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Abstract—In this paper, we consider some classes of contin-
uous time difference systems with dicrete and distributed delay
terms. For these infinite-dimensional systems we derive suffi-
cient delay-dependent conditions for the exponential stability
by using Lyapunov-Krasovskii functionals.
Keywords: continuous time difference systems, exponential

stability, Lyapunov-Krasovskii functionals

I. INTRODUCTION
Continuous time difference systems play a fundamental

role in investigating the stability properties of neutral type
delay systems, whereas stability of the difference system is a
necessary condition for stability of the corresponding neutral
delay system [2], [8]. There are also a number of applications
such as in economics, gas dynamics, lossless propagation and
models of heredity where the stability of continuous time
difference systems is so important [13].
In this context, stability properties of linear continuous

time difference systems have been widely studied and several
stability conditions based on spectral radius and norm of
matrices have been reported [2], [8].
Lyapunov theorems for continuous time difference systems

with discrete time delays have been developed in [14], [15]
and [16]. As such class of continuous time difference systems
can be regarded like discrete time equations evolving on an
appropriate infinite-dimensional space [2], the results in [14],
[15] and [16] propose Lyapunov functions satisfying along
solutions a first difference type condition.
However, there are some difficulties in the application

of these Lyapunov approaches to more general continuous
time difference systems as, for instance, those including
both discrete and distributed delay terms. The main reason
of this is that the proposed functions are such that their
first difference type condition, along solutions of such class
of systems, include not only discrete delay terms but also
distributed delay terms whose negativity cannot be directly
assured.
In this paper, we propose a Lyapunov-Krasovskii approach

for investigating the exponential stability of linear continuous
time difference systems with discrete and distributed delay
terms. We address this problem as a robust stability one.
More explicitly, by assuming only stability of the discrete
delay part of the system and interpreting the distributed delay
term as a perturbation, we present Lyapunov-Krasovskii
functionals guaranteeing the exponential stability of the
whole system. Our contribution is based on the recent
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papers [11] and [12], where we have introduced Lyapunov-
Krasovskii theorems for special classes of integral delay
systems arising in several stability problems of time-delay
systems.
The paper is structured as follows: Section II presents

the problem formulation. Some preliminary results are pro-
vided in section III. Basic facts about solutions are given
and Lyapunov-Krasovskii type stability conditions are in-
troduced. The main results are given in section IV. First,
we consider a general case for which a simple to check
delay-dependent stability condition is derived. Next, a par-
ticular case of continuous time difference systems with
multiple distributed delay terms and constant system matrices
is addressed. In this case, delay-dependent conditions for
exponential stability can be expressed in terms of linear
matrix inequalities. Several examples illustrating the results
are provided in section V. Concluding remarks end the paper.

II. PROBLEM FORMULATION
Consider the following continuous time difference system

x(t) = Ax(t− h) +

Z 0

−h
G(θ)x(t+ θ)dθ, t ≥ 0, (1)

where A ∈ Rn×n and the matrix function G(θ) has piece-
wise continuous bounded elements defined for θ ∈ [−h, 0] .
Systems of the form of (1) can be found as delay approx-

imations of the partial differential equations for describing
the propagation phenomena in excitable media [1], in the
stability analysis of additional dynamics introduced by some
systems transformations [6], in delay-dependent stability
analysis of neutral type systems [4], [9], [10], as well as in
the stability analysis of some difference operators in neutral
type functional differential equations [2].
For the sake of simplicity of the problem formulation let

us consider that the matrix function G(θ) is a n×n constant
matrix, i.e., G(θ) = G,∀θ ∈ [−h, 0] .
In this case, it is known that (1) is asymptotically stable

if the inequality
kAk+ h kGk < 1 (2)

holds, see for instance [8].
When G = 0, the inequality (2) leads to kAk < 1 which is

evidently more restrictive than Schur stability of the matrix
A (all eigenvalues of the matrix lie in the open unit disc of
the complex plane).
This naturally raises the following question: Is it not

possible to obtain less conservative conditions by assuming
that matrix A is Schur stable and considering the integral
delay term as a perturbation?
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Some difficulties occur if we address the problem from
the standpoint of existing Lyapunov results for difference
systems in continuous time.
First we note that by the change of time t0 = t − h, the

system (1), with G(θ) = G,∀θ ∈ [−h, 0] , can be written as

x(t0 + h) = Ax(t0) +G

Z t0+h

t0
x(θ)dθ, t0 ≥ h. (3)

Assuming that matrix A is Schur stable, there exists a unique
positive definite matrix P satisfying the Lyapunov matrix
equation

ATPA− P = −Q,
where Q is any given positive definite matrix.
Following [14], [15], and [16], when G = 0, the func-

tion v(t0) = xT (t0)Px(t0) is a Lyapunov function for the
corresponding system. In particular, in this case, we have

∆v(t0) , v(t0 + h)− v(t0)

= xT (t0)
¡
ATPA− P

¢
x(t0)

= −xT (t0)Qx(t0).
It is clear that one cannot conclude directly the stability
of system (3) by using the function v(t0) as a Lyapunov
function candidate for the system since its first difference
type condition along solutions of (3) includes products of
x(t0) and

R t0+h
t0 x(θ)dθ which cannot be compensated for

negativity of ∆v(t0).
We will introduce below a Lyapunov-Krasovskii approach

that will give a positive answer to the above question.
The method consists in a combination of the Lyapunov-
Krasovskii approach that we recently developed for integral
delay systems and stability properties of linear continuous
time difference systems with a discrete pure delay.
Throughout this paper, the Euclidean norm for vectors and

the induced matrix norm for matrices are used. We denote
by AT the transpose of A, I stands for the identity matrix,
while λmin(A) and λmax(A) denote the smallest and largest
eigenvalues of a symmetric matrix A, respectively.

III. PRELIMINARIES
A. Solutions and stability concept
In order to determine a particular solution of (1) an initial

vector function ϕ(θ), θ ∈ [−h, 0), should be given. We
assume that ϕ belongs to the space of continuous vector
functions C ([−h, 0) ,Rn) , equipped with the uniform norm
kϕkh = supθ∈[−h,0) kϕ(θ)k .
For a given initial function ϕ ∈ C ([−h, 0) ,Rn) , let

x(t, ϕ), t ≥ 0, be the unique solution of (1) satisfying
x(t, ϕ) = ϕ(t), t ∈ [−h, 0) . This solution has a jump
discontinuity at t = 0 given by

∆x(0, ϕ) = x(0, ϕ)− x(−0, ϕ)

= Aϕ(−h) +
Z 0

−h
G(θ)ϕ(θ)dθ − ϕ(−0).

As a neutral delay system, this discontinuity is propagated
along the solution leading to jump discontinuities at time
instants multiple of h.

Except at the time instants t = jh, j = 0, 1, 2, ..., the
solution x(t, ϕ) is a continuous function of t. Clearly, if the
condition

Aϕ(−h) +
Z 0

−h
G(θ)ϕ(θ)dθ = ϕ(−0)

holds, then the solution x(t, ϕ) is continuous for all t ≥ −h.
When matrix function G(θ) is continuously differentiable

on the interval [−h, 0], where a right-hand side continuous
derivative at −h and a left-hand side continuous derivative at
0 are assumed to exist, the solutions of (1) can be related with
particular solutions of some neutral functional differential
equations. More precisely, consider the neutral functional
differential equation

d

dt
[z(t)−Az(t− h)] = G(0)z(t)−G(−h)z(t− h)

−
Z 0

−h
Ġ(θ)z(t+ θ)dθ. (4)

Denote by z(t, ψ), t ≥ 0, the solution of (4) satisfying
z(t, ψ) = ψ(t), t ∈ [−h, 0], where the initial function ψ
belongs to the space of piecewise continuous vector functions
PC ([−h, 0] ,Rn) , see [2].
The following result, which proof is omitted for the sake

of brevity, relates the solutions of (1) with some particular
solutions of (4).
Lemma 1: Assume in (1) that matrix function G(θ) is

continuously differentiable on [−h, 0]. For a given initial
function ϕ ∈ C ([−h, 0) ,Rn) , define the function

ψ(θ) =

½
ϕ(θ), θ ∈ [−h, 0) ,
Aϕ(−h) +

R 0
−hG(θ)ϕ(θ)dθ, θ = 0.

Then x(t, ϕ) = z(t, ψ).
Definition 1: [2] System (1) is said to be exponentially

stable if there exist α > 0 and µ > 0 such that any solution
of (1) satisfies the inequality

kx(t, ϕ)k ≤ µe−αt kϕkh , t ≥ 0. (5)

Remark 1: The neutral functional differential equation (4)
is not exponentially stable. Indeed, any constant vector is a
solution of (4).
The remark implies that, even in the particular case

when matrix function G(θ) is continuously differentiable
on [−h, 0], existing stability results for neutral functional
differential equations [3] cannot be directly applied to the
stability analysis of (1).
It is worth mentioning that similar conclusions can be

obtained on the application of the results in [5] for cou-
pled systems described by retarded functional differential
equations and functional difference equations to the stability
analysis of (1) .

B. A Lyapunov type theorem
For any t ≥ 0 we denote the restriction of the solution

x(t, ϕ) on the interval [t− h, t) by xt(ϕ) = x(t+ θ, ϕ), θ ∈
[−h, 0) . When the initial function ϕ is irrelevant we simply
write x(t) and xt instead of x(t, ϕ) and xt(ϕ).
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The jump discontinuities of the solutions of (1) imply
that xt(ϕ) belongs to PC ([−h, 0) ,Rn) for t ≥ 0. This
means that in a Lyapunov-Krasovskii functional setting, the
functionals should be defined on the infinite-dimensional
space PC ([−h, 0) ,Rn) .
Theorem 2: Let system (1) be given and assume that

matrix A is Schur stable. System (1) is exponentially stable if
there exists a continuous functional v : PC ([−h, 0) ,Rn)→
R such that t→ v(xt(ϕ)) is differentiable for all t ≥ 0 and
satisfies the following conditions:
1) α1

R 0
−h kϕ(θ)k

2 dθ ≤ v (ϕ) ≤ α2
R 0
−h kϕ(θ)k

2 dθ, for
some constants 0 < α1 ≤ α2,

2) d
dtv(xt(ϕ)) ≤ −β

R 0
−h kx(t+ θ, ϕ)k2 dθ, for some

β > 0.
Proof: Given any initial function ϕ ∈ C ([−h, 0) ,Rn) ,

it follows from the Theorem conditions that for 2α = βα−12
the following inequality:

d

dt
v(xt(ϕ)) + 2αv (xt(ϕ)) ≤ 0,∀t ≥ 0,

holds. This inequality leads to

v(xt(ϕ)) ≤ e−2αtv (ϕ) ,∀t ≥ 0.

Thus it follows that for t ≥ 0

α1

Z 0

−h
kx(t+ θ, ϕ)k2 dθ ≤ α2e

−2αt
Z 0

−h
kϕ(θ)k2 dθ. (6)

From (1) one gets

kx(t, ϕ)−Ax(t− h, ϕ)k2

≤
µ
mg

Z 0

−h
kx(t+ θ)k dθ

¶2
≤ m2

gh

Z 0

−h
kx(t+ θ)k2 dθ, (7)

where the last inequality has been obtained by using the
Cauchy-Schwarz inequality in L2 ([−h, 0) ,R) and

mg = sup
θ∈[−h,0]

kG(θ)k .

Combining the inequalities (6) and (7) one obtains

α1 kx(t, ϕ)−Ax(t− h,ϕ)k2

≤ m2
ghα2e

−2αt
Z 0

−h
kϕ(θ)k2 dθ,

which yields the inequality

kx(t, ϕ)−Ax(t− h, ϕ)k ≤
r

α2
α1

mgh kϕkh e−αt.

This inequality implies

x(t, ϕ)−Ax(t− h,ϕ) = f(t), (8)

where f ∈ C ([0,∞) ,Rn) satisfies

kf(t)k ≤ µ kϕkh e−αt,∀t ≥ 0,

with
µ =

r
α2
α1

mgh.

Since A is Schur stable, then there exist γ > 0 and σ > 0
such that °°Ak

°° ≤ γe−σ(kh), k = 0, 1, 2, . . . .

From the Lemma 6 in [7] it follows that the inequality

kx(t, ϕ)k ≤ η kϕkh e−νt,∀t ≥ 0,

holds for the solutions x(t, ϕ) of (8) with

η = γ
³
1 + µ+

µ

heε

´
,

ν = min {σ, α}− ε,

where ε ∈ (0,min {σ,α}) . This implies exponential stabil-
ity of (1).
Remark 2: In spite of the fact that the state xt(ϕ) ∈

PC ([−h, 0) ,Rn) , the Theorem conditions guarantee the
exponential stability of (1) by means of continuous and
differentiable functionals.

IV. MAIN RESULTS
In this section, we construct some particular functionals

satisfying the conditions of Theorem 2 for the exponential
stability of (1).

A. A general case
We begin with a general case for which a simple-to-

check delay-dependent stability condition is derived in the
following:
Proposition 3: Let system (1) be given and assume that

matrix A is Schur stable. If there exist positive definite
matrices W0 and W1 such that

h

Ã
sup

θ∈[−h,0]
kG(θ)k

!2
<

λmin(W1)

λmax
¡
P + PAW−10 ATP

¢ , (9)
with P the positive definite solution of the matrix Lyapunov
equation

ATPA− P = − (W0 + hW1) , (10)

then the system (1) is exponentially stable.
Proof: Consider the following functional:

v(ϕ) =

Z 0

−h
ϕT (θ)

£
ATPA+W0 + (θ + h)W1

¤
ϕ(θ)dθ,

(11)
where P is the positive definite solution of (10) and W0,W1

are positive definite matrices.
The functional (11) satisfies the following inequalities:

α1

Z 0

−h
kϕ(θ)k2 dθ ≤ v(ϕ) ≤ α2

Z 0

−h
kϕ(θ)k2 dθ, (12)

with α1 and α2 given by

α1 = λmin (W0) ,

α2 = λmax
¡
ATPA+W0 + hW1

¢
.

The integral form of the functional (11) guarantees that along
solutions of (1) the function t→ v(xt(ϕ)) is continuous and
differentiable for all t ≥ 0.
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The time derivative of the functional (11) along solutions
of (1) is

dv(xt)

dt
= xT (t)

£
ATPA+W0 + hW1

¤
x(t)

−xT (t− h)
£
ATPA+W0

¤
x(t− h)

−
Z 0

−h
xT (t+ θ)W1x(t+ θ)dθ.

Observing that ATPA +W0 + hW1 = P and substituting
the right-hand side of (1) we have

dv(xt)

dt
= xT (t− h)W0x(t− h)

+2xT (t− h)ATP

Z 0

−h
G(θ)x(t+ θ)dθ

+

µZ 0

−h
G(θ)x(t+ θ)dθ

¶T
P

µZ 0

−h
G(θ)x(t+ θ)dθ

¶
−
Z 0

−h
xT (t+ θ)W1x(t+ θ)dθ.

Using the Jensen inequality (22) (see Appendix) the follow-
ing inequality:µZ 0

−h
G(θ)x(t+ θ)dθ

¶T
P

µZ 0

−h
G(θ)x(t+ θ)dθ

¶
≤ h

Z 0

−h
xT (t+ θ)GT (θ)PG(θ)x(t+ θ)dθ

holds.
As a consequence we obtain the following upper bound

for the derivative:
dv(xt)

dt
≤ −xT (t− h)W0x(t− h)

+2xT (t− h)ATP

Z 0

−h
G(θ)x(t+ θ)dθ

−
Z 0

−h
xT (t+ θ)

£
W1 − hGT (θ)PG(θ)

¤
x(t+ θ)dθ

= −
Z 0

−h

£
xT (t− h) xT (t+ θ)

¤
N (θ)×

×
∙
x(t− h)
x(t+ θ)

¸
dθ,

where

N (θ) =
∙

1
hW0 −ATPG(θ)
−GT (θ)PA W1 − hGT (θ)PG(θ)

¸
.

If N (θ) > 0,∀θ ∈ [−h, 0] , then there exists β > 0 such that

dv(xt)

dt
≤ −β

Z 0

−h
kx(t+ θ)k2 dθ,

and the exponential stability of (1) follows.
By Schur complement, N (θ) > 0, θ ∈ [−h, 0] , is

equivalent to

W1−hGT (θ)
£
P + PAW−10 ATP

¤
G (θ) > 0,∀θ ∈ [−h, 0] .

A sufficient condition for the above inequality is

λmin(W1)

−hλmax
¡
P + PAW−10 ATP

¢Ã
sup

θ∈[−h,0]
kG(θ)k

!2
> 0,

which leads to (9) and ends the proof.
Remark 3: W0 and W1 are free positive definite matrices

which can be used to improve the right-hand side of the
inequality (9).

B. A particular case
Now consider the following class of continuous time

difference systems

x(t) = Ax(t− h) +
mX
j=1

Gj

Z 0

−hj
x(t+ θ)dθ, (13)

where 0 < h1 < h2 < · · · < hm = h, A ∈ Rn×n and
Gj ∈ Rn×n, j = 1, 2, . . . ,m.
The system (13) is a particular case of (1) where

G(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gm, θ ∈ [−hm,−hm−1) ,
Gm +Gm−1, θ ∈ [−hm−1,−hm−2) ,

...
...Pm−1

j=0 Gm−j , θ ∈ [−h1, 0) .
Proposition 4: Let system (13) be given and assume that

matrix A is Schur stable. If there exists positive definite
matrices Wj , j = 0, 1, . . . ,m such that Mj > 0, j =
1, 2, . . . ,m, where

Mj =

"
1

mhj
W0 −ATPGj

−GT
j PA Wj −mhjG

T
j PGj

#
, (14)

with P the unique positive solution of the matrix Lyapunov
equation

ATPA− P = −

⎛⎝W0 +
mX
j=1

hjWj

⎞⎠ , (15)

then the system (13) is exponentially stable.
Proof: Consider the functional

v(ϕ) =

Z 0

−h
ϕT (θ)

£
ATPA+W0

¤
ϕ(θ)dθ (16)

+
mX
j=1

Z 0

−hj
ϕT (θ) (θ + hj)Wjϕ(θ)dθ,

where P is the positive definite solution of (15) andWj , j =
0, 1, . . . ,m are positive definite matrices.
From (16) we get the following inequalities for the func-

tional:

α1

Z 0

−h
kϕ(θ)k2 dθ ≤ v(ϕ) ≤ α2

Z 0

−h
kϕ(θ)k2 dθ,

with α1 and α2 given by

α1 = λmin(W0),

α2 = λmax
¡
ATPA+W0

¢
+

mX
j=1

λmax (hjWj) .
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Note again that the integral form of the functional (16)
guarantees that along solutions of (13) the function t →
v(xt(ϕ)) is continuous and differentiable for all t ≥ 0.
The time derivative of the functional (16) along solutions

of (13) is

dv(xt)

dt
= xT (t)

⎡⎣ATPA+W0 +
mX
j=1

hjWj

⎤⎦x(t)
−xT (t− h)

£
ATPA+W0

¤
x(t− h)

−
mX
j=1

Z 0

−hj
xT (t+ θ)Wjx(t+ θ)dθ.

Using the fact that P = ATPA+
³
W0 +

Pm
j=1 hjWj

´
and

substituting the right-hand side of (13) we get

dv(xt)

dt
= −xT (t− h)W0x(t− h)

+2xT (t− h)ATP
mX
j=1

Gj

Z 0

−hj
x(t+ θ)dθ

−
mX
j=1

Z 0

−hj
xT (t+ θ)Wjx(t+ θ)dθ

+

⎛⎝ mX
j=1

Gj

Z 0

−hj
x(t+ θ)dθ

⎞⎠T

P ×

×

⎛⎝ mX
j=1

Gj

Z 0

−hj
x(t+ θ)dθ

⎞⎠ .

Using the Jensen inequalities (23) and (22) in the Appendix,
in that order, the following inequality:⎛⎝ mX

j=1

Gj

Z 0

−hj
x(t+ θ)dθ

⎞⎠T

P ×

×

⎛⎝ mX
j=1

Gj

Z 0

−hj
x(t+ θ)dθ

⎞⎠
≤ m

mX
j=1

hj

Z 0

−hj
xT (t+ θ)GT

j PGjx(t+ θ)dθ,

holds. As a consequence we obtain the following upper
bound for the derivative:

dv(xt)

dt
≤ −xT (t− h)W0x(t− h)

+2xT (t− h)ATP
mX
j=1

Gj

Z 0

−hj
x(t+ θ)dθ

−
mX
j=1

Z 0

−hj
xT (t+ θ)

£
Wj −mhjG

T
j PGj

¤
×

×x(t+ θ)dθ

which can be rewritten as
dv(xt)

dt
≤ −

mX
j=1

Z 0

−hj

£
xT (t− h) xT (t+ θ)

¤
Mj ×

×
∙
x(t− h)
x(t+ θ)

¸
dθ,

whereMj , j = 1, 2, . . . ,m, are defined by (14).
If Mj > 0, j = 1, 2, . . . ,m, it follows that there exists

β > 0 such that

dv(xt)

dt
≤ −β

Z 0

−h
kx(t+ θ)k2 dθ,

and the exponential stability of (13) is assured.
Remark 4: Writing the matrix Lyapunov equation (15) as

ATPA− P +

⎛⎝W0 +
mX
j=1

hjWj

⎞⎠ < 0 (17)

a linear matrix inequality solver can be used to find a feasible
solution P,Wj , j = 0, 1, . . . ,m of the matrix inequalities
Mj > 0, j = 1, 2, . . . ,m and (17). See Example 3 below.

V. ILLUSTRATIVE EXAMPLES
Example 1: Consider the system

x(t) = Ax(t− h) +G

Z 0

−h
x(t+ θ)dθ, (18)

where
A =

µ
0 1
0.01 0

¶
.

Matrix A is Schur stable and kAk = 1. Then, the known
results cannot allow us to investigate the stability of (18)
since the inequality kAk+h kGk < 1 does not hold for any
delay value h ≥ 0 and matrix G ∈ R2×2.
For this case by using Proposition 3 we are able to get

stability conditions for (18). For instance consider that h =
1 and select W0 = I and W1 = 1.2I. For these values,
the unique positive definite solution of the matrix Lyapunov
equation (10) is

P =

µ
4.4004 0
0 2.2004

¶
.

From the inequality (9) we get that (18) is exponentially
stable for all system matrices G ∈ R2×2 such that kGk <
0.2247.
Example 2: Consider again the system (18) but now with

A =

µ
0.2 0
−0.1 −0.2

¶
.

In this case, the matrix A is Schur stable and kAk = 0.2562.
For h = 0.5 the inequality kAk + h kGk < 1 yields

stability of (18) for all matrices G ∈ R2×2 such that
kGk < 1.4877. Our Proposition 3 leads to a less restrictive
condition kGk < 1.4902 obtained from the inequality (9)
with W0 = I, W1 = 7.7I and

P =

µ
5.0521 −0.0972
−0.0972 5.1007

¶
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as the positive definite solution of the matrix Lyapunov
equation (10).
Example 3: Consider now a continuous time difference

system (18) where

A =

µ
−0.2 0
0.2 −0.1

¶
and G =

µ
−1.1 −0.2
−0.1 −1.1

¶
.

(19)
This system is found in Example 2 of [4] and [10] as a
difference operator of a neutral type system with discrete and
distributed delay terms. Such neutral system is obtained by a
model transformation technique which transform the original
neutral system with discrete delay to a neutral system with
distributed delay for delay-dependent stability conditions, see
[10] for details.
From Proposition 4 and Remark 4 we have that system

(18) is exponentially stable if there exists positive definite
matrices P,W0 and W1 such that∙

1
hW0 −ATPG
−GTPA W1 − hGTPG

¸
> 0, (20)

ATPA− P + (W0 + hW1) < 0. (21)

We found a feasible solution of the matrix inequalities
(20) and (21) for all delay values 0 ≤ h ≤ 0.7435 that
clearly improves the result obtained from the inequality
kAk+ h kGk < 1 which leads to 0 ≤ h < 0.5658.

Thus, for h = 0.7435 we obtain the following solution for
(20) and (21):

W0 =

µ
6.5250 −1.4497
−1.4497 5.3856

¶
,

W1 =

µ
58.7883 29.9845
29.9845 65.8883

¶
,

P =

µ
52.9422 20.1481
20.1481 54.9261

¶
.

VI. CONCLUDING REMARKS

In this paper, a Lyapunov-Krasovskii functional approach
for the exponential stability of linear continuous time differ-
ence systems with discrete and distributed delays is intro-
duced. The obtained conditions are less conservative than
existing ones. Consequently, the results reported in this
contribution can help to improve existing stability condi-
tions of neutral type delay systems having this class of
continuous difference systems as difference operators. In
particular, the results can serve to reduce the conservatism of
delay-dependent stability conditions for neutral type systems
with discrete delay which are obtained by means of system
transformations.

VII. APPENDIX

Lemma 5: (Jensen Inequality) For any constant matrix
M ∈ Rn×n, M = MT > 0, vectors ξj ∈ Rn, j =
1, 2, . . . ,m, scalar γ > 0 and vector function ω : [0, γ] →
Rn such that the integrations concerned are well defined,

then
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