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Abstract— In this paper, we consider the problem where
a fixed fusion center utilizes a number of mobile sensors in
order to estimate the spatial variations of a field. The sensors
measure the variations of the field in regions around their
current positions and send their sensory data back to the fixed
fusion center, by communicating over realistic fading wireless
channels. The goal is to maximize the estimation performance
at the fusion center, while maintaining the connectivity of the
mobile sensors to it. In order to achieve this, we propose a
localized gradient-based exploration strategy, which is based
on switching between three modes of operation. The proposed
approach is aimed at maintaining the connectivity of the mobile
sensors and exploring the entire connected region, in the
presence of realistic channels that experience path loss and
fading. Our simulation results confirm the effectiveness of our
proposed framework.

I. INTRODUCTION

Deployment of a group of networked mobile sensors for

coverage and/or exploration of a given environment has a

broad range of applications, such as urban search and rescue

[1], [2], robotic surveillance [3], [4], oceanographic sampling

[5], [6], military reconnaissance [7], [8], radiation mapping

of radioactive sources in a polluted area [9] and active

coverage [10]–[13].

Designing localized strategies, that enable a team of

mobile sensors to cover/explore a given environment, is an

active field of research. Several advances have been made

along this line in the robotics and control communities.

For instance, Cortés et al. developed gradient-based control

algorithms that navigate the mobile sensors to positions

that optimize a locational objective function, with the goal

of maximizing the coverage performance [10], [11]. In

[12], [13], the authors considered the problem of dynamic

coverage of a spatially-large environment, using a small

number of robots, and proposed closed-loop gradient-based

control strategies that asymptotically guarantee the global

exploration of the environment.

Although communication plays a key role in the overall

performance of mobile sensor networks, most works on

robotic coverage/exploration assume over-simplified, if not

perfect, communication models [9]–[13]. In [14], [15], we

considered tracking and maintaining a fixed distance to a

moving vehicle, by communicating over stochastic fading

communication links, showing the importance of considering

realistic links and combining communication and sensing

objectives. We continued our work in [3], [16], where we
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proposed communication-aware strategies for detecting the

existence of a number of unknown static targets, in a given

environment, using a team of mobile sensors. We showed

how to design greedy algorithms in order to improve the tar-

get detection performance at the end of the operation, while

satisfying connectivity constraints. In this paper, we consider

the problem where a fixed fusion center needs to estimate the

spatial variations of a signal, in an environment, using a small

group of mobile sensors with limited sensing and communi-

cation capabilities. The sensors are tasked with sensing the

variations of the signal and sending their sensory data back

to the fusion center, by communicating over stochastic fading

communication channels. The goal is for the fusion center

to constantly have the best estimate of the spatial variations

of the signal, which requires maintaining the connectivity of

the mobile sensors. This is directly related to the dynamic

coverage problem of [12], [13], where we additionally need

to maintain the connectivity of the mobile sensors to the

fusion center, in the presence of stochastic fading channels. It

also correlates with our previously-proposed communication-

constrained surveillance strategy in [3], [16], in the sense

that both consider simultaneous information gathering and

connectivity maintenance, in a large environment and in the

presence of fading channels. However, in this paper, we

are interested in field exploration. Furthermore, we focus

on proposing a low-level gradient-based control strategy, as

compared to the high-level greedy approach of [3], [16].

More specifically, we propose a gradient-based exploration

strategy, which is based on switching between three modes

of operation. In the first mode, each mobile sensor utilizes

a gradient-based motion controller, which is designed such

that the field estimation error variance at the base station,

averaged over the space and the spatial variations of the

channel, decreases rapidly. Each mobile sensor then switches

to the other two modes repeatedly, to avoid the possible

local extrema and explore all the connected patches (see

Fig. 1). The proposed approach is aimed at maintaining

the connectivity of the mobile sensors and exploring the

entire connected region, in the presence of realistic channels

that experience path loss and fading. Our simulation results

confirm the effectiveness of our proposed framework in

realistic communication settings.

The rest of the paper is organized as follows. In Section

II, we describe our system model and briefly explain our

channel assessment framework. The results are then used

in Section III, where we propose our switching gradient-

based exploration strategy. We present our simulation results

in Section IV, followed by conclusions in Section V.
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II. PROBLEM SETUP

Consider the case where a group of N mobile sensors,

with limited sensing capabilities, are tasked with sensing

the spatial variations of a signal in a given workspace, and

sending their sensory data to a fixed fusion center to be fused.

The communication links between the mobile sensors and

the fusion center are imperfect wireless links, experiencing

path loss and fading. The goal is for the fusion center to

constantly have the best estimate of the spatial variations of

the signal, which requires maintaining the connectivity of

the mobile sensors. Fig. 1 (left) shows a schematic of the

scenario considered in this paper.
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Fig. 1: A field estimation scenario, using a mobile sensor network,
in a rectangular workspace – (left) a color map of the field and
(right) the connectivity map of the mobile sensors. The white
(black) areas in the right figure denote the regions where the mobile
sensors are connected to (disconnected from) the fusion center.

Assume a workspace W ⊂ R
2 and a signal of interest

s : W → R, that needs to be estimated at a remote fusion

center, using a set of observations collected by the mobile

sensors. The measurement of the ℓth mobile sensor at position

q ∈ W and at time t, as received by the fusion center, is given

as follows:

zℓ(q, t) = s(q) + vℓ(q, t), ℓ = 1, · · · , N, (1)

where vℓ(q, t) ∈ R is a zero-mean Gaussian white noise with

E
{
vℓ(q, t)vℓ(q

′, t′)
}

= Rℓ(q, t)δ(q−q′)δ(t−t′) representing

its autocovariance. Here, δ(.) is the Dirac delta function.

Note that Rℓ(q, t) depends not only on the sensing quality of

the ℓth mobile sensor but also on the quality of its communi-

cation link to the fusion center. In a realistic communication

setting, the receiver of the remote fusion center drops the

received packets in case of poor link qualities. Let Υℓ(t)
denote the instantaneous received SNR in the transmission

from the ℓth mobile sensor to the fixed fusion center at time

t. Then, the receiver of the fusion center drops the packet

received from the ℓth mobile sensor at time t if Υℓ(t) < ΥTH,

where ΥTH is a fixed threshold. We then take the following

form for the error variance of the observations received by

the fusion center:

R−1
ℓ (q, t) = λ

(
Υℓ(t)

)
Ψ
(
‖q − ξℓ(t)‖

)
, (2)

where λ
(
Υℓ(t)

)
represents the effect of packet drop at the

receiver of the fusion center and is defined as λ(Υ) ,{
1 Υ ≥ ΥTH

0 otherwise
. Furthermore, ξℓ(t) is the position of the

ℓth mobile sensor at time t and Ψ
(
‖q − ξℓ(t)‖

)
denotes the

inverse of the sensing error variance. It can be seen that in

case the packet received from the ℓth mobile sensor at time

t is dropped, R−1
ℓ (q, t) = 0 (or equivalently Rℓ(q, t) = ∞).

In order to account for imperfect sensing, we assume that

Ψ(d) = 0 for d > dmax, in which case dmax is referred to as

sensing radius of the mobile sensors. We also assume that

Ψ(d) is differentiable and non-increasing function of d.1

The fusion center uses a recursive Bayesian filter to

estimate the the spatial variations of s(q). Let ŝ(q, t) and

P (q, t) denote the estimate of s(q) and its corresponding

error variance, respectively, conditioned on all the received

observations up to time t. We then have the following

filtering equations at the fusion center:

∂ŝ(q, t)

∂t
= P (q, t)

[
N∑

ℓ=1

R−1
ℓ (q, t)

(
zℓ(q, t) − ŝ(q, t)

)

]

,

∂P (q, t)

∂t
= −P 2(q, t)

[
N∑

ℓ=1

R−1
ℓ (q, t)

]

. (3)

Note that in case the packet sent by the ℓth mobile sensor at

time t is dropped at the receiver of the fusion center, we have

R−1
ℓ (q, t) = 0 (Rℓ(q, t) = ∞) and the mobile sensor does

not contribute in the fusion process at that specific time.

From (3), the performance at the fusion center depends on

not only the sensing qualities, but also the communication

link qualities through Υℓ(t) for ℓ = 1, · · · , N . In order to

devise motion planning algorithms to improve the perfor-

mance of the fusion center and maintain the connectivity of

the mobile sensors, a reliable assessment of Υℓ(t) must be

available to the mobile sensors, as we explain next.

A. Probabilistic Characterization and Assessment of Com-

munication Channels

As shown in the communication literature [17], Υℓ(t)
can be modeled as a multi-scale dynamical system with

three major dynamics: multipath fading, shadow fading

(shadowing) and path loss. Let Υ(q) denote the received

SNR in the transmission from a mobile sensor at q ∈ W
to the fusion center, such that Υℓ(t) = Υ

(
ξℓ(t)

)
. We

then have the following characterization for Υ(q) (in dB),

using a 2D non-stationary random field model [17]: Υ(q) =
KPL − 10 nPL log10

(
‖q − qb‖

)
+ ΥSH(q) + ΥMP(q), where

ΥdB(q) = 10 log10

(
Υ(q)

)
, qb is the position of the fusion

center, KPL and nPL are path loss parameters and ΥSH(q)
and ΥMP(q) are zero-mean random variables representing

the effects of shadow fading and multipath fading in dB

respectively. Given Υ(q), for every q ∈ W , and the packet

dropping threshold ΥTH, the connectivity map is obtained

by thresholding Υ(q) at every position. The result is a set

of disjoint connected patches in the workspace in which

the mobile sensors are connected to the base station (i.e.

Υ(q) ≥ ΥTH). The union of the connected patches is referred

to as connected region and is shown by C in this paper. Fig. 1

1The differentiability of Ψ(.) is required when calculating the control
laws of the mobile sensors in Section III.
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(right) shows the resulting connectivity map for a simulated

channel, where the connected patches are specified. Note that

multipath fading is negligible in this example.

The performance of the Bayesian filter at the fusion

center depends on the variations of the channel (through its

dependency on Υℓ(t)). In order to efficiently plan the motion

of the mobile sensors, it is crucial that the mobile sensors

have an assessment of the channel variations at places that

have not yet been visited by the mobile sensors. In [15],

[18], we addressed this problem and devised a probabilistic

channel assessment framework, based on a small number

of SNR measurements. Let Q =
{
q1, · · · , qM

}
denote the

set of the positions, corresponding to the SNR measurements

available to all mobile sensors. Then, in [15], [18] we showed

that the assessment of the mobile sensors of the received

SNR, at any position q ∈ W \ Q, is given by a Gaussian

distribution with mean Υ̂(q) and variance σ2(q), where

Υ̂(q) = γT(q) ϑ̂+ φ̂T(q)Û−1
(
Y − Γϑ̂

)
,

σ2(q) = ζ̂2 + ω̂2 − φ̂T(q)Û−1φ̂(q). (4)

Here, Y is the stacked vector of the SNR measure-

ments in dB, γ(q) =
[
1 − 10 log10(‖q − qb‖)

]T
,

ϑ̂ =
[
K̂PL n̂PL

]T
, Γ =

[
γ(q1) · · · γ(qM )

]T
, φ̂(q) =

[
ζ̂2 e−‖q−q1‖/β̂ · · · ζ̂2 e−‖q−qM‖/β̂

]T
, Û = V̂ + ω̂2IM ,

V̂ ∈ R
M×M , with

[
V̂
]

ı,
= ζ̂2 exp

(

− ‖qı−q‖

β̂

)

and

1 ≤ ı,  ≤ M , and IM is the M -dimensional identity

matrix. Furthermore, K̂PL and n̂PL are the estimated values

of the path loss parameters KPL and nPL, ζ̂2 and ω̂2 denote

the assessment of the power of the shadow fading and

multipath fading components in dB, respectively, and β̂ is the

estimated decorrelation distance of the shadow fading. For

more details on the channel assessment framework (including

the estimation of the underlying parameters), see [15], [18].

III. COMMUNICATION-AWARE STRATEGIES FOR

MULTI-ROBOT EXPLORATION

The trajectories of the mobile sensors affect their sensing

and communication and, as a result, the overall performance

at the fusion center. Then, a natural question is how to plan

the trajectories of the mobile sensors efficiently such that,

given a total operation time T , the estimation error variance,

P (q, T ), is minimized over W (in the presence of imperfect

sensors and communication channels), while the connectivity

of the mobile sensors to the fusion center is maintained? The

connectivity maintenance is particularly important whenever

the fusion center requires constant update on the spatial

variation of s(q). In this section, we focus on answering

this question.

Consider the Bayesian filter of (3). Let us define Π(t) ,
∫

W P (q, t)dq as a measure of the uncertainty over the whole

workspace at any time t. Based on (3), the time derivative

of Π(t) is given as follows:

Π̇(t) = −
N∑

ℓ=1

λ
(
Υℓ(t)

)
∫

W

Ψ
(
‖q − ξℓ(t)‖

)
P 2(q, t)dq. (5)

In order to minimize Π(T ), we need to design the mo-

tion of the mobile sensors such that the average of
∑N

ℓ=1

∫ T

0
λ
(
Υℓ(t)

) ∫

W
Ψ
(
‖q−ξℓ(t)‖

)
P 2(q, t)dqdt, over the

distribution of the channel, is maximized, which requires

maintaining the connectivity of the mobile sensors to the

fusion center. In case a mobile sensor does not start inside

the connected region C, its motion controller should navigate

it towards the closest point in C, till it gets connected, and

maintain its connectivity afterwards.

Next, we propose gradient-based localized controllers

that navigate the ℓth mobile sensor along the direction of
∂

∂ξℓ

[

E
{
λ
(
Υℓ(t)

)} ∫

W
Ψ
(
‖q − ξℓ(t)‖

)
P 2(q, t)dq

]

, for ℓ =

1, · · · , N , where E{.} denotes the average over the distri-

bution of the channel. These controllers aim to improve the

field estimation performance and maintain the connectivity

of the mobile sensors (i.e. they force the mobile sensors to

remain in C).

A. Controller Design

Since λ
(
Υℓ(t)

)
is stochastic, due to its dependency on

Υℓ(t), we use the average of (5) over the distribution of the

channel and navigate the ℓth mobile sensor along the gradient

of the following objective function at any time t:

Jℓ

(
ξℓ(t), t

)
, λ̄

(
ξℓ(t)

)

︸ ︷︷ ︸

comm. term

∫

W

Ψ
(
‖q − ξℓ(t)‖

)

︸ ︷︷ ︸

sensing term

P 2(q, t)dq, (6)

where λ̄
(
ξℓ(t)

)
= E

{
λ
(
Υℓ(t)

)}
is the probability of con-

nectivity to the fusion center at time t, which is a function

of ξℓ(t). Based on the channel learning framework of the

previous section, we have

λ̄
(
ξℓ(t)

)
= Q

(

ΥTH − Υ̂
(
ξℓ(t)

)

σ
(
ξℓ(t)

)

)

, (7)

where Q(.) is the Q-function (the tail probability of normal

distribution) and Υ̂
(
ξℓ(t)

)
and σ

(
ξℓ(t)

)
are the estimated

value of the received SNR in the transmission from the ℓth

mobile sensor to the fusion center and its corresponding

standard deviation, as introduced before.

By navigating the ℓth mobile sensor along the gradient

of (6), one would expect that the mobile sensor repeatedly

converges to points with larger P (q, t) and λ̄
(
ξℓ(t)

)
to visit

the unexplored regions with good channel qualities. We have

the following regarding this control strategy:

• Typically the local mobile sensors do not have access

to the optimal error variance P (q, t) calculated at the

fusion center. Therefore, each mobile sensor can only

use its local assessment of P (q, t) when calculating its

control signal. In what follows, we show by Pℓ(q, t)
the local assessment of the ℓth mobile sensor of P (q, t),
which is used for motion planning. Note that in order to

have a better assessment, the mobile sensors can send

their observations not only to the fusion center but also

to their neighbors. As a result, if two mobile sensors

ℓ1 and ℓ2 happen to be connected at time t, they will

share observations, to better assess Pℓ(q, t).
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• In practice, in order to expedite the exploration process,

it is typically a better use of resources to only explore

the areas with P (q, t) > P , where P > 0 is a small

threshold.

Assume holonomic mobile sensors with the following

dynamics: ξ̇ℓ(t) = θℓ(t), for ℓ = 1, · · · , N , where θℓ(t) is

the control input of the ℓth mobile sensor at time t. Based on

the previous points, we propose the following gradient-based

control input, for the ℓth mobile sensor at time t:

θℓ(t) = θℓ(t) ,

{

κ1
f(ξℓ(t),t)

‖f(ξℓ(t),t)‖

∥
∥f
(
ξℓ(t), t

)∥
∥ ≥ ǫ1

0 otherwise
, (8)

where ǫ1 > 0 is a small positive scalar and f
(
ξℓ(t), t

)
is

defined as follows:

f
(
ξℓ(t), t

)
= ρ

∂λ̄

∂ξℓ

(
ξℓ(t)

)
∫

Sℓ(t)

Ψ
(
‖q − ξℓ(t)‖

)
Φ
(
Pℓ(q, t)

)
dq

+ λ̄
(
ξℓ(t)

)
∫

Sℓ(t)

Ψ′
(
‖q − ξℓ(t)‖

) ξℓ(t) − q

‖ξℓ(t) − q‖Φ
(
Pℓ(q, t)

)
dq,

(9)

in which Φ(P ) ,

{
P 2 P > P

0 otherwise
, for a small threshold

P > 0, Pℓ(q, t) indicates the local assessment of ℓth sensor

of P (q, t), ρ > 0 is a large positive constant, Sℓ(t) ,
{
q ∈

W
∣
∣‖q−ξℓ(t)‖ ≤ dmax

}
and Ψ′(.) is the derivative of Ψ with

respect to its argument. Furthermore, we set ∂λ̄
∂q (q) = 0, for

q ∈ Q ∪ {qb}, as λ̄(q) is not differentiable at those points.

An update rule similar to (3) is also considered for Pℓ(q, t):

∂Pℓ(q, t)

∂t
= −

∑

∈Nℓ(t)∪{ℓ}

λ
(
Υ(t)

)
Ψ
(
‖q − ξ(t)‖

)
P 2

ℓ (q, t),

(10)

where Nℓ(t) denotes the (time-varying) set of all the mobile

sensors that are connected to the ℓth mobile sensor at time

t. Note that due to the stochastic nature of the channels

between the mobile sensors, Nℓ(t) is a stochastic and time-

varying set. We also assume that each mobile sensor is able

to measure its instantaneous SNR to the fusion center, at

any time step, and share its SNR measurements with the

sensors to which it is connected. We then have the following

observations:

• Assume the ℓth mobile sensor starts inside the connected

region, C. In case the channel is estimated almost

perfectly, the Q-function in (7) behaves like a hard

limiter. Therefore, as long as the mobile sensor is inside

C and far enough from its boundary, λ̄
(
ξℓ(t)

)
≈ 1 and

∂λ̄
∂ξℓ

(
ξℓ(t)

)
≈ 0. This means that the first term in (9) is

negligible and the mobile sensor moves along the direc-

tion that maximizes
∫

Sℓ(t)
Ψ
(
‖q−ξℓ(t)‖

)
Φ
(
Pℓ(q, t)

)
dq.

• If the ℓth mobile sensor gets close to the boundary of

C, the first term in (9) points towards the interior of C,

assuming that the channel is estimated almost perfectly

and the parameter ρ is chosen large enough.

• There exist undesirable conditions (local extrema)

where θℓ(t) = 0, before the entire connected region

C is explored by the mobile sensors. These conditions

are as follows:

1) Pℓ(q, t) < P , for all q ∈ Sℓ(t).
2) The ℓth mobile sensor is inside C and Pℓ(q, t) is

symmetrically distributed around ξℓ(t).
2.

3) A connected patch is completely explored (i.e.

Pℓ(q, t) < P for all the points inside that patch)

while there still exist some unexplored connected

patches in W .

4) The mobile sensor starts outside C.

These cases show that the control law (8) cannot ensure

global exploration of C. We next propose a switching

strategy that asymptotically guarantee exploration of the

whole connected region.

B. Switching Strategy for Ensuring Complete Exploration of

the Connectivity Region

Based on the discussions of the previous section, the value

of
∥
∥f(ξℓ(t), t)

∥
∥ determines if the ℓth mobile sensor is trapped

in one of the aforementioned local extrema. In order to avoid

undesirable local extrema, we propose a switching strategy

that navigates the mobile sensor to the regions with large

P (q, t) and high channel quality, if
∥
∥f(ξℓ(t), t)

∥
∥ < ǫ1, for

a small ǫ1 > 0. Once
∥
∥f(ξℓ(t), t)

∥
∥ ≥ ǫ1, we switch back

to the control law of (8). We next show how to design the

controller for the case that
∥
∥f(ξℓ(t), t)

∥
∥ < ǫ1. Let us define

Uℓ(t) ,

{

q ∈ W
∣
∣
∣ Φ
(
Pℓ(q, t)

)
> 0
}

. (11)

A new destination for the ℓth mobile sensor is then found as

follows:

q∗ℓ , argmax
q∈Uℓ(t)

λ̄(q)ψ
(
‖q − ξℓ(t)‖

)
, (12)

where ψ(d), for non-increasing ψ(.), is a weight assigned

to a position at distance d from the current location of

the mobile sensor. Then, q∗ℓ will be a point, with a large

uncertainty, which has the best probability of connectivity

and is close to the current position of the sensor. One

possibility for ψ(d) is ψ(d) = e−ςd, for ς > 0. The control

input that navigates the ℓth mobile sensor toward q∗ℓ is then

given by:

θℓ(t) = θℓ(t) , κ2

(
q∗ℓ − ξℓ(t)

)
, (13)

where κ2 > 0 is a positive controller gain. Note that the

new destination q∗ℓ may be very close to the current location

of the ℓth mobile sensor. Such cases can be problematic in

practice, when the mobile sensor is outside the connected

region but very close to the boundary, by causing oscillations.

Therefore, to avoid such conditions, we introduce an auxil-

iary mode so that if q∗ℓ is very close to ξℓ(t), the ℓth mobile

sensor waits until the uncertainty inside Sℓ(t) decreases

and a new far enough q∗ℓ is found. Fig. 2 summarizes the

proposed switching strategy. Note that the connectivity of

the mobile sensors may not be maintained when operating

2One example is the case where the mobile sensors start with Pℓ(q, 0) =
P0, for a constant P0.
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in the transition modes 2 and 3. For example, when the

mobile sensor is moving towards a new connected patch or

starts outside the connected region C, there will be situations

where the mobile sensor is not connected to the fusion center.

However, as the mobile sensors operate in mode 1, most of

the time, such transient behaviors can be neglected, provided

that the speed of moving towards the new destination point,

in mode 3, is large enough. Finally, for t ≥ T (T is the

given operation time), θℓ(t) = 0 is applied, independent of

the mode of operation.

θℓ(t) = θℓ(t)

Mode 3

θℓ(t) = θℓ(t)

Mode 1

θℓ(t) = 0

Mode 2

‖f(ξℓ(t),t)‖≥ǫ1

‖f(ξℓ(t),t)‖≥ǫ1

‖f(ξℓ(t),t)‖<ǫ1

‖q∗

ℓ −ξℓ(t)‖<ǫ2

‖f(ξℓ(t),t)‖<ǫ1
‖f(ξℓ(t),t)‖<ǫ1

‖q∗

ℓ −ξℓ(t)‖≥ǫ2

Fig. 2: A summary of the switching-based communication-aware
motion planning strategy for field estimation.

IV. SIMULATION RESULTS

In this section, we show our simulation results for a

simple case where N = 2 mobile sensors are tasked to

estimate a scalar 2D signal s(q), over a 100 m × 100 m

workspace. A plot of s(q) is shown in Fig. 3. The channel

to the fusion center is simulated using the following path

loss and shadowing parameters: KPL = 60 dB, nPL = 2,

ζ =
√

20 dB and β = 50 m. The multipath fading is

assumed negligible in this example, such that the predicted

channel becomes close to the real one. The fusion center is

located at qb = (10 m, 10 m), with a height of 0.5 m from

the ground (see Fig. 4). As for the sensing model, we use

Ψ(d) =

{

α
(
d2 − d2

max

)2
d < dmax

0 otherwise
, with α = 0.04 and

dmax = 5 m. The controller gains are κ1 = 0.5, κ2 = 5 and

ρ = 10000. For the initial error variance, we set P (q, 0) = 1
for every q ∈ W . For the purpose of channel learning,

the mobile sensors use 0.5% of channel samples in the

environment, which are assumed to be randomly collected

during an initial learning phase. The channel parameters are

first estimated, using the collected samples, and then used

to predict the spatial variations of the channel, at every

q ∈ W \ Q, using (4).
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Fig. 3: The plot of s(q) used in the simulation.

Fig. 4 shows the trajectories of the mobile sensors when

the proposed switching strategy has been used. The black

regions in Fig. 4 represent the areas where the mobile sensors

are not connected to the fusion center for ΥTH = 25 dB. It

can be seen that by using the proposed switching strategy,

node 1 (dashed red trajectory) explores the connected patch

around the fusion center, without loosing its connectivity to

the fusion center. Node 2 (solid blue trajectory) starts outside

the connected region. It switches to modes 2 and 3 to get

to the closest connected patch (the middle one) to explore

it. Before moving to the rightmost patch, node 2 switches

between modes 2 and 3, a number of times, to explore the

remaining small unexplored areas. Finally, Fig. 5, shows the

spatial average of P (q, t), i.e.
∫

W
P (q,t)dq
∫

W
dq

, as a function of

time. It can be seen that it decreases rapidly.
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switching between modes
2 and 3 to explore all the 
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node 1

node 2

fusion 
center 

Fig. 4: Trajectories of the mobile sensors when the proposed
switching strategy has been used. The empty circles and the filled
ones denote the initial and final positions of the mobile sensors
respectively. See the pdf file for more visual clarity.

V. CONCLUSIONS

In this paper, we considered the problem where a fusion

center utilizes a number of mobile sensors in order to esti-

mate the spatial variations of a field. We assumed imperfect
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Fig. 5: The spatial average of the estimation error variance as a
function of time at the fusion center.

sensors, which measure the variations of the signal in regions

around their current positions and send their sensory data

back to a fixed fusion center, by communicating over realistic

wireless channels that experience path loss and fading. In

order to improve the information gathering performance of

the mobile sensors, while maintaining their connectivity to

the fusion center, we devised a gradient-based exploration

strategy, which is based on switching between three modes

of operation. In the first mode, each mobile sensor utilizes a

gradient-based motion controller, designed such that the field

estimation error variance at the base station, averaged over

the space and the spatial variations of the channel, decreases

rapidly, and the connectivity of the mobile sensor to the

base station is maintained at the same time. The other two

modes are then used to avoid the possible local extrema and

explore all the connected patches. The proposed approach is

aimed at maintaining the connectivity of the mobile sensors,

in the presence of realistic channels that experience path

loss and fading, and exploring the entire connected region

asymptotically. We evaluated the performance of the pro-

posed switching approach through simulation and confirmed

its effectiveness in realistic communication settings.

REFERENCES

[1] I. Nourbakhsh, K. Sycara, M. Koes, M. Yong, M. Lewis, and S. Bu-
rion, “Human-robot teaming for search and rescue,” IEEE Pervasive

Computing, vol. 4, no. 1, pp. 72–79, 2005.

[2] J. Casper and R. Murphy, “Human-robot interactions during the
robot-assisted urban search and rescue response at the World Trade
Center,” IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics, vol. 33, no. 3, pp. 367–385, 2003.

[3] A. Ghaffarkhah and Y. Mostofi, “A Foundation for Communication-
Aware Surveillance in Mobile Cooperative Networks,” in revision,

IEEE Transactions on Signal Processing, 2011.

[4] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “ Cooperative
Air-Ground Surveillance ,” IEEE Robotics and Automation Magazine,
vol. 13, no. 3, pp. 16–25, 2006.

[5] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni,
and R. E. Davis, “Collective Motion, Sensor Networks, and Ocean
Sampling,” Proceedings of the IEEE, vol. 95, no. 1, pp. 48–74, 2007.

[6] N. Yilmaz, C. Evangelinos, P. Lermusiaux, and N. Patrikalakis, “Path
Planning of Autonomous Underwater Vehicles for Adaptive Sampling
Using Mixed Integer Linear Programming,” IEEE Journal of Oceanic

Engineering, vol. 33, no. 4, pp. 522–537, oct. 2008.

[7] P. E. Rybski, N. P. Papanikolopoulos, S. A. Stoeter, D. G. Krantz,
K. B. Yesin, M. Gini, R. Voyles, D. F. Hougen, B. Nelson, and
M. D. Erickson, “Enlisting rangers and scouts for reconnaissance and
surveillance,” IEEE Robotics Automation Magazine, vol. 7, no. 4, pp.
14–24, Dec. 2000.

[8] T. Samad, J. Bay, and D. Godbole, “Network-Centric Systems for
Military Operations in Urban Terrain: The Role of UAVs,” Proceedings

of the IEEE, vol. 95, no. 1, pp. 92–107, jan. 2007.
[9] R. Cortez, X. Papageorgiou, H. Tanner, A. Klimenko, K. Borozdin,

R. Lumia, and W. Priedhorsky, “Smart radiation sensor management,”
IEEE Robotics Automation Magazine, vol. 15, no. 3, pp. 85–93, 2008.

[10] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and

Automation, vol. 20, no. 2, pp. 243–255, 2004.
[11] J. Cortés, S. Martı́nez, and F. Bullo, “Spatially-distributed coverage

optimization and control with limited-range interactions,” ESAIM:

Control, Optimisation and Calculus of Variations, vol. 11, pp. 691–
719, 2005.

[12] I. I. Hussein and D. M. Stipanovic, “Effective Coverage Control for
Mobile Sensor Networks With Guaranteed Collision Avoidance,” IEEE

Transactions on Control Systems Technology, vol. 15, no. 4, pp. 642–
657, 2007.

[13] Y. Wang and I. I. Hussein, “Awareness Coverage Control Over Large-
Scale Domains With Intermittent Communications,” IEEE Transac-

tions on Automatic Control, vol. 55, no. 8, pp. 1850–1859, 2010.
[14] A. Ghaffarkhah and Y. Mostofi, “Channel Learning and

Communication-Aware Motion Planning in Mobile Networks,” in
Proceedings of the American Control Conference (ACC), Baltimore,
MD, June 2010, pp. 5413–5420.

[15] ——, “Communication-Aware Motion Planning in Mobile Networks,”
to appear, IEEE Transactions on Automatic Control, special issue on

Wireless Sensor and Actuator Networks, 2011.
[16] ——, “Communication-Aware Surveillance in Mobile Sensor Net-

works,” in Proceedings of American Control Conference (ACC), San
Francisco, CA, july 2011, pp. 4032–4038.

[17] A. Goldsmith, Wireless Communications. Cambridge University
Press, 2005.

[18] Y. Mostofi, M. Malmirchegini, and A. Ghaffarkhah, “Estimation of
Communication Signal Strength in Robotic Networks,” in Proceedings

of IEEE International Conference on Robotics and Automation (ICRA),
Anchorage, AK, May 2010, pp. 1946–1951.

3558


