have one source and multiple destinations that

want the same data are called multicast problems.

Even if physical commodity flows (which we can only

route) and information flows (which we can process and

mix) are different, the graph-theoretic concepts and insights
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originally developed for commodity flows continue to be

helpful. The main difference is that the amount of flow,

which is naturally measured by the number (or weight

or volume) of commodities in physical commodity flows,

must instead be measured in “dimensions” of the signal for

information flows. However, the mincut-maxflow theorem

remains the main tool to understand network information

flows. For example, in the multicast problem the relevant

mincut is the minimum of the mincut to each destination, and

the mincut-maxflow theorem still holds [6]. Moreover, this

maximum flow is achievable by linear time-invariant network

coding [7].

Once information-theorists had the freedom to mix and

process signals inside the nodes that they could design,

they also started to consider such operations as also existing

outside these nodes. The signals from the relay nodes could

be broadcast to multiple receiving nodes or superposed with

other signals at a receiving node. In fact, such extensions

were a natural fit to wireless communication [3]. The opera-

tions outside the nodes modeled the communication channels

and such wireless channel models had long been valuable

even when restricted to be linear time-invariant.

At this point, we can see the similarities between network-

coding problems [3] and decentralized-linear-control prob-

lems [8]. The channels of the network which we cannot

design can be considered as the linear plant. The source,

relays and destination nodes which we can design can be

considered as decentralized controllers. Just as decentralized

controllers process and combine their observations to gener-

ate their control inputs, the relay nodes process and combine

their incoming signals from the channel to generate their

outgoing signals.

Despite these similarities, many differences between the

communication and control problems had been preventing

a firm connection being made between them. First of all,

network-coding information-theorists work in finite fields,

whereas control-theorists default to infinite fields like the

reals or complex numbers. Moreover, information-theorists

tend not to have any explicit state in the system, preferring an

input-output perspective. Most importantly, the information-

theorists have a clearly specified source and destination,

and their goal is to push information from one to the

other. Control-theorists tend not to have explicit sources and

destinations, and instead there is a dynamic evolution that

needs to be controlled or stabilized.

The main goal of this paper is to bridge these differences

and make a concrete connection between network coding

and decentralized linear control. As shown in Theorems 3,

we will prove that if a decentralized linear system is LTI2-

stabilizable, then there must exist a corresponding implicit

information flow sufficient to stabilize the system.

The rest of the paper is organized as follows: In section II,

2It is in our focus on stabilizability using only linear time-invariant control
laws that the results in this paper differ from the results in [9], [10] where
time-varying control laws are permitted. The overall perspectives however
are compatible in that we are also interested in cutsets and information
flows.

we introduce some preliminary facts about decentralized lin-

ear systems and LTI networks. Section III shows a represen-

tative example that clearly illustrates the implicit information

flows in decentralized systems. Section IV gives the main

result of the paper, the capacity-stabilizability equivalence

theorem. Because of space limitations here, we defer the

technical details and the further discussions to [11].

II. PRELIMINARY

A. Decentralized Linear System

Decentralized linear systems have multiple controllers,

each of which has its own observations and its own

control inputs. Formally, the decentralized linear system,

L(A,Bi, Ci), is defined as follows:3

x[n+ 1] = Ax[n] +B1u1[n] + · · ·+Bvuv[n] (3)

y1[n] = C1x[n]

...

yv[n] = Cvx[n]

where A ∈ C
m×m, Bi ∈ C

m×qi and Ci ∈ C
ri×m. Then, an

interesting question is under what conditions such systems

are stabilizable using only LTI controllers:

Definition 1 (Stabilizability): A decentralized linear sys-

tem is called LTI-stabilizable if there exist linear time-

invariant (LTI) controllers Ki (possibly with internal memo-

ries) that connect yi to ui whose resulting closed-loop system

has only stable poles.

The stabilizability condition for a decentralized linear

system is given in [8] using the concept of fixed modes.

Definition 2: [8, Definition 2] λ is called a fixed mode

of L(A,Bi, Ci) if λ ∈
⋂

Ki∈Cqi×ri
σ(A+

∑

1≤i≤v BiKiCi)
where σ(·) is the set of eigenvalues of the matrix.

The intuition behind this definition is that if an eigenvalue

is fixed for all choices of the controllers, this eigenvalue

is either unobservable or uncontrollable. Thus, if we have

unstable fixed modes, we cannot stabilize the plant.

Theorem 1: [8, Theorem 1] L(A,Bi, Ci) is stabilizable if

and only if all of its fixed modes are within the unit circle.

The algebraic characterization of fixed modes (1) is reported

in [1]. This condition turns out to be a special case of the

mincut-maxflow theorem.

B. LTI Networks

We now introduce communication-theoretic notions for

linear relay networks4. In our companion paper [12], a point-

to-point LTI network N (z) is defined as follows: There is

3In this paper, we consider discrete-time systems since they are eas-
ier to connect to communication theory. We believe that the underlying
phenomena discussed here also exist in continuous-time. Furthermore, we
assume the matrices here are complex since we will use the Jordan form
which can be complex. However, if the system were real we could prove
corresponding results restricting the controller design to be real without
changing the stabilizability condition.

4The LTI networks considered here are essentially the same as the linear
deterministic model studied in [3] except that the LTI network restricts the
relay design to be linear time-invariant and the underlying field is complex
rather than a finite field.
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one transmitter node labeled by “tx”, one receiver node

labeled by “rx”, and v relay nodes labeled by numbers

between 1 to v. Each node generates inputs to the channels

and receives outputs from the channels. The transmitter node

has only inputs, the receiver node has only outputs, and the

relay nodes have both. Every input is potentially connected

to every output by the channel matrix Hi,j(z) for i, j ∈
{tx, 1, · · · , v, rx}, including possibly self-loops. Because the

channel is LTI, each element of the channel matrix is given

in z-transform5, i.e. belongs to C[z] which is the rational

function field on z with coefficients in C. Each relay node

is free to connect its channel outputs with its channel inputs

by a matrix Ki, which is of the form







ki,1,1 · · · ki,1,b
...

. . .
...

ki,a,1 · · · ki,a,b






.

Each element of K1, · · · ,Kv is considered as a different

variable that takes a value from C[z] when it is realized6.

Denote the transfer matrix from the transmitter to the

receiver of the LTI network as Gtx,rx(z,Ki). The elements

of Gtx,rx(z,Ki) belong to C[z,Ki] which is the rational

function field on z and the elements of Ki with coefficients

in C. It is well-known that the capacity of MIMO (multiple-

input multiple-output) channels is closely related to the rank

of the channel matrix [13].

Definition 3 (Degree of Freedom Capacity): For a given

LTI network N (z), we say that the degree of freedom (d.o.f.)

capacity of the network N (z) is k if its transfer matrix

Gtx,rx(z,Ki) is rank k.

Therefore, the object of relay design is to maximize the

transfer-matrix rank from the transmitter input to the receiver

output. Fortunately, we can easily show that almost all

generic choices of Ki from C[z] achieve the maximum feasi-

ble rank of the transfer matrix, which is rank(Gtx,rx(z,Ki)).
Here, since rank(Gtx,rx(z,Ki)) is the maximum d.o.f. that

we can communicate through the LTI network, it is called

the maxflow or the capacity of the LTI network.

It has to be mentioned that by choosing the relay gain

matrices Ki we are allowing the relays to process the signals

rather than just routing them. Thus, to achieve the maxflow of

the LTI network the relays communicate via network coding.

One key fact about LTI networks is that the well-known

mincut-maxflow theorem [5], [4] can be extended to them.

As proved in our companion paper [12], the rank of the

transfer matrix is equal to the rank of the mincut.

Theorem 2 (Algebraic Mincut-Maxflow Theorem): [12]

Consider the LTI network N (z) defined above. For sets

A,B ⊆ {tx, 1, · · · , v, rx}, let HA,B be the channel matrix

from the inputs generated by the nodes in A to the outputs

observed by the nodes in B, then

rank(Gtx,rx(z,Ki))

= min
V⊆{tx,1,··· ,v,rx},V ∋tx,V 6∋rx

rank(HV,V c(z)).

5We assume that all channels are causal so there is no question regarding
the relevant regions of convergence.

6In other words, relays are allowed to have memory.
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Fig. 2. An example of an implicit information flow in a decentralized
linear system.
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In this paper, we will also consider LTI networks at a

specific generalized frequency, z = λ.To indicate that the LTI

network is considered at the generalized frequency z = λ,

we write the network as N (λ). Then, the capacity definition

is naturally generalized to N (λ).

Definition 4: For a given LTI network N (z), we say that

the degree of freedom (d.o.f.) capacity of the network N (z)
is k at frequency z = λ if its transfer matrix Gtx,rx(λ,Ki)
is rank k.

Here we can see that the transfer matrix only makes sense

at z = λ when it does not have any pole at λ. Thus, we

assume that Hi,j has no pole at z = λ and also restrict

the relay design Ki to those rational functions on z that do

not have a pole at λ. Then, the algebraic mincut-maxflow

theorem also holds for N (λ) as before.

Corollary 1: Given the LTI network N (λ) above,

rank(Gtx,rx(λ,Ki))

= min
V⊆{tx,1,··· ,v,rx},V ∋tx,V 6∋rx

rank(HV,V c(λ)).

Proof: Easily follows from Theorem 2. See [11] for

the details.

In summary, the stabilizability of decentralized linear sys-

tems is related to fixed modes, and the capacity of networks

is related to the rank of transfer matrices.

III. EXAMPLE:INFORMATION FLOW IN A

DECENTRALIZED LINEAR SYSTEM

Before we discuss a general algorithm to externalize the

implicit communication between controllers, it will be help-

ful to see the information flows that we want to capture in an
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illustrative example. By now, we have mounting evidence7

that in linear systems, the states themselves are the sources

and, at the same time, the destinations of information flows.

Consider a linear plant controlled by one controller. The

states of the system will be excited by the disturbance, i.e. the

states are generating uncertainties. Then, the states will be

observed by the controller, i.e. the uncertain information

flows from the state to the controller. Finally, the controller

will compensate for the disturbance, i.e. the information

flows back to the states.

When there is more than one controller, the situation

becomes more complicated since the controllers can implic-

itly communicate with each other through the plant [20],

[21]. The example shown in Fig. 2 (adapted from [22])

illustrates this phenomenon. As we can see, the states x1[n]
and x2[n] are associated with the eigenvalue 4. However, the

controller K1 can only observe x1[n], x2[n], the controller

K2 can only control x1[n], x2[n], and the controller K3

can neither observe nor control x1[n], x2[n]. Therefore, to

stabilize x1[n], x2[n] the controller K1 intuitively has to relay

its observations to controller K2 through the implicit channel

provided by the states x3[n], x4[n].
The red arrow of Fig. 2 shows the information flow to

stabilize x1[n], x2[n]. First, x1[n], x2[n] are observed by

K1 through y1[n]. Then, K1 relays its observations to K2

by u1[n] through the channel x3[n], x4[n]. K2 receives the

relayed signals through y2[n], and finally controls the states

by u2[n]. Thus, we expect that the implicit information

flow to stabilize x1[n], x2[n] should be roughly representable

as the first LTI network of Fig. 3. We can see the same

kind of information flow to stabilize the states x3[n], x4[n]
as indicated by the blue arrow. Meanwhile the state x5[n]
can be stabilized by the controller K3 as indicated by the

green arrow. Conceptually, these information flows can be

represented as the second and third LTI networks of Fig. 3.

Here, we can notice some interesting points. First, we are

dividing the states according to their associated eigenvalues.

In this example, the states are first divided into three sets

{x1[n], x2[n]}, {x3[n], x4[n]} and {x5[n]}, and the informa-

tion flows for these sets are considered separately. Moreover,

in each information flow the states associated with the same

eigenvalue are considered as both sources and destinations of

the information. The remaining states are considered as the

channels that are available to implicitly carry this information

flow. The controllers themselves are considered as relays.

We can also see the connection between stabilizability and

capacity. The eigenvalue 4 has two associated states, x1[n]

7We return to this point in the conclusion, but the evidence here has
largely come from contexts in which the communication is explicitly
present. On one side, papers like [14], [15], [16] construct feedback
communication systems that use unstable states to encode the desired
messages. This provides strong evidence for the states acting as information
sources. On the other side, papers like [17], [18], [16] talk about networked
control systems in which the communication demands on the network come
from the states. These argue persuasively for the states in a control system
as being destinations of information flows since control and estimation are
intimately linked together. The “thermodynamic” perspective on the Kalman
filter presented in [19] suggests strongly that such information flows exist
even when there is no explicit communication going on.

and x2[n]. Thus, we can think that the source has 2 d.o.f. to

transmit. This information can be successfully transferred

since the channel provided by the states x3[n] and x4[n] has

d.o.f. capacity 2, and so the eigenvalue 4 is not a fixed mode.

However, if we remove the state x4[n] from the system, the

implicit channel’s d.o.f. capacity becomes 1. Thus, a source

with 2 d.o.f. cannot be transferred, and the eigenvalue 4
becomes a fixed mode.

IV. EXTERNALIZATION OF IMPLICIT COMMUNICATION

In this section, we discuss how to externalize the implicit

communication in decentralized linear systems. The main

idea can be considered as the reverse of the algebraic

approach to network coding. In [7], Koetter and Medard

considered network coding as an algebraic problem. In other

words, they found that what is important about networks

(graphical objects) in network coding is their transfer func-

tions (algebraic objects). What we do is the opposite. First,

we will find transfer functions which are closely connected

to fixed modes. Then, we will find the LTI networks whose

transfer functions these are.

A. Jordan-Form Externalization

It turns out that what is important in externalization is the

right choice of transfer function. In section III we saw that

the source and the destination of the information flows are the

states. However, while fixed modes come from eigenvalues,

there is no correspondence between eigenvalues and the

original states in a linear system for a general matrix A.

To find a natural correspondence between eigenvalues and

states, we convert A into Jordan normal form. By a similarity

transform an arbitrary linear system L(A,Bi, Ci) can be

converted to an equivalent linear system L(A′, B′
i, C

′
i) with

the matrix A′ in Jordan form [23].

As we discussed in Section III, to check if an eigenvalue

λ is a fixed mode, it is enough to examine the transfer matrix

from the states associated with Jordan blocks corresponding

to the eigenvalue λ to themselves. For that purpose, we

introduce an auxiliary input and output to the closed loop

system.

To understand the core ideas, we first consider a diagonal

A matrix, i.e. A =

[

λImλ×mλ
0

0 A′

]

where Imλ×mλ
is a

mλ×mλ identity matrix, and A′ is a diagonal matrix whose

diagonal elements are not equal to λ. Because the matrix is

diagonal, each Jordan block is just a 1×1 matrix and so mλ

can be thought of as the number of Jordan blocks associated

with λ. We will introduce auxiliary input uλ[n] and output

yλ[n] that control and observe the states corresponding to

the eigenvalue λ. For this, we define Bλ and Cλ as follows:

Cλ =
[

Imλ×mλ
0
]

, Bλ =
[

Imλ×mλ
0
]T

. (4)

Then, the closed loop system is given as

x[n+ 1] = (A+
∑

1≤i≤v

BiKiCi)x[n] +Bλuλ[n]

yλ[n] = Cλx[n].
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Fig. 4. The graphical representation of Njd,λ(λ)

Let’s set

(zI −A) =

[

Aλ,1,1(z) Aλ,1,2(z)
Aλ,2,1(z) Aλ,2,2(z)

]

Ci =
[

Ci,λ,1 Ci,λ,2

]

, Bi =

[

Bi,λ,1

Bi,λ,2

]

where Aλ,1,1(z) is a mλ ×mλ matrix, Bi,λ,1 is a mλ × qi
matrix, Ci,λ,1 is a ri × mλ matrix, and the others are the

proper implied dimensions. Here, by construction, we can see

Aλ,1,1(λ) = 0, Aλ,1,2(λ) = 0, Aλ,2,1(λ) = 0, and Aλ,2,2(λ)
is invertible.

Then, we can see that the transfer function from uλ(z) to

yλ(z) is given as follows:

yλ(z) =
[

I 0
]

( [

Aλ,1,1(z) Aλ,1,2(z)
Aλ,2,1(z) Aλ,2,2(z)

]

−
∑

1≤i≤v

[

Bi,λ,1KiCi,λ,1 Bi,λ,1KiCi,λ,2

Bi,λ,2KiCi,λ,1 Bi,λ,2KiCi,λ,2

])−1 [

I

0

]

uλ(z)

Since the fixed modes show up as poles in the transfer

function, checking whether λ is a fixed mode involves

checking whether the transfer function from uλ[n] to yλ[n]
has a fixed pole. However, checking poles is mathematically

troublesome since it results in division by zero. Thus, instead

we inspect the zeros of the formal transfer function from

yλ[n] to uλ[n]. As shown in [11], the formal transfer function

from yλ(z) to uλ(z), Gjd,λ(z,Ki), is given as

Gjd,λ(z,Ki) = (Aλ,1,1(z)−
∑

1≤i≤v

Bi,λ,1KiCi,λ,1)

+ (Aλ,1,2(z)−
∑

1≤i≤v

Bi,λ,1KiCi,λ,2)

· (I − (I −Aλ,2,2(z) +
∑

1≤i≤v

Bi,λ,2KiCi,λ,2))
−1

· (−Aλ,2,1(z) +
∑

1≤i≤v

Bi,λ,2KiCi,λ,1).

Furthermore, in [11] it is proved that the LTI net-

work Njd,λ(λ) shown in Fig. 4 has the transfer function

Gjd,λ(λ,Ki). Here, the equations on the edges of Njd,λ(λ)

K1

y1

K2
x1
x2

x1
x2

u1 y2 u2

1

1

-1

-1

1

1

Fig. 5. Jordan-form externalization of the system of Fig. 2 for λ = 4

represent the channel matrices of LTI network, i.e.

Htx,rx(λ) = 0,

Htx,i(λ) = Ci,λ,1,

Hi,rx(λ) = −Bi,λ,1,

Hi,j(λ) = Cj,λ,2Aλ,2,2(λ)
−1Bi,λ,2.

Now, we are ready to state a capacity-stabilizability equiva-

lence theorem.
Theorem 3: (Capacity-Stabilizability Equivalence) Given

the above definitions, the following statements are equivalent.
(1) λ is a fixed mode of the decentralized linear system
L(A,Bi, Ci)
(2) rank(Gjd,λ(λ,Ki)) < mλ

(3) (transfer matrix rank of LTI network Njd,λ(λ)) < mλ

(4) (mincut rank of the LTI network Njd,λ(λ)) < mλ

(5) min
V ⊆{1,··· ,v}

rank

[

0 −BV,λ,1

CV c,λ,1 CV c,λ,2Aλ,2,2(λ)
−1

BV,λ,2

]

<

mλ

Proof: See [11].

This theorem can be generalized to arbitrary Jordan forms A

by introducing auxiliary inputs and outputs from the states

associated with λ to themselves. In fact, we can further

reduce the dimension of auxiliary input and output. To decide

whether λ is a fixed mode, it is enough to examine the

transfer matrix from the right-bottom elements of the Jordan

blocks corresponding to the eigenvalue λ to their left-top

elements. See [11] for the details.

Remark 1: yλ(z) is the signal assigned to the transmitter

of Njd,λ(z), and uλ(z) is the signal assigned to the receiver

of Ncn(z). Thus, the LTI network connects the states x[n]
to themselves, which complies with our discussion of sec-

tion III.

Remark 2: The statement (1) of the theorem is directly

connected to stabilizability by Theorem 1, and statement (3)

of the theorem is the d.o.f. capacity of the network at the

frequency z = λ. Thus, this theorem reveals a fundamental

equivalence between stabilizability and capacity.

Remark 3: In fact, different externalization is possible

depending on the choice of auxiliary input and output. This

externalization is minimal in the sense that the dimensions

of the transmitter input signal and the receiver output signals

are minimal, and the direct link between the transmitter and

the receiver does not exist. The canonical externalization

corresponding to the maximal is shown in [11] which always

result in a simple topology network.

The LTI network of Fig. 5 shows the Jordan-form exter-

nalization of the Fig. 2 example for λ = 4. We can easily

see that the LTI network of Fig. 5 agrees with the first LTI

network of Fig. 3. The information generated at x1[n], x2[n]
is first observed by the controller K1, then relayed to the

controller K2, and finally returned to x1[n], x2[n]. Here, the
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controller K3 is correctly omitted since it does not affect the

transfer function of the relevant LTI network.

V. CONCLUSION

In this paper, LTI-stabilizability of decentralized linear

systems is found to be equivalent to having sufficient ca-

pacity in the relevant LTI networks. We gave an algorithm

to make explicit the communication networks that represent

the implicit communication required to stabilize the plant.

The stabilizability condition of decentralized systems is then

easily interpreted using mincut conditions on the correspond-

ing networks. Each eigenvalue is viewed separately, and the

number of Jordan blocks corresponding to that eigenvalue

corresponds to the number of degrees-of-freedom of implicit

communication required to stabilize that eigenvalue. In [11],

we further show that the algebraic condition for fixed modes

that was reported in [1] and had, in our opinion, remained

mysterious for 30 years turns out to be a special case of the

algebraic mincut-maxflow theorem. This also confirms that

LTI controllers in decentralized control systems implicitly

communicate via linear network coding. The connection to

network coding becomes even more clear when we consider

stabilization problems with an explicit communication net-

work [11].

Taking a step back, the general idea of implicit commu-

nication (signaling) between decentralized controllers and

information flow in decentralized systems has been recog-

nized since Witsenhausen’s counterexample [20]. However,

in Witsenhausen’s counterexample the need for communica-

tion between controllers is justified by the suboptimality of

linear controllers, i.e. if the decentralized controllers want to

communicate with each other for efficient control of the sys-

tem, they would do so using nonlinear controllers for signal-

ing [24], [25], [21]. However, we showed here that even if we

restrict controllers to be linear time-invariant, the controllers

still can “communicate” via linear network coding. To an

extent, this paper does for implicit communication what [26],

[27] did vis-a-vis [16], [28] for explicit communication — it

finds a way to discuss the issue within a linear framework. In

fact, the existence of implicit communication between linear

controllers in decentralized systems has been conjectured for

a long time [22], [29], [30], [9], [10]. In a sense, we hope

that this paper clarifies these discussions.

Finally, even if this paper focuses on bringing a network-

coding information-theoretic perspective to decentralized

control, we can also think in the reverse direction. For exam-

ple, the proof of the algebraic mincut-maxflow theorem [12]

exploits a system-theoretic perspective on network coding.
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