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Abstract— This paper proposes a method to initiate the pose
of an aerial robot from a glimpse of a monocular view during
the rapid take-off. Unlike the existing filter-based methods that
failed to estimate pose due to insufficient baseline, this paper
utilizes a unified projective parametrization and a progressively
suppressed refinement scheme for the non-planar homography
estimations to tackle the baseline initialization problem, which
has been notoriously and persistently encountered in the field
of aerial robotics. Without pruning the elliptical uncertainty
spheres iteratively in a filter-based framework as in the existing
methods, the proposed method associates the unknown scene
points and the pose of the agile aerial robot in a unified
projective parametrization, and leverages a hypothesis-and-
verify scheme to facilitate the decompositions of the non-
planar homographies in line with a series of essential matrices.
Moreover, a progressively suppressed strategy is introduced
to minimize the hypothetic errors in the homographies and
to minimize estimation divergence. Therefore, even with only
a glance through a single camera onboard an aerial robot,
a referable poses of the aerial robot can be initiated for
the immediate navigation. In addition, the empirical results
demonstrates that this method not only yields a consistent and
referable estimation of the 6DoF pose of the robot in parallel
with the agile movement of take-off, but also withstands the
loop-closure evaluation in the 3D space.

I. INTRODUCTION

Unmanned miniature1 aerial robots belong to a partic-
ularly demanding subset of the aerial robots in view of
their destined domain of deployments. The GNSS-denied,
cluttered and narrow environment, such as the urban canyon
or buildings, imposes significant difficulties for these robots
to position themselves with the localization methods that
rely on the Geographic Information Systems (GIS). Many
attempted to solve this problem by utilizing the laser range
finders, ultrasonic sensors, barometers, inertial sensors and
magnetometers [1][2][3]. But the onboard cameras, which
are commonly equipped on these robots and intuitively yield
perceived information rich enough for the localization and
navigation, are solely treated as a tool for the surveillance
or the topological sensors against the drifting by using the
optical flow method [4][5][6].

Some recent advancements in the field of vision processing
for the aerial robots involve the tracking [7], obstacle avoid-
ance [4] and geographical reconstruction [8]. For the visual
localization, some attempted on the stereovision with the aid
of the ranging or inertial sensors [9][10][11]. Interestingly,
comparing with the binocular vision, the monocular vision
is seldom employed alone on all scales of aerial platforms
for the purpose of 6DoF relative positioning in spite of the
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1Miniature: small enough to fly in indoor environment.

obvious reasoning of being low in the payload requirement
[3] in which all miniature aerial robots should favor.

Unlike the stereovision, the localization method which
only utilizes the monocular vision necessitates an explicit
initialization2 which conditions on the sufficient baseline
requirement [12] because the monocular vision requires
a baseline for the triangulation of the map points. This
condition is principally associated with the foundation of
the prevalent and celebrated filter-based localization method
[13][14]. This kind of filter-based frameworks, either the
Extended Kalman filter (EKF) [14][15] or the Unscented
Kalman filter (UKF) [16] which is a member of the Sigma-
Point Kalman filters (SPKF) [17], is established on the
Gaussian probability density function for all uncertainties.
And with the help of the inverse depth parametrization [18],
these filter-based methods can deal with the uncertain depths
that exhibit the nonlinear uncertainty distributions. Although
this kind of method improves significantly when comparing
with the delayed initialization method [13] which relies on
the Particle filter for the nonlinear depth estimations before
switching to the Kalman filter framework by some cut-off
variances [13], the initialization method for the monocular
visual localization remains a notable and open challenge that
has yet been thoroughly resolved [19][20].

This method proposes to utilize the projective parametriza-
tion to relate the scene points and the camera frame, and
hence, the poses of the robot can be continuously extracted
from the series of hypothesized essential matrices. Moreover,
to curb the statistical error due to the random selections dur-
ing the hypothesizing mechanism of the essential matrices, a
progressively suppressed scheme for the bundle adjustment
is introduced to efficiently offset that error and avoid the
local minimums. The contribution of this paper is that, even
with a glimpse of a monocular view, the proposed method
yields a robust and un-delayed initialization of the 6DoF
pose of the unmanned aerial robots in the rapid take-off
scenario while the existing methods lose track and deliver
non-referable estimations due to the limited baseline. To our
best knowledge, it is the first publication to successfully and
instantaneously initialize the pose of the aerial robots from
only a glance of the monocular view. With no means to pro-
pose a visual localization method using a monocular vision,
this paper focuses the discussion on the challenging initial-
ization method [19][21] due to the insufficient baseline which
essentially is the crux in all existing monocular visual local-
ization methods. The video of the experiments are available
at: http://www.mae.cuhk.edu.hk/∼tklau/mvl

This paper is closely related to the ongoing debate [20]
on whether filter-based localization method is better that
optimization-based ones in the setting of monocular SLAM.
In this paper, we center our discussion on the initialization

2This initialization step is often coined as SLAM wiggle.
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Fig. 1: The instrumented miniature co-axial helicopter in actions.
The model is of EK1H-E020 from E-sky.

method for monocular visual localization, and suggests that
our method, which is of an optimization-based approach, can
succeed in the cases that filter-based methods failed.

II. FORMULATION OF THE METHOD

The monocular visual localization has long been con-
fronted by the probabilistic approaches. Consider a fat sheaf
of frames taken by a monocular vision in a scene, the
scattered image patches, which are selectively picked by the
detection schemes like the Harris corner [22] or the FAST
corner [23], are matched frame-by-frame to prune the ellip-
tical spheres of the uncertain depths of the feature patches
through triangulations in some iterating filters, mostly the
EKF [24]. However, even with the inverse depth parametriza-
tion [18] that linearizes the uncertainty of depths and hence
enforces the covariances to follow the Gaussian mixture
model, these probabilistic methods are still fundamentally a
frame-by-frame pruning method and yields their best guess
only if the uncertainties nicely follow some pre-defined dis-
tributions which mimic from the natural ambiguousness, or,
when the elliptical spheres, which represent the uncertainty
distribution of the feature positions, are pruned enough to
faithfully satisfy the Gaussian distribution on a long run.
However, it is not the case for the aerial robots which need
to instantaneously initialize their 6DoF pose estimation in
order to facilitate the navigation during the rapid motion of
the take-off. While the aforementioned methods are doubtful
[20] in dealing with the initialization problem which is
significantly critical for the aerial robots during their first
movement for the deployments, we address this issue from
a new perspective by a global projective method than the
filter-based approach. The idea of the proposed method is
found on the obvious fact that scene points are projected to
the camera frames based on the projection matrix and the
inter-frame homography. For a camera pose C1 and a scene
point k, (
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)
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)
W

)
(1)

And equivalently for a camera pose C2 in the same scene,(
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)
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(
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(
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)
W

)
(2)

where Project (·) is the pin-hold projection function, and is

further elaborated in (4). (uk vk)Ci

T
and (uk vk)Cj

T
are the

distorted image coordinates observed from the two camera

frames. (Xk Yk Zk)W
T

is the 3D position of the scene point
k with respect to the world frame. T Ci,W and T Cj ,W are the
transformation matrix from the world frame to the camera
pose Ci and Cj . While taking the first camera frame as a
datum frame for the relative positioning, T Cj ,W will then
describe the pose of the camera frame Cj . Without pruning

Fig. 2: The proposed initialization method for the aerial robots.
In view of that the first motion to be taken by an aerial robot in
deployment is take-off, this method is especially designed to cope
with this scenario in order to yield an immediate pose estimation in
parallel with the departing motion. This instantaneous initialization
can replace the existing delayed or un-delayed initialization meth-
ods and yield a robust pose estimation under the rapid movement
of the take-off. The details of the method are further elaborated in
the sections.

the uncertainty elliptical spheres as in the aforementioned
filter-based method, the camera pose can be theoretically
solved by finding the projection matrix and the position
of the scene point. But here are the pros and cons. The
downside is that, (2) is sensitive to the noisy measurements
of the matched feature pairs. And we address this issue and
discuss the solution in the Section III. On the other hand, the
advantage of this method is that, it can resolve the relative
pose of the aerial robot even with only two frames, while
the previous un-delayed initialization method, which involves
a frame-by-frame uncertainty pruning operation, can hardly
enforce the depth uncertainty to follow the Gaussian mixture
model in such a glimpse of the view. But for the aerial
robots, when they are deployed to actions in the unknown
environment, that glimpse of a view is exactly all they
observe to initialize their poses to facilitate the immediate
navigation. The proposed method precisely addresses this
initialization problem in this critical scenario in which the
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Fig. 3: The unified projective parametrization for the estimations
of the non-planar homographies from the noisy measurements of
matched features.

observations are limited and the robot motion is rapidly
altering.

III. ESTIMATION OF NON-PLANAR HOMOGRAPHY FROM

NOISY OBSERVATIONS

The problem of estimating the initial pose of an aerial
robot which carries a single camera in parallel with the
motion when it takes off, a theoretically guaranteed method
is to retrieve T Cj ,W in (2). Although the non-planar ho-
mography can be used for estimating the pose [25], due
to the seemingly overwhelming and noisy measurements of
the feature matches between the frames, it is not practical
to use the homography to solve for the robot pose in the
closed-form solutions. In this section we will discuss a series
of mechanisms to best estimate the homography from the
noisy measurements of the feature matches. Consider that at
t = 0, the first frame, which is also known as the datum
frame, is acquired at a pose TRW (0) with respect to the
world frame from the monocular vision, and is represented
by the SE(3) transformation matrix in the Lie groups [26].
It transforms from the world frame to the body frame of the
robot, which is essentially the camera frame, at t = 0. And
at t = to, another frame is acquired at TRW (to), where
TRW (0) �= TRW (to). Regardless of the motion the robot
experiences, the corresponding feature pairs between these
two frames must satisfy the constraints associated with the
essential matrix [27], such that,

(x̂c|t=to )T E (x̂c|t=0) = 0 (3)

where x̂c|t=0 and x̂c|t=to are the normalized image coor-
dinates of a scene point on the frames taken at t = 0 and
t = to, respectively. These normalized image coordinates can
be represented by taking a pin-hole camera model with the
distortions [28][29],(

u
v

)
= Project

(
TRW

(
xw
yw
zw

))
= Project

(
xc
yc
zc

)

=

(
uo
vo

)
+

(
fu αfu
0 fv

)
r′

( xc
zcyc
zc

)
+

(
dx1
dx2

)
(4)

where (u v)T
is the distorted image coordinate which can

be directly observed on the image frame. (xW yW zW )T

and (xc yc zc)
T

are the 3D position of a feature point in
the scene with respect to the world frame and the camera
frame which is equivalent to the body frame of the aerial

robot. (uo vo)
T

is the principal point. fu,v are the focal
lengths expressed in units of horizontal and vertical pixels.
α is the skew coefficient for non-rectangular pixels. r′ is
the distorted radius due to the radial distortion. dx1,2 are the
tangential distortions. The radial distortion can be expressed
in a definite order, such that,

r′ = 1 + k1r2 + k2r4 + k5r6 (5)

where r =
√
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c

zc
. And, the tangential distortions can be
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where k1,2,5 are distortion coefficients which can be cali-
brated effortlessly from the conventional camera calibration
toolboxes along with other intrinsic parameters. As the pixel
is seldom non-rectangular, and hence the normalized image
coordinates can be represented as followed,

x̂c =
1

Zc

(
Xc
Yc

)
=

(
u−uo−dx1

fur′
v−vo−dx2

fvr′

)
(7)

The essential matrix in (3) can be efficiently obtained from
the five-point algorithm [30] if the corresponding feature
matches are noise-free, which can hardly be realistic. There-
fore, a RANSAC-type (Random Sample Consensus) scheme
is implemented to iteratively refine and achieve an optimal
essential matrix. To minimize the disturbance of outliers to
the estimation of the essential matrix, the whole hypothesis-
and-verify process [31] runs iteratively and randomly picks
different matched feature pairs for the estimation of the es-
sential matrix by the five-point algorithm [30]. Each essential
matrix is penalized in terms of accuracy using the squared
error [32], such that,

p =

{
eT e , for ‖e‖ < σthreshold

pmax , for ‖e‖ ≥ σthreshold
(8)

where p is the penalty. pmax is the maximum penalty to
separate the hypothesis that does not fit the measurements.
The error e is the projection error in the image coordinates.
Taking a unified projection on the camera frame, such that
the scene points are represented on a plane at zc = 1, the
error for the ith scene point, which is observed in the jth

camera pose can be written as,

e = J

((
xi,cj

yi,cj

)
−
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))

=
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∂u
∂xc
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∂yc

∂v
∂xc

∂v
∂yc

) (
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yi,cj − ŷi,cj

)
(9)

where J is the Jacobian matrix that establishes the relation
of differential motion between the scene positions in the
camera frame and the corresponding image coordinates. The
Jacobian matrix can be derived by recalling (4) and (7). And
for the ease of notation, (·)i,Cj

is written as (·)C . For the

image coordinates,

u = uo + fur′
(

xc

zc

)
+ dx1, v = vo + fvr′

(
yc

zc

)
+ dx2 (10)

The derivative of the image coordinates in (10) with respect
to the scene position at the unified camera frame can be
derived,

∂u

∂xc
=

∂fur′xc

∂xc
+

∂dx1

∂xc
= fur′ + fuxc

∂r′

∂xc
+

∂dx1

∂xc
(11)

where the partial differentiation of the radial and tangential
distortions can be written using (5) and (6),

∂dx1
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= 2k3yc +

2k4xc√
x2
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(
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Similarly,
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Once the essential matrix is estimated through this scheme,
the homography which is unsusceptible to the planar con-
straint can be obtained from this matrix. The extraction of
the homography [25] can be performed by the method of
the singular value decomposition (SVD). Consider that, the
essential matrix is composed of the translation t3×1, and the
rotation matrix R3×3, we have,

E = (t×) R (21)

Then, using the Lie groups representations [26], the homog-
raphy can be written as,

H = (R |t)
=

(
UBV T | Unskew

(
σUAUT

))
(22)

in which,

A =

(
0 −1 0
1 0 0
0 0 0

)
, B =

(
0 1 0
−1 0 0
0 0 1

)
(23)

where,

σ = det (U) det (V ) (24)

The steps of the mechanism to choose the best estimations
of the essential matrix and the homography are further
elaborated in the Algorithm 1. Although this hypothetic and
partly statistical approach rejects outliers, it still subjects
to the randomness in the process of the random selection.
Recalling (1) and (2), while the projection is calibrated
and the inter-frame homography is now approximated, a
refinement based on such a constraint shall be applied on
the observations of the scene points in order to yield the
estimation of the robot pose with the maximum likelihood.
This part is introduced in the next section.

IV. REFINEMENT OF POSE ESTIMATIONS BASED ON

OBSERVATIONS

From the noisy measurements of the matched feature pairs,
a considerable effort is applied to estimate the essential
matrix and the inter-frame homographies and hence the robot
pose can be evaluated without pruning the uncertainty ellip-
tical spheres to follow the Gaussian mixture model as in the
previous initialization method. Now, although the hypothesis-
and-verify scheme in the previous section is effective against
the outlying measurements of the matched features, it still
yields a degree of inaccuracy which is statistically associated
with its random selection. Hence a bundle adjustment and
a suppression scheme for the efficiency consideration are
applied on the estimations of the homographies and the

Algorithm 1 Estimation of the non-planar homography H∗

and the essential matrix E from noisy measurement of

matched feature pairs

INPUTS:
m {all matched feature pairs between two frames}
nTrial1 {number of trial for the main iteration}
nTrial2 {number of trial for refinements}
nRandomPair {number of pairs to choose randomly}

OUTPUT:
H∗ {Homography from non-planar geometry.

It transforms from the first frame to the second
frame}

for i = 0 to nTrial1 do
index = random select(nRandomPair, m)
E = apply five points algorithm(m, index)
score = 0
for all matched feature pairs do

penalty+ =penalty by MLESAC(E, m)
{A maximum likelihood estimation method [32].
Inliers are penalized by the degree of how bad they
approximate the hypothesis.}

end for
if penalty < penaltybest then

E∗ = E
penaltybest = penalty

end if
end for
for all cases of homography decompositions do

E = (t×) R
σ = det(U)det(V )
H.translation = σUAUT

H.rotation = UBV T

Put H into a stack, H stack, as a candidate
end for
for i = 0 to nTrial2 do

refine homography by image jacobians(m,H stack{i})
end for
for i = 0 to size(H stack) do

score = 0
for j = 0 to size(m) do

(x y z)T =apply homography(H stack{i}, m{j})
if z > 0 then

score++
end if
if score > scorebest then

scorebest = score
H∗ = H stack{i}

end if
end for

end for

triangulated map points. Essentially, this refinement is to
minimize the re-projection error, such that,

{{TC1W , ..., TCN W }, {m0, ..., mK}}

= argmin
{{TCW },{m}}

N∑
i=1

K∑
j=0

((
uj,i
vj,i

)
− Reproject

(
mj , TCiW

))
(25)

where mj is the 3D position of the jth map point in the

scene with respect to the world frame. (uj,i vj,i)
T

is the
image coordinate of the jth map point and is observed in
the camera frame Ci. The Reproject(·) is the re-projection
function which projects a map point to a calibrated camera.

A. Linear Triangulation for Scene Points
From (25) the refinement of the homography relies on

the 3D positions of the scene points which scatter across
the frames. Based on the preliminary estimation of the
homography, the rough estimations of the positions of the

3536



Fig. 4: The scheme of progressive suppression not only improves
the execution time, but it also avoids the erroneous local minimum.

scene points can be obtained. Although the linear triangula-
tion is susceptible to outliers and cannot yield an accurate
estimations of the positions from the noisy measurements,
the sparse bundle adjustment is scheduled to take place in
the next step with the progressive suppression, hence the
efficient linear triangulation can be employed for the 3D
position estimations, such that,(

X̂C1×
)

TC1W XW = 0,
(
X̂C2×

)
TC2W XW = 0 (26)

Hence,⎛
⎜⎝

ŷC1
3TC1W − 2TC1W

x̂C1
3TC1W − 1TC1W

ŷC2
3TC2W − 2TC2W

x̂C2
3TC2W − 1TC2W

⎞
⎟⎠ XW = MC1,C2XW = 0 (27)

where iT C1W , iT C2W are the ith row vectors of the

SE(3) transformation matrices T C1W ,T C2W . (x̂C1 ŷC1)
T

and (x̂C2 ŷC2)
T

are the normalized image coordinates of a
scene point observed and represented in the camera frames
C1, C2. This linear combination in MC1,C2 can then be
solved by SVD.

B. Progressive Suppression on Robot Poses and Map Points
Upon triangulating the scene points, a refinement is needed

to offset the inaccurate results of the feature matching.
However, even with the most efficient bundle adjustment
which makes use of the Levenberg-Marquardt method [33],
the bundle adjustment can hardly be a timely measure for
the refinement as the processing time jumps exponentially
with the number of observations and the camera poses.
Nevertheless, unlike the iterative RANSAC-type hypothetic
methods, the bundle adjustment produces the optimal results
in terms of the maximum likelihood in each run. Therefore,
instead of firing the bundle adjustment to refine the robot
poses along with the previously bundle-adjusted poses and
scene points, a progressively suppression scheme is enforced
to fix the previously refined robot poses for each operation of
the bundle adjustment. Hence an accurate estimation of the
relative pose can be delivered without losing the efficiency.
On the other hand, the suppression can avoid the erroneous
local minimum [34] which often appears on the robot poses
that are repeatedly refined through the bundle adjustment.
The dramatic improvement in the efficiency is shown in
Fig. 4.

V. VERIFICATION

To verify the proposed method, the experiments were
extensively carried out on an instrumented miniature co-
axial helicopter which weighs 470g and spans with two pairs

of blades that is 460mm long in diameter each. It carries
a CMOS camera with a lens of 4mm in the focal length.
This aerial robot supports onboard recording by a single-
board-computer (SBC) manufactured by Gumstix and can
wire the vision data to a ground station. The videos taken
on the aerial robot are recorded and processed on a ground
computer after the flights. From the experiments, the co-axial
helicopter took off with the forward-looking camera. Using
the proposed method, the robot pose was instantaneously
estimated in parallel with the motion as opposed to the
previous un-delayed initialization method which failed in the
same sets of experimental data. On the other hand, a manual
loop-closure test was performed on the proposed method.
As a whole, the experimental results demonstrated that the
proposed initialization method can not only simultaneously
initialize the pose of the aerial robot regardless of the
limited baselines and the rapid motion during the take-off,
but also keep tracking the camera motion continuously and
consistently close the loop in the loop-closure evaluation.
The performances are shown in Fig. 5 (a, b) and Fig. 6.

VI. CONCLUDING REMARKS

This paper suggests that by utilizing a simple, textbook-
type projective parametrization for the estimations of the
inter-frame homography under a progressively suppressed
refinement scheme, the miniature aerial robots can initiate
the scene points and localize themselves in parallel with
the rapid movement during the take-offs. As opposed to
the previous un-delayed initialization method that yields the
best estimation only when the elliptical uncertainty spheres
for the depths are sufficiently pruned through the enough
frames in order to enforce the uncertainties to converge from
a Gaussian mixture model to a single Gaussian probabilistic
distribution, the proposed method solves for the poses by the
extractions of the non-planar homographies from the noisy
measurements of the matched features. Therefore, even with
only a glance of the view, the pose of the aerial robot and
the positions of the scene points can be accurately estimated
without using the inverse depth parametrization.
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