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Abstract— This paper proposes non-exponential stabiliza-
tion of linear time-invariant systems by linear time-varying
controllers. We consider state feedback and dynamic output
feedback to make the states of the closed-loop systems decay
non-exponentially. We first introduce a non-exponential stability
concept that the state of a zero-input time-varying system
converges to the origin with an upper bound provided by
a specified function. Then, we give non-exponential stabiliz-
ability conditions and time-varying controllers to achieve the
behavior defined by a desired upper bound function for the
closed-loop system. By the proposed methods, we can realize
various non-exponential behaviors, which may improve control
performance.

I. INTRODUCTION

It is well known that all the behaviors of linear time-
invariant (LTI) systems can be represented by exponential
functions [1]. This implies that stabilization of LTI systems
by LTI feedback can realize only exponential decays as the
behaviors of the stable closed-loop systems. However, if we
apply linear time-varying (LTV) feedback, the behaviors of
the closed-loop systems are not restricted in the class of
exponential functions. This paper proposes non-exponential
stabilization of LTI systems by LTV controllers.

The idea of LTV control for LTI systems has been utilized
to achieve fast positioning and vibration suppression in
mechanical systems [2], [3], where time-varying optimal
regulators were extensively used. However, non-exponential
behaviors were not recognized, or non-exponential stabiliza-
tion was not intended explicitly. There is another research
considering non-exponential stabilizing LTV controllers [4].
It considered LTV systems and showed that complete con-
trollability is necessary and sufficient for the existence of a
state feedback controller which makes the state of the closed-
loop system decay non-exponentially with a bound provided
by any specified function.

This paper deals with LTI systems and considers non-
exponential stabilization by LTV state feedback and dynamic
output feedback. We provide methods to obtain controllers
to achieve desired closed-loop behaviors. For this aim, we
present a concept of stability to represent non-exponential
decaying behaviors of LTV systems properly with an up-
per bound provided by a specified function. This stability
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concept is in the class of asymptotic stability (AS) [5], but
different from the traditional one in the sense that the concept
explicitly contain a concrete decaying function, while the
traditional AS requires only the existence of a decaying
function.

Based on the new concept we deal with non-exponential
behaviors of LTV systems. We first derive a stability condi-
tion of a Liapunov differential equation type. We show also
that under a certain additional condition, the Liapunov equa-
tion gives a lower bound of the non-exponential behavior.
Then, we consider a state feedback controller and a dynamic
output feedback controller for non-exponential stabilization.
We derive stabilizability conditions with proposal of design
methods of controllers to achieve the desired behaviors of
the closed-loop systems. The conditions are given in terms
of Riccati differential equations (RDEs). Although it is in
general not possible to solve analytically the differential
equations with time-varying coefficients, the equations can
be solved numerically by utilizing recent digital computers.
Time-varying controllers also can be realized and imple-
mented to actual systems by computers without much diffi-
culty. Non-exponential stabilization by the proposed methods
is illustrated by numerical examples.

We use the following notation. In denotes the n × n
identity matrix. A symmetric matrix X(t) is said to be
strictly positive definite (positive semidefinite) if X(t) ≥ αI
for a positive α (X(t) ≥ O) holds for all t. ‖ · ‖ denotes the
Euclidean norm for a vector and the corresponding induced
norm for a matrix. eigM(·) denotes the maximum eigenvalue
of a symmetric matrix.

II. MOTIVATING EXAMPLES

We present motivating examples in this section. We con-
sider an LTI system and introduce feedback control laws
which render solutions of the closed-loop systems behaving
non-exponentially.

Example 1. We consider the LTI scalar system

ẋ = x+ u (1)

and state feedback u = k(t)x with the time-varying gain
k(t) = −2(t+1), t ≥ 0. Then, the LTV closed-loop system
is ẋ = −(2t+ 1)x. The solution x(t) of this system for the
initial time t = 0 and any initial state x0 is described by

x(t) = e−t2−tx0, t ≥ 0. (2)

The behavior of (2) is not exponential, and converges to zero
faster than any exponential function.
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Example 2. We consider the LTI scalar system (1) and
state feedback u = k(t)x with k(t) = −1 − (1 + t)−1,
t ≥ 0. Then, the solution x(t) of the LTV closed-loop system
ẋ = {k(t) + 1}x for the initial time t = 0 and any initial
state x0 is described by

x(t) =
1

1 + t
x0, t ≥ 0. (3)

The behavior of (3) is not exponential, and converges to zero
more slowly than any exponential function.

Example 3. We consider the LTI scalar system (1) and
state feedback u = k(t)x with

k(t) = − t2(3− 0.01t4)

(1 + 0.01t4)2
− 2, t ≥ 0. (4)

Then, the solution x(t) of the LTV closed-loop system ẋ =
{k(t) + 1}x for the initial time t = 0 and any initial state
x0 is described by

x(t) = exp

(
− t3

1 + 0.01t4
− t

)
x0, t ≥ 0. (5)

The behavior of (5) is faster than any exponential function for
small t and converges to zero exponentially for sufficiently
large t.

In this paper, we present control methods for non-
exponential stabilization of LTI systems by LTV controllers
so that we realize desired behaviors of the closed-loop
systems, which are broader than the class of exponential
functions.

III. NON-EXPONENTIAL STABILITY

In this section, we consider the LTV system

ẋ = A(t)x, (6)

where t ≥ 0 is the time, x ∈ Rn is the state variable,
and A(t) ∈ Rn×n is a time-varying matrix with continuous
elements. Then, we introduce a definition of stability, which
explicitly represent non-exponential behaviors of the system
(6). Since we study the behaviors of the closed-loop systems
obtained from LTI systems by LTV controllers after the
control actions start, we fix the initial time at 0 without loss
of generality.

Definition 1. Consider a continuously differentiable func-
tion λ(t) defined for t ≥ 0, which satisfies λ(t) > 0,
λ(0) = 1, and λ(t) → 0 as t → ∞. The zero solution
of (6) is said to be λ asymptotically stable for the initial
time t = 0 (λAS) if there exists a positive constant κ such
that any solution x(t) satisfies

‖x(t)‖ ≤ κ‖x0‖λ(t), ∀t ≥ 0, (7)

where x0 = x(0) is an arbitrary initial state.
The concept of λAS looks the same as that of AS, but is

not exactly. In [5], AS of the zero solution for the initial time
t = 0 is defined as the existence of continuous functions φ
and σ such that the inequality

‖x(t)‖ ≤ φ(‖x0‖)σ(t, x0), ∀t ≥ 0 (8)

holds, where φ(r) is strictly increasing in r ≥ 0 and σ(t, x0)
is strictly decreasing in t ≥ 0 satisfying φ(0) = 0 and
σ(t, x0) → 0, t → ∞, respectively. For the linear system
(6), the inequality (8) is equivalent to (7). However, the
concept of AS is concerned only with the existence of φ(·)
and σ(·, ·). Neither the estimation of the function σ(·, ·)
in analysis nor control system design under a given σ(·, ·)
has been considered. In this paper, we are interested in the
concrete shape of the function λ(·), and the concept of λAS
explicitly contains a specified λ(·). Therefore, λAS depends
not only on the behavior of the system but also the specified
function λ(t).

Although we introduced the function λ(t) to represent
non-exponential upper bounds of behaviors in (7), we employ
an exponential-like expression ‖x(t)‖ ≤ κ‖x0‖e−δ(t) for (7)
in the following discussions, where δ(t) = − lnλ(t) is a
continuously differentiable function and satisfies δ(0) = 0
and δ(t) → ∞, t → ∞.

We present a sufficient condition for λAS.

Theorem 1: Let λ(t) = e−δ(t) is a given function defined
for t ≥ 0. Then, the zero solution of (6) is λAS if for a
continuous positive semidefinite matrix Q(t), there exists
a continuously differentiable and strictly positive definite
matrix P (t) such that the Liapunov differential equation

Ṗ (t) + P (t){A(t) + δ̇(t)In}
+{A(t) + δ̇(t)In}TP (t) = −Q(t). (9)

holds for all t ≥ 0.

This theorem is implied by the idea of [4]. We omit the
proof here, which is the same as the first half of the proof
for Theorem 2.

We note that we may replace the differential equation (9)
by the differential inequality in which the left side of (9) is
less than or equal to 0 in Theorem 1. Although differential
inequality conditions are more popular recently, a reason why
we adopt the equality condition in the theorem is that the
differential equation (9) can be solved numerically, while
there is no established method for solving the differential
inequality.

There is one more reason why we employ the differential
equation (9) rather than the differential inequality. As stated
in the following theorem, (9) may give more information
of the behavior of the system (6) than (7). We can find a
lower bound of the behavior under the additional condition
to Theorem 1 that P (t) and Q(t) are bounded.

Theorem 2: Let λ(t) = e−δ(t) is a given function defined
for t ≥ 0. Then, the zero solution of (6) is λAS and any
solution x(t) satisfies

κ1‖x0‖λ(t)e−ρt ≤ ‖x(t)‖ ≤ κ2‖x0‖λ(t), ∀t ≥ 0, (10)

where κ1, κ2, ρ are positive constants, if for a bounded, con-
tinuous, and positive semidefinite matrix Q(t), there exists
a bounded, continuously differentiable, and strictly positive
definite matrix P (t) such that the Liapunov differential
equation (9) holds for all t ≥ 0.
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The inequality (10) implies that the behavior of the LTV
system (6) is restricted in the band described by λ(t) and
λ(t)e−ρt. This is a desirable property of control systems and
can be included in the design methods of LTV controllers
given in Section IV.

We present the proof of Theorem 2. As remarked above,
the first half proves Theorem 1 as well.

Proof of Theorem 2. We first show that the inequality

‖x(t)‖ ≤ κ2‖x0‖λ(t) (11)

holds from the condition that P (t) is strictly positive definite,
Q(t) is positive semidefinite, and the equation (9) holds.
We consider the following function as a candidate of the
Liapunov function

V (t, x) = e2δ(t)xTP (t)x. (12)

Since P (t) is strictly positive definite, that is, P (t) ≥ α1In
for a positive constant α1,

V (t, x) ≥ α1e
2δ(t)xTx (13)

holds. We compute the total derivative of V (t, x) along the
solution x(t) of the system (6). Then, utilizing the differential
equation (9) and positive semidefiniteness of Q(t), we see

d

dt
V (t, x(t)) ≤ 0. (14)

We integrate this inequality from 0 to t to obtain V (t, x(t))−
V (0, x0) ≤ 0. From (13) and δ(0) = 0, the inequality (11)
holds by setting a positive constant

κ2 =

√
α−1
1 eigM{P (0)}. (15)

We next show that the inequality

κ1‖x0‖λ(t)e−ρt ≤ ‖x(t)‖ (16)

holds from the condition that P (t) is bounded and strictly
positive definite, that is, α1In ≤ P (t) ≤ α2In for positive
constants α1 and α2, Q(t) is positive semidefinite and
bounded, that is, O ≤ Q(t) ≤ βIn for a positive constant β,
and the equation (9) holds. We compute the total derivative
of V (t, x) of (12) along the solution x(t) of (6) to obtain

d

dt
V (t, x(t)) = −xT(t)Q(t)x(t)

≥ −α−1
1 βV (t, x(t)), (17)

which implies

V (0, x(0))e−2ρt ≤ V (t, x(t)), (18)

where ρ = (1/2)α−1
1 β. Then, the inequality (16) holds

by setting a positive constant κ1 = (α1α
−1
2 )1/2. Thus, we

obtained the inequality (10). This completes the proof of
Theorem 2. �

IV. NON-EXPONENTIAL STABILIZATION

We deal with the LTI system

ẋ = Ax+Bu, y = Cx, (19)

where x ∈ Rn is the state variable, u ∈ Rm is the control
input, y ∈ R` is the measured output, and A ∈ Rn×n,
B ∈ Rn×m, C ∈ R`×n are constant matrices. We present
non-exponential stabilization methods by state feedback and
dynamic output feedback with stabilizability conditions. In
this paper, for a specified function λ(t), the system (19) is
said to be λ stabilizable if there exists a controller such that
the zero solution of the closed-loop system is λAS.

A. State Feedback Stabilization

In this subsection, we assume that all the components of
the state x in (19) can be measured, that is, we suppose
C = In. We apply the LTV state feedback

u = K(t)x (20)

to (19), where K(t) ∈ Rm×n is a time-varying matrix
with continuous elements. Thus, the closed-loop system is
represented as

ẋ = {A+BK(t)}x. (21)

Using the condition of Theorem 1, we can derive a λ
stabilizability condition and a time-varying feedback gain
K(t) as follows.

Theorem 3: Let λ(t) = e−δ(t) is a given function defined
for t ≥ 0. Suppose that for continuous positive semidefinite
matrices Q(t) and R(t), there exists a continuously differ-
entiable and strictly positive definite matrix P (t) such that
the RDE

Ṗ (t) + P (t){A+ δ̇(t)In}+ {A+ δ̇(t)In}TP (t)

−P (t)BR(t)BTP (t) = −Q(t) (22)

holds for all t ≥ 0. Then, the system (19) is λ stabilizable
by the state feedback controller (20) with the feedback gain

K(t) = −1

2
R(t)BTP (t). (23)

Remark 1: Theoretically, Theorem 3 seems valid for any
positive semidefinite Q(t), even for Q(t) = O. However,
an arbitrary positive semidefinite Q(t) may not generate a
strictly positive definite solution P (t) of (22). Therefore, we
need to choose Q(t) properly. Such a Q(t) is given as

Q(t) = Q0(t)− ε{A+AT + 2δ̇(t)In}
+ε2BR(t)BT, (24)

where ε is a positive constant and Q0(t) is a positive
semidefinite matrix so that Q(t) is positive semidefinite.
Using this Q(t), as the proof of Theorem 1 in [4] implied, it
can be shown that for any λ(t) and any continuous positive
definite R(t), controllability of the system (19) is sufficient
for the existence of a strict positive definite P (t) ≥ εIn
(for more details and derivation of (24), see Appendix A)
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and thus the system is λ stabilizable. We note, however, that
when λ(t) is specified, controllability of the system may not
be necessary for λ stabilizability. λ stabilizability depends
on the specified λ(t).

The above choice of Q(t) is an example to obtain a strictly
positive definite P (t). We do not need to use it. In Section
V, we show another choice in an example.

Remark 2: When the derivative of the specified δ(t) is
bounded, the matrix Q(t) of (24) can be chosen as bounded.
In this case, for continuous, bounded, and strictly positive
definite matrices Q(t) and R(t), we can have a differentiable,
bounded, and strictly positive definite P (t) [7] and realize λ
stabilization with a lower bound as in Theorem 2.

B. Output Feedback Stabilization
This subsection considers the case where the measured

output y is limited as in (19). We present a stabilizability
condition and an LTV output feedback controller described
by

ξ̇ = Â(t)ξ + B̂(t)y, u = Ĉ(t)ξ, (25)

where ξ ∈ Rn is the state variable of the controller,
Â(t) ∈ Rn×n, B̂(t) ∈ Rn×`, Ĉ(t) ∈ Rm×n are time-varying
matrices with continuous elements.

The closed-loop system composed of the system (19) and
the controller (25) is represented using the combined state
variable xcl = [xT ξT ]T as

ẋcl = Acl(t)xcl, Acl(t) =

[
A BĈ(t)

B̂(t)C Â(t)

]
. (26)

A commonly used stabilization method for LTI systems by
LTI controllers is a combination of state feedback and state
estimation. It is well known as the Separation Theorem that
stabilizing state feedback gains and observers for state esti-
mation can be designed independently (see, e.g., [6]). That
is, any combination of a stabilizing state feedback gain and
an observer stabilizes the given system in LTI cases. It may
seem that extension of this idea to the case of stabilization
of LTI systems by LTV controllers is straightforward, but is
not true in non-exponential stabilization. A combination of a
state feedback gain for which the zero solution of the closed-
loop system is λAS and an observer whose zero solution
is λAS does not generally guarantee the same stability
property in the total closed-loop system. This fact is shown
in Appendix B by a counter-example.

This fact motivates us to derive the following theorem
which gives an LTV dynamic output feedback controller for
non-exponential stabilization of LTI systems.

Theorem 4: Let λ(t) = e−δ(t) is a given function defined
for t ≥ 0. Suppose that for continuous positive semidefinite
matrices Q1(t), Q2(t), R1(t), and R2(t), there exist matrices
X(t), Y (t) such that the following conditions hold.
(i) X(t) is continuously differentiable and strictly positive

definite, and satisfies the RDE

Ẋ(t) +X(t){A+ δ̇(t)In}+ {A+ δ̇(t)In}TX(t)

−X(t)BR1(t)B
TX(t) = −Q1(t) (27)

for all t ≥ 0.
(ii) Y (t) is bounded, continuously differentiable, and posi-

tive definite, and satisfies the RDE

−Ẏ (t) + {A+ δ̇(t)In}Y (t) + Y (t){A+ δ̇(t)In}T

−Y (t){CTR2(t)C −X(t)BR1(t)B
TX(t)}Y (t)

= −Q2(t) (28)

with the above X(t) for all t ≥ 0.
Then, the system (19) is λ stabilizable by the output feedback
controller (25) with coefficient matrices

Â(t) = A+BĈ(t)− B̂(t)C − Y (t)ĈT(t)BTX(t)

B̂(t) =
1

2
Y (t)CTR2(t), Ĉ(t) = −1

2
R1(t)B

TX(t). (29)

The proof is omitted due to page limitations.

Remark 3: The design method of Theorem 4 is composed
of two steps. First, we compute the solution X(t) of the
RDE (27). As stated in Remark 1, if the system (19) is
controllable, we can choose suitable Q1(t) and R1(t) to
obtain a desirable X(t). Then, using the obtained X(t), we
compute the solution Y (t) of the RDE (28). Observability
of the system (19) seems sufficient for the existence of a
desirable Y (t). However, it has not been shown yet.

Although we have considered non-exponential stabiliza-
tion of LTI systems here, it is obvious that we can simply
and directly extend Theorems 3 and 4 to LTV systems.

V. NUMERICAL EXAMPLE

We present numerical examples of non-exponential stabi-
lization by Theorems 3 and 4. We consider the LTI system

ẋ =

[
0 1
−2 −2

]
x+

[
0
1

]
u, y =

[
1 0

]
x. (30)

Since the poles of the system are −1± i, the zero solution is
exponentially asymptotically stable. By the proposed meth-
ods, we achieve desired fast decay of the measured output
y(t) through the fast decay of the norm ‖x(t)‖ of the state.

A. State Feedback Case

We present an example of state-feedback non-exponential
stabilization of (30) by Theorem 3. We consider the non-
exponential behaviors represented by λ1(t) = exp(−δ1(t))
and λ2(t) = exp(−δ2(t)) with

δ1(t) = t3 + t, δ2(t) =
t3

1 + 0.01t4
+ t, t ≥ 0. (31)

We note that they are almost identical when t is small.
In both cases λ1(t) and λ2(t), we choose the same

matrices Q(t) = diag [ 0.1, 0.1 ] and R(t) = 1 in the RDE
(22). Then, we solve it numerically and obtain time-varying
gains by (23).

Figs.1∼5 illustrate the time responses of the norm ‖x(t)‖
of the state for the initial state x0 = [ 1 0 ]T, the log-
arithmically scaled ‖x(t)‖, the measured output y(t), the
computed feedback gain K(t) = [ k1(t) k2(t) ], and the
control input u(t), respectively. In the figures, the solid lines
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and the crosses indicate the behaviors for λ1(t) and λ2(t),
respectively. The broken lines in Figs. 1∼3 are exponential
behaviors of the original system (30), which are given for
comparison.

The results show that we can achieve non-exponential
behaviors of the norm ‖x(t)‖ of the state and fast decays of
the measured output y(t) by the proposed LTV controllers in
both cases of λ1(t) and λ2(t), which are almost identical in
Figs. 1 and 3. We note that the decay of the norm ‖x(t)‖ of
the state is not monotonically decreasing. This phenomenon
is unavoidable when the dimension of the input is less than
that of the state.

Although the LTV gain for λ1(t) is not bounded, the
control input is bounded and almost identical to that gen-
erated by the bounded gain for λ2(t). Thus, it is suggested
that we should adopt λ2(t) rather than λ1(t) for realistic
implementation.

B. Output Feedback Case
We consider output-feedback non-exponential stabilization

of (30) by Theorem 4. In this example, we adopt the same
decaying function λ2(t) as (31).

First, we note that the RDE (27) is identical to (22) of
the state feedback case if we replace Q1(t), R1(t) with
Q(t), R(t). Therefore, by setting Q1(t) = diag [ 0.1, 0.1 ]
and R1(t) = 1, we use the solution X(t) already computed
in above example. Using that X(t), we solve the RDE (28)
numerically to obtain Y (t). Here, we choose the matrices
Q2(t) = O and R2(t) = 1000 ‖X(t)BBTX(t)‖. Then,
using the matrices R1(t), R2(t), X(t), and Y (t), we obtain
a stabilizing output feedback controller (29).

For comparison of the output feedback case with the state
feedback case, simulation results are given in Figs. 6, 7,
where the initial values x0 and ξ0 of the states x of the
system and ξ of the controller are set as x0 = [ 1 0 ]T and
ξ0 = [ 0 0 ]T, respectively. The crosses and the solid lines
indicate the state feedback case and the output feedback
case, respectively. To magnify the difference between the
two cases, we focus on only a short time interval here. We
see that the behaviors of the norm ‖x(t)‖ of the state and the
measured output y(t) are not so different in the two cases.

VI. CONCLUSIONS

In this paper, we considered non-exponential stabilization
of LTI systems by LTV controllers. For this purpose we first
proposed the concept of λAS, which can specify various
non-exponential upper bounds of initial state responses of
LTV systems. Then, we derived stabilization methods by
state feedback and dynamic output feedback, which realize
specified λAS properties in the closed-loop systems. Since
the stabilization methods are given in terms of matrix differ-
ential equations, not differential inequalities, we can compute
the solutions numerically without much difficulty to obtain
controllers.
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APPENDIX

A. SUPPLEMENT TO REMARK 1

We show that the choice of Q(t) of (24) and controlla-
bility of the system (19) (controllability of the pair {A,B})
generate a strict positive definite solution P (t) of the RDE
(22). We show Remark 1 by the followings (i)∼(iii).

(i) Let Q0(t) be a positive semidefinite matrix such that

Q0(t) ≥ ε{A+AT + 2δ̇(t)In} − ε2BR(t)BT (32)

holds.
(ii) Solve the RDE

Ṗ0(t) + P0(t){A+ δ̇(t)In − εBR(t)BT}
+{A+ δ̇(t)In − εBR(t)BT}TP0(t)

−P0(t)BR(t)BTP0(t) = −Q0(t) (33)

to obtain continuously differentiable and positive semidefi-
nite solution P0(t). If {A,B} is controllable, {A+ δ̇(t)In−
εBR(t)BT , B} is completely controllable [4]. Then, the
RDE (33) has a positive semidefinite solution P0(t) [7].

(iii) Setting Q(t) as

Q(t) = Q0(t)− ε{A+AT + 2δ̇(t)In}
+ε2BR(t)BT , (34)

we see from (33) that

Ṗ0(t) + {P0(t) + εIn}{A+ δ̇(t)In}
+{A+ δ̇(t)In}T{P0(t) + εIn}
−{P0(t) + εIn}BR(t)BT{P0(t) + εIn} = −Q(t) (35)

holds. This implies that the RDE (22) has a strictly positive
definite solution P (t) = P0(t) + εIn.

B. COUNTER-EXAMPLE TO SEPARATION THEOREM

A combination of a state feedback controller for which
the zero solution of the closed-loop system is λAS and an
observer whose zero solution is λAS does not generally
guarantee the same stability property in the total closed-loop
system. We show this fact by the following example.

Counter-Example. We consider non-exponential stabiliza-
tion specified by

λ(t) =
1

1 + t
, t ≥ 0 (36)

for the LTI scalar system

ẋ = ax+ bu, y = cx, (37)

where a = b = c = 1. We apply an LTV controller composed
of the feedback of the estimated state and the observer

u = k(t)ξ, ξ̇ = {a− h(t)c}ξ + bu+ h(t)y, (38)

where ξ is the estimated state, and k(t) and h(t) are the state
feedback gain and the observer gain, respectively. If we set
k(t) and h(t) as

k(t) = −1− 1

1 + t
, h(t) = 1 +

1

1 + t
, t ≥ 0, (39)

then the solutions of the systems ẋc1 = {a+ bk(t)}xc1 and
ẋc2 = {a− h(t)c}xc2 are described by

xci(t) =
1

1 + t
xci0, t ≥ 0, i = 1, 2 (40)

for any initial state xci0 = xci(0). Therefore, the zero
solutions of the state feedback system and the observer are
λAS. However, the zero solution of the closed-loop system[

ẋ

ξ̇

]
=

[
a bk(t)

h(t)c a+ bk(t)− h(t)c

][
x
ξ

]
(41)

is neither λAS nor AS. This is seen from the equivalent
system [

ẋ

ẋ− ξ̇

]
=

[
− 1

1+t 1 + 1
1+t

0 − 1
1+t

][
x

x− ξ

]
. (42)

The solution of this system is described by[
x(t)

x(t)− ξ(t)

]
=

1

1 + t

[
1 t+ ln (1 + t)
0 1

][
x0

x0 − ξ0

]
(43)

for the initial time t = 0 and any initial state [x0 x0−ξ0]
T =

[x(0) x(0)− ξ(0)]T. The behavior of (43) does not converge
to zero when t → ∞ if x0 6= ξ0.
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