
Convergence Analysis for an Online Recommendation System

Anh Truong, Negar Kiyavash, and Vivek Borkar

Abstract— Online recommendation systems use votes from
experts or other users to recommend objects to customers.
We propose a recommendation algorithm that uses an average
weight updating rule and prove its convergence to the best
expert and derive an upper bound on its loss. Often times,
recommendation algorithms make assumptions that do not hold
in practice such as requiring a large number of the good
objects, presence of experts with the exact same taste as the user
receiving the recommendation, or experts who vote on all or
majority of objects. Our algorithm relaxes these assumptions.
Besides theoretical performance guarantees, our simulation
results show that the proposed algorithm outperforms current
state-of-the-art recommendation algorithm, Dsybil.

I. INTRODUCTION

In recent years, online learning algorithm have gained
popularity through online recommendation systems, such as
Netflix, Digg, or Rotten Tomatoes. These systems solicit
opinions from users on items such as movies or news articles.
We refer to the users, who vote for items, as “experts,”
and the items under consideration as “objects.” Usually,
recommendation systems offer a satisfaction scale (e.g., five-
star rating scale in Rotten Tomatoes) from which an expert
can choose to make a prediction about a particular object.
After receiving the ratings of experts for an object, the system
calculates its own recommendation score. For example, Rot-
ten Tomatoes releases an average rating of experts voting for
an object. In our formulation of the problem, after a user, say
Alice, consumes the object, her feedback is used to update
weights of experts. Weight of an expert is the trust level of
the rating system in the ability of the expert to rate objects.
The bigger the weight of an expert, the larger is his influence
on the system’s recommendation. The weight evolution is
thus crucial for an recommendation system. Many weight
updating rules have appeared in learning literature. In most
of these work the performance of the algorithm is evaluated
by proving bounds on its regret [7], [8], [9], [10].

In this paper, we address the problem of designing a
provably-good recommendation system. Our contributions
are as follows:
• We suggest a recommendation algorithm that uses a

weighted average updating of expert weights similar
to that of [2]. We prove that this updating rule will
converge to the best expert if only one such expert exists

Anh Truong is with Electrical and Computer Engineering Department,
University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
truong3@illinois.edu

Negar Kiyavash is with Industrial Enterprise Systems Engineering De-
partment and CSL, University of Illinois at Urbana-Champaign, Champaign,
IL 61820, USA kiyavash@ad.uiuc.edu

Vivek Borkar is with Electrical Engineering Department, Indian Institute
of Technology, Mumbai 400076, India borkar@ee.iitb.ac.in

or alternately switch between the best experts if multiple
are present. Moreover, we derive an upper bound on the
loss of our proposed algorithm. Unlike Dsybil we do not
require a high fraction of objects in the voting pool to
be good to obtain performance guarantees.

• While in the setup of Dsybil [3], experts can only
cast positive, discretely valued votes, we allow experts
to rate an object with any continuous value in [0,1].
Majority of common learning algorithms assume the
experts are available at all rounds. We let experts refrain
from voting at some rounds as this is a more realistic
assumption for online recommendation systems.

• While for the proof of convergence of our algorithm,
we make some assumptions on the availability and
prediction distribution of experts, these assumptions are
relaxed in our simulation results. In fact, our simu-
lations show that the proposed algorithm outperforms
the current state-of-the-art algorithm, Dsybil in more
general settings than were assumed in the derivation of
the convergence proofs.

The paper is organized as follows. After summarizing
some closely related work, we describe our problem setup in
Section III. In Section IV and Section V, convergence results
and upper bounds on the loss of the algorithm are derived,
subsequently. Simulation results appear in VI. Finally we
conclude in Section VII.

II. RELATED WORKS

Littestone and Warmuth’s seminal paper [1] provided
a mathematical framework for analyzing predictions with
expert advice. They also established lower bounds on the
performance under both binary and continuous prediction
values. However, in their setting, all experts are always
available, which is not a realistic assumption for online rec-
ommendation system. Moreover, Littestone and Warmuth’s
discount the weight of an expert any time he makes a mis-
take. Thus, a good expert attending most of the rounds may
end up with a lower weight than a poor expert participating
in few rounds.

To avoid this, Yu et al. encouraged participation of the
experts in voting by increasing their weights when they
provide good advice [3]. Moreover, they award experts who
vote on objects with fewer votes as opposed to safe-playing
experts who vote for already popular objects. Yu et al.
provide an upper bound on expected loss of their algorithm.
However, their analysis holds under some strong assumptions
such as a high percentage of objects in the recommendations
system are good (Alice likes them) and a small number of
good experts have voted on a large fraction of good objects.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 3889

The requirement of having high percentage of good objects
is partially due to the fact that their suggested algorithm does
not incorporate the negative feedback in updating the weights
of experts.

In learning with expert literature, it is predominantly
assumed that all experts are available at all rounds, some
exception are the work of Freund et al. and Kleinberg et
al. who consider so called specialized experts or sleeping
experts, respectively in [2] and [4]. In [2], Freund et al.
presented an average updating rule in which the weight of
each available expert is updated according to quality of his
prediction and the weighted prediction of the algorithm. In
effect, the algorithm finds a pseudo expert (average expert)
whose loss is equal to the average loss of available experts
and follows his prediction. Kleinberg et al. in [4] assumed
that in each round, all available experts have unknown but
fixed payoff distribution. The algorithm then chooses the best
one based on the ordered arrangement of the expected payoff.
They propose algorithms that achieve nearly optimal regret
bounds, i.e., up to a constant or a sublogarithmic factor.

III. SETTING

We now present our framework and notations. The set
of all experts is denoted by E = {1, 2, ..., N}. At each
round t, the set of available experts is denoted by Et, where
Et ⊆ E. We assume that Et is stationary and that the
probability distribution of available experts is symmetric, i.e.,
it is invariant under permutations. Indeed, in the simulation,
we do not use this assumption by offering the different
availabilities among experts. The weight of expert i at time
t is denoted by pit ∈ [0, 1]), and his prediction for a given
object is xit ∈ [0, 1]. Here, we assume that Et and xt are
independent of each other, which is a reasonable assumption
since the correctness of an expert has no relation to his
availability.

At time t, knowing the predictions (i.e., opinions) of awake
experts for an object, the algorithm calculates the weighted
prediction for that object, ŷt, as follows

ŷt =

∑
i∈Et

pitx
i
t∑

i∈Et

pit
. (1)

Thus, the system provides a rating for every object (rated
by the experts). Recommendations for the system are user
specific and for different users, the system maintains dif-
ferent weights for the experts, based on the feedback of the
corresponding user. Upon consumption of an object, the user,
say Alice, provides her feedback yt to the system, indicating
her opinion about the object. Throughout this paper, yt is
assumed to be binary 0 or 1, corresponding to bad and good
ratings, respectively. After obtaining Alice’s feedback, the
weights of experts are updated as follow:

pit+1 =

pit
xi

t

ŷt
if i ∈ Et, yt = 1,

pit
1−xi

t

1−ŷt
if i ∈ Et, yt = 0,

pit if i /∈ Et.
(2)

It is worth noting that in (2) only weights for available
experts, i.e., the ones in Et, are updated. For experts not in
Et, their weights remain unchanged. Let us consider the case
when we have a good object (according to Alice, of course).
At this point, a good prediction algorithm is supposed
to recommend a value greater than a half. Therefore, the
update rule of (2) increases the weight of an expert if he
has a recommendation better than the average. A similar
explanation holds for the case of bad objects.

In this paper, we define the loss of this algorithm at time
t as the relative entropy log loss, i.e., the natural logarithm
of the difference between the outcome and the prediction of
algorithm:

Lt = −I{yt = 1} ln ŷt − I{yt = 0} ln(1− ŷt). (3)

IV. CONVERGENCE OF ALGORITHM

In this section, we analyze the weight evolution and the
convergence of the algorithm. We start with experts making
binary predictions and then proceed to the continuous case.

Let us rewrite the update rule in (2) in matrix form. Let

pt =

p1
t

p2
t
...
pNt

 ,
then pt+1 = Dtpt, where

Dt =

d1
t 0 . . . 0

0 d2
t . . . 0

...
...

. . .
...

0 0 . . . dNt

 .
Since each expert updates his weight depending on his
previous weight only, Dt is a diagonal matrix. Each diagonal
element is given by (2), i.e.,

dit = I{i /∈ Et}+I{i ∈ Et}
[
I{yt = 1}x

i
t

ŷt
+I{yt = 0}1− xit

1− ŷt

]
.

Define

qit := I{i /∈ Et}+I{i ∈ Et}
[
I{yt = 1}xit+I{yt = 0}(1−xit)

]
,

and the corresponding normalization factor

q̄it := I{i /∈ Et}+I{i ∈ Et}
[
I{yt = 1}ŷt+I{yt = 0}(1−ŷt)

]
.

Note that dit = qi
t

q̄i
t
. Hence, Dt = QtQ̄t, with

Qt =

q1
t 0 . . . 0
0 q2

t . . . 0
...

...
. . .

...
0 0 . . . qNt

 ,
and

Q̄t =

1
q̄1t

0 . . . 0
0 1

q̄2t
. . . 0

...
...

. . .
...

0 0 . . . 1
q̄N

t

 .
3890

Since Qt and Q̄t are diagonal matrices, by induction,

pt =
(t−1∏
m=0

QmQ̄m

)
p0.

Now, consider the ratio between weights of expert i and j

at time t, ξijt := pi
t

pj
t

=

(t−1∏
m=0

qim
1
q̄im

)
pi0(t−1∏

m=0

qjm
1
q̄jm

)
pj0

.

We have,

ln ξijt = ln
pi0

pj0
+

t−1∑
m=0

(ln qim − ln qjm) +
t−1∑
m=0

(ln q̄jm − ln q̄im).

The following lemma is important for our main results.

Lemma 1. Given the above settings and assumptions, if
E(ln qim) > E(ln qjm) for i 6= j, then pjt → 0 a.s. and
pit → 1 a.s.

Proof. Taking the limit of 1
t ln ξijt as t → ∞, using the

law of large numbers, with the assumptions that {qim}∞1 and
{qjm}∞1 are i.i.d., as are {q̄im}∞1 and {q̄jm}∞1 , we obtain

1
t

ln ξijt → E(ln qim)− E(ln qjm) + E(ln q̄jm)− E(ln q̄im).

However, since we have assumed that the distribution of
available experts is symmetric, q̄im and q̄jm have the same
distribution. Hence, E(ln q̄im) = E(ln q̄jm). Therefore,

1
t

ln ξijt → E(ln qim)− E(ln qjm).

It follows that if E(ln qim) > E(ln qjm), then ln ξijt → ∞,
i.e., p

i
t

pj
t

→∞. Note that from the update rule (2),
∑n
i=1 p

i
t =

1 for every t. Therefore,

pjt → 0 a.s. and pit → 1 a.s. (4)

Now, we consider whether the above inequality,
E(ln qim) > E(ln qjm), holds. Define the time proportion of
occurrence of a set of experts A as follows:

Γ(A) := lim
T→∞

1
T

T∑
t=1

I{Et = A} ∀A ⊆ {1, 2, ..., N}.

Note that Γ is a probability measure and that the above
definition is well defined since Et is stationary. Define the
accuracy of expert i, µi, to be the probability of correct
predictions, with respect to user Alice.

A. Binary predictions

We first analyze the algorithm where xit is allowed to take
only two values, ε and 1 − ε, depending on the values of
outcome yt. Here, ε is a small positive value to guarantee
that ln ε does not diverge to infinity. Consider the case when
expert i is correct, which happens with probability µi. If
yt = 1, then xit = 1−ε, and qit = 1−ε. Similarly, if yt = 0,
then xit = ε, and qit = 1− ε.

A similar derivation holds for the case when the expert is
not correct. It follows that, if i ∈ Et

qim =
{

1− ε w.p µi,
ε w.p 1− µi. (5)

So, the expected value of ln qim is given by

E(ln qim) =
∑
A:i∈A

Γ(A)
(
µi ln(1− ε) + (1− µi) ln ε

)
=
(∑
A:i∈A

Γ(A)
)(
µi ln(1− ε) + (1− µi) ln ε

)
. (6)

Let us define the availability of expert i as the proportion of
time that expert i is available, which is the first factor of (6).
Also define the “index” of an expert i as the second factor in
the right-hand side in (6), which is a non-decreasing function
of his accuracy. The best expert is then defined as the expert
whose index is highest, i.e., E(ln qim) > E(ln qjm) for all
j 6= i. Our main results for the binary case is as follows.

Theorem 1. In the binary setting, if there is only one
best expert, then the algorithm converges to that expert. If
there exists more than one best expert, then the algorithm
alternates between those experts.

Proof. We begin with the first case when there is only
one expert attaining the highest index. From Lemma 1, the
weight of expert j converges to zero for all j 6= i, while
the weight of expert i converges to 1. The algorithm then
follows that best expert. Note that from (6), the performance
of an expert depends on both his accuracy and availability.
In our convergence analysis, it has been assumed that the
distribution of available experts is symmetric and hence all
experts are equally available. Therefore, the algorithm will
follow the most accurate expert.1

For the second case, without loss of generality, assume that
there exists more than one expert who achieves the maximum

1In the simulation results, we present a more interesting comparison of
the performance of our algorithm where both availability and accuracy are
taken into account. There, the index is redefined as the product of accuracy
and availability of an expert. The “best” expert must achieve the highest
product. Thus, this index encourages experts to vote for objects, since it
prefers experts who both participate in voting as well as provide correct
recommendations.

3891

value in (6), i.e., there exist experts i, j such that E(ln qim) =
E(ln qjm) > E(ln qkm) for all k 6= i, j. The proof is based
on the law of the iterated logarithms. We recall the law of
iterated logarithm (LIL): Given Xn i.i.d., variance σ2, let

Sn :=
n∑

m=1

Xm.

Then,

lim sup
n→∞

Sn√
n log log n

=
√

2σ a.s.

Also,

lim inf
n→∞

Sn√
n log log n

= −
√

2σ a.s.

Thus, the sum Sn will change signs infinitely often. Applying
LIL for Xm = ln qim, along with the fact that Prob{pit =
pjt} = 0, one can see that (ln qim − ln qjm) > 0 or (ln qim −
ln qjm) < 0 infinitely often. Therefore the scheme will switch
between the two experts infinitely often. However, Sn can
change only by a bounded amount in each step, from which
it follows that the switchings become rarer and rarer, i.e., the
algorithm stays with the same expert for longer and longer
times.

B. Continuous predictions

When xit can take continuous values in [0, 1], µi needs
to be analyzed to a finer degree. For a given tolerance a,
define the corresponding accuracy µi(a) of an expert i as
the percentage of time that his recommendations lie within
a distance a from Alice’s feedback, i.e., |xit − yt| < a.

Suppose first that expert i is correct. If yt = 1, then xit is
not far from 1 by a distance greater than a, i.e., xit > 1− a,
and xit is assumed to be uniformly distributed in [1−a, 1]. It
follows that qit = xit and qit has the same distribution in this
interval. Similarly, if yt = 0, then xit < a, and xit is assumed
to be uniformly distributed in [0, a]. Therefore, qit = 1− xit
and qit has uniform distribution in [1− a, 1].

A similar derivation holds for the case when expert i is
not correct. Specifically, if yt = 1, then xit < 1− a, qit = xit
and xit is assumed to be uniformly distributed in [1 − a, 1].
If yt = 0, then xit > a, qit = 1− xit and xit is assumed to be
uniformly distributed in [0, a].

The probability density function of qit is derived as

fqi(x) =

1−µi(a)

1−a if x ∈ [0, 1− a],
µi(a)
a if x ∈ [1− a, 1],

0 otherwise .

The index of the expert i is given by

E(ln qit) =
(∑
A:i∈A

Γ(A)
)(µi(a)

a

∫ 1

1−a
lnxdx

+
1− µi(a)

1− a

∫ 1−a

0

lnxdx
)
. (7)

The same results as in Theorem 1 can be applied for this
case with continuous values.

V. UPPER BOUND ON LOSS

We analyze the loss of the algorithm defined by (3). Let
us rewrite the update rule in (2),
pit+1 = pitI{i /∈ Et}

+ pitI{i ∈ Et}
(
I{yt = 1}x

i
t

ŷt
+ I{yt = 0}1− xit

1− ŷt

)
= pitf(xit, yt).

By induction, the weight of expert i at time n is

pin = pi0

n∏
t=1

f(xit, yt) =
1
N

n∏
t=1

f(xit, yt). (8)

Now, define the ‘current best’ expert by i∗t =
arg maxi∈Et

αitβ
i
t , where

αit =

t∑
t′=1

I{i∈Et′}

t ,

βit =

t∑
t′=1

[I{yt′=1} ln xi
t′+I{yt′=0} ln(1−xi

t′)]
t∑

t′=1
I{i∈Et′}

.

Intuitively, αit is the availability accumulated up to time t, or
the number of occurrences of expert i over t rounds. βit is
the accuracy accumulated up to time t of expert i, calculated
by his performance over the number of predictions up to t.
By this definition, the ‘current best’ expert is the one who
is currently available, and whose product of accumulated
availability and accuracy up to time t is largest. We will
compare the loss of the algorithm to that of the ‘current
best’ expert. We have:
n∑
t=1

l(ŷt)−
n∑
t=1

l(xi
∗
t
t) =

=
n∑
t=1

[−I{yt = 1} ln ŷt − I{yt = 0} ln(1− ŷt)]

−
n∑
t=1

I{i∗t ∈ Et}
[
−I{yt = 1} lnxi

∗
t
t − I{yt = 0} ln(1− xi

∗
t
t)
]

=
n∑
t=1

I{i∗t ∈ Et}

[
I{yt = 1} ln

x
i∗t
t

ŷt
+ I{yt = 0} ln

1− xi
∗
t
t

1− ŷt

]

=
n∑
t=1

ln f(xi
∗
t
t , yt) = ln

1
N

n∏
t=1

f(xi
∗
t
t , yt) + lnN, (9)

3892

Fig. 1. Comparison of loss with one honest expert and 0% of bad objects.

Fig. 2. Comparison of loss with one honest expert and 10% of bad objects.

where p0 is the initial weight of the ‘current best’ expert,
which is 1/N . Without loss of generality, assume that the
set of experts ranked by the descending order of accuracy is
{1, 2, ..., N}. Obviously, if expert 1 is always present, then
the current best expert is expert 1. Otherwise, the current
expert could be any expert whose accumulated product is
currently highest. Thus, this current best expert need not be
expert 1.

Now assume that expert 1 is always available. Recall that
the weight of each expert is always less than one, so ln p1

n ≤
0, or equivalently, from (8) ln 1

N

n∏
t=1

f(x1
t , yt) ≤ 0. Thus due

to the above fact, ln 1
N

n∏
t=1

f(xi
∗
t
t , yt) ≤ ln 1

N

n∏
t=1

f(x1
t , yt) ≤

0.
From (9),

n∑
t=1

l(ŷt)−
n∑
t=1

l(xi
∗
t
t) ≤ lnN.

One can see that by applying the average update rule of (1),
the algorithm suffers an amount of loss no more than the
loss of the ‘current best’ expert plus the term lnN .

VI. SIMULATION RESULTS

We consider a data set consisting of 20 objects, 10 experts
and 1000 rounds. In other words, each object has a 1000×10
rate table containing the votes of 10 experts over 1000
rounds.

Table I gives an example of the recommendations for an
object. The predictions of experts have values in [0, 1], while
outcomes (user’s feedback after consumption) take only two
values, 0 or 1. In this simulation, we attempt to create

Fig. 3. Comparison of loss with one honest expert and 30% of bad objects.

different scenarios for the distribution of experts’ predictions.
In addition, we change the accuracy and availability of
experts, as well as the fraction p of bad objects to compare
with Dsybil [3]. One of the problems in comparing these
algorithms is that the definitions of loss for them is different.
Therefore, we consider the following common definition,
the total number of mistakes the algorithm makes is Lt =∑t
v=1 |yv − round(ŷv)|, where “round” is a function that

approximates a real number by its nearest integer. In Dsybil,
round(ŷv) = ŷv since ŷv is 0 or 1.

In this simulation, we consider the following two cases.
In the first case, there is one expert who is always correct.
That is, the expert is not necessarily awake at all times, but
whenever he is, he provides the right recommendation. In
the second case, there are two best experts who are correct
almost always. Figure 1 shows the comparison of the losses
when there is no bad object for the case of a single best
expert. In this case, Dsybil and our algorithm only need
to follow the best expert and have the same performances.
However, if the fraction of bad objects is increased (to 10%
in Figure 2 and 30% in Figure 3) while still assuming a
single correct expert, our algorithm outperforms Dsybil due
to the following explanation.

In our algorithm, all experts express their opinions regard-
less of quality of the object, while in Dsybil, the experts only
vote on good objects, and do not provide any recommenda-
tions for the bad objects. Thus, our algorithm still follows
the “best” expert (one with recommendation close to 0) and
does not suffer any additional loss. In contrast, knowing that
the object is bad, the “best” experts in Dsybil do not provide
their opinion concerning the object. Dsybil therefore must
depend on other experts (who are usually not honest experts)
rather than the “best” experts, and the recommendations will
consequently follow the opinions of others. The additional
loss is partially induced by this shortcoming of Dsybil.
Therefore for Dsybil to perform acceptably a high fraction
of the objects must be good. Clearly, such a requirement is
quite unrealstic for an online recommendation system.

In figure 4, we analyze the case where 2 best experts have

3893

TABLE I
RECOMMENDATIONS OF EXPERTS FOR AN OBJECT.

Outcome E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

1 0.15 0.2 0.85 0.23 0.6 0.9 0.95 0.7
1 0.5 0.8 0.4 0.83 0.2 0.5 0.6 0.9
0 0.4 0.1 0.15 0.06 0.5 0.8 0.5 0.4
...

...
...

...
...

...
...

...
...

...
...

Fig. 4. Comparison of loss with two best experts and 20% of bad objects.

Fig. 5. Evolution of weights in Dsybil with two best experts.

95% accuracy and availability and show that our algorithm
still outperforms Dsybil because it converges faster to the one
of the best experts. Figure 5 and figure 6 shows that Dsybil
keeps jumping between two experts and thus suffers a higher
loss while our algorithm tracks one of the best experts after
some number of rounds.

VII. CONCLUSION

We proposed a recommendation algorithm that uses an
average-weight update rule and proved its convergence to
the best expert and derived an upper bound on its loss.
Besides theoretical performance guarantees, we relaxed some
commonly made assumptions in the literature that do not
hold in practice. For instance, existance of a large fraction
of good objects in the voting pool, presence of experts with
the exact same taste as the user, or experts who vote on
all or majority of objects. Our simulation results show that
the proposed algorithm outperforms current state-of-the-art
recommendation algorithm, Dsybil even in more general
setup than what was imposed for deriving our theoretical

Fig. 6. Evolution of weights in Our algorithm with two best experts.

results.
VIII. ACKNOWLEDGMENTS

The authors would like to express their thanks to Prof. P.
R. Kumar for helpful discussions. This work was supported
in part by AFOSR FA9550-10-1-0345 and General Motors
India Lab., Bangalore.

REFERENCES

[1] N. Littlestone, M. K. Warmuth, The weighted majority algorithm, Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer
Science, NC, 30 Oct-1 Nov, 1989.

[2] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth, Using
and combining predictors that specialize, Proceedings of the Twenty-
Ninth Annual ACM Symposium on the Theory of Computing, El Paso,
Texas, USA, May 4-6, 1997.

[3] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, DSybil:
Optimal Sybil-Resistance for Recommendation Systems, Proceedings
of the IEEE Symposium on Security and Privacy, Oakland 2009.

[4] R. D. Kleinberg, A. Niculescu-Mizil, Y. Sharma, Regret Bounds for
Sleeping Experts and Bandits, 21st Annual Conference on Learning
Theory - COLT 2008, Helsinki, Finland, July 9-12, 2008.

[5] N. C. Bianchi, G. Lugosi, Prediction, Learning, and Games, Cam-
bridge University Press, Oakland 2006.

[6] N. C. Bianchi, G. Lugosi, Universal Prediction, Cambridge University
Press, Oakland 2006.

[7] A. Blum, Y. Mansour, From External to Internal Regret, The Journal
of Machine Learning Research, Vol 8, 12/1/2007.

[8] D. Haussler, J. Kivinen, and M. Warmuth, Tight Worst-Case Loss
Bounds For Predicting With Expert Advice, Technical Report, Uni-
versity of California at Santa Cruz, Santa Cruz, CA, USA, 1994.

[9] V. G. Vovk, Aggregating strategies, Proceedings of the third annual
workshop on Computational learning theory (COLT ’90), Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 371-386, 1990.

[10] C. Bianchi, Y. Freund, D. Helmbold, D. Haussler, R. E. Schapire, and
M. K. Warmuth, How to use expert advice, Proceedings of the twenty-
fifth annual ACM symposium on Theory of computing (STOC ’93),
ACM, New York, NY, USA, 382-391, 1993.

3894

