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Abstract— The problem of stabilizing an unstable plant over
a noisy communication link is an increasingly important one
that arises in problems of distributed control and networked
control systems. Although the work of Schulman and Sahai over
the past two decades, and their development of the notions of
“tree codes” and “anytime capacity”, provides the theoretical
framework for studying such problems, there has been scant
practical progress in this area because explicit constructions of
tree codes with efficient encoding and decoding did not exist. To
stabilize an unstable plant driven by bounded noise over a noisy
channel one needs real-time encoding and real-time decoding
and a reliability which increases exponentially with delay, which
is what tree codes guarantee. We prove the existence of linear
tree codes with high probability and, for erasure channels,
give a construction with an expected decoding complexity that
is constant per time instant. We give sufficient conditions on
the rate and reliability required of the tree codes to stabilize
vector plants and argue that they are asymptotically tight. This
work takes an important step towards controlling plants over
noisy channels, and we demonstrate the efficacy of the method
through a simulation.

I. INTRODUCTION

In control theory, the output of a dynamical system is

observed and a controller is designed to regulate its behavior.

The controller needs to react and generate control signals in

real-time. In most traditional control systems, the controller

and the plant are colocated and hence there is no measure-

ment loss. There are increasingly many applications such as

networked control systems [1] and distributed computing [2]

where systems are remotely controlled and where measure-

ment and control signals are transmitted across noisy chan-

nels. This necessitates a need to reliably communicate the

measurement and control signals by correcting for the errors

introduced by the channels. Although Shannon’s information

theory is concerned with reliable transmission of a message

from one point to another over a noisy channel, the reliability

is achieved at the price of large delays which may lead to

instability when they occur in the feedback loop of a control

system. Hence, we need practical real-time encoding and

decoding schemes with appropriate reliability for controlling

systems over lossy networks.

Consider a control system with a single observer that com-

municates with the controller over a lossy communication
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channel and where the feedback link from the controller to

the plant is noiseless. When the channel is rate-limited and

deterministic, significant progress has been made (see eg.,

[3], [4]) in understanding the bandwidth requirements for

stabilizing open loop unstable systems. When the communi-

cation channel is stochastic, [5], [6] provides a necessary and

sufficient condition on the communication reliability needed

over such a channel to stabilize an unstable linear process,

and proposes the notion of feedback anytime capacity as the

appropriate figure of merit for such channels. In essence, the

encoder is causal and the probability of error in decoding

a source symbol that was transmitted d time instants ago

should decay exponentially in the decoding delay d.

Although the connection between communication reliabil-

ity and control is clear, very little is known about error-

correcting codes that can achieve such reliabilities. Prior

to the work of [5], and in a different context, [2] proved

the existence of codes which under maximum likelihood

decoding achieve such reliabilities and referred to them as

tree codes. Note that any real-time error correcting code is

causal and since it encodes the entire trajectory of a process,

it has a natural tree structure to it. [2] proves the existence

of nonlinear tree codes yet gives no explicit constructions

and/or efficient decoding algorithms. Much more recently

[7] proposed efficient error correcting codes for unstable

systems where the state grows only polynomially large with

time. So, for linear unstable systems that have an exponential

growth rate, all that is known in the way of error correction

is the existence of tree codes which are, in general, non-

linear. Moreover, the existence results are not with a “high

probability”. When the state of an unstable scalar linear

process is available at the encoder, [8] and [9] develop

encoding-decoding schemes that can stabilize such a process

over the binary erasure channel and the binary symmetric

channel respectively. But little is known in the way of

stabilizing partially observed vector-valued processes over

a stochastic communication channel.

The subject of error correcting codes for control is in its

relative infancy, much as the subject of block coding was

after Shannon’s seminal work in [10]. So, a first step towards

realizing practical encoder-decoder pairs with anytime relia-

bilities is to explore linear encoding schemes. We consider

rate R = k
n

causal linear codes which map a sequence

of k-dimensional binary vectors {bτ}∞τ=0 to a sequence of

n−dimensional binary vectors {cτ}∞τ=0 where ct is only a

function of {bτ}t
τ=0. Such a code is anytime reliable if there

exist constants β > 0, η > 0 and a delay do > 0 such that

at all times t, P
(

b̂t−d|t 6= bt−d

)

≤ η2−βnd.

The contributions of this paper are as follows: 1. We
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We denote cτ , fτ (b1:τ ). Note that a tree code is a more

general construction where fτ need not be linear. Also note

that the associated code rate is R = k
n

. The above encoding

is equivalent to using a semi-infinite block lower triangular

generator matrix, Gn,R, whose entries are clear from (3)

or equivalently as a semi-infinite block lower triangular

parity check matrix, Hn,R (the parity check matrix satisfies

Hn,RGn,R = 0.)

Hn,R =

















H11 0 . . . . . . . . .
H21 H22 0 . . . . . .

...
...

. . .
...

...

Hτ1 Hτ2 . . . Hττ 0
...

...
...

...
. . .

















(4)

where2 Hij ∈ GFn×n
2 and n = n(1−R). In order to ensure

that the code rate is equal to the design rate R = k
n

, H
t
n,R

needs to be full rank for every t, where H
t
n,R is the nt×nt

leading principal minor of Hn,R. This will happen if Hii is

full rank for all i.

We will present all our results for binary input

output symmetric channels3. The Bhattacharya

parameter ζ for such channels is defined as

ζ =
∞
∫

−∞

√

p (z|X = 1) p (z|X = 0)dz, where z and

X denote the channel output and input, respectively. In

the following subsection, we demonstrate that semi-infinite

causal linear codes, Hn,R, when drawn from an appropriate

ensemble are anytime reliable with a high probability. The

key is to impose a Toeplitz structure on the parity check

matrix. Due to space limitations, proofs for all the results

in this section are presented in a companion paper, [11].

A. Time Invariant Codes

Consider causal linear codes with the following Toeplitz

structure

H
TZ
n,R =

















H1 0 . . . . . . . . .
H2 H1 0 . . . . . .

...
...

. . .
...

...

Hτ Hτ−1 . . . H1 0
...

...
...

...
. . .

















The superscript TZ in H
TZ
n,R denotes ‘Toeplitz’. H

TZ
n,R is

obtained from Hn,R in (4) by setting Hij = Hi−j+1 for

i ≥ j. Due to the Toeplitz structure, we have the following

invariance, P e
t,d = P e

t′,d for all t, t′. The notion of time

invariance is analogous to the convolutional structure used

to show the existence of infinite tree codes in [2]. The code

H
TZ
n,R will be referred to as a time-invariant code. This time

invariance allows us to prove that such codes which are

anytime reliable are abundant.

2While for a given generator matrix, the parity check matrix is not unique,
when Gn,R is block lower, it is easy to see that Hn,R can also be chosen
to be block lower.

3which can be easily extended to more general memoryless channels

Definition 3 (The ensemble TZp): The ensemble TZp of

time-invariant codes, H
TZ
n,R, is obtained as follows, H1 is any

full rank binary matrix and for τ ≥ 2, the entries of Hτ are

chosen i.i.d according to Bernoulli(p), i.e., each entry is 1

with probability p and 0 otherwise.

Note that H1 being full rank implies that Ht
n,R is full rank

for every t and hence the code rate is same as the design

rate R. For the ensemble TZp, we have the following result

Theorem 3.1 (Abundance of time-invariant codes): For

any rate R and exponent β such that

R < 1 − log2(1 + ζ)

log2(1/(1 − p))
, and

β < H−1(1 − R)

(

log2

(

1

ζ

)

+ log2

[

(1 − p)−(1−R) − 1
]

)

if H
TZ
n,R is chosen from TZp, then

P
(

H
TZ
n,R is (R, β, do) − anytime reliable

)

≥ 1 − 2−Ω(ndo)

(6)
For example, consider a Binary Symmetric Channel with

bit flip probability ǫ and the Bhattacharya parameter for

which is ζ = 2
√

ǫ(1 − ǫ). Also, set p = 1
2 . Then Theorem

3.1 promises anytime reliable codes for rates up to R <
1 − 2 log2(

√
ǫ +

√
1 − ǫ). It turns out that the thresholds in

Theorem 3.1 can be significantly improved and the results

will be communicated in a future work.

The constant in the exponent Ω(ndo) in (6) can be

computed explicitly and it decreases to zero if either the

rate or the exponent approach their respective thresholds. As

the initial delay do increases, the probability of a random

code from the ensemble not being (R, β, do)-anytime reliable

decays exponentially. So, almost every code in the ensemble

is (R, β)-anytime reliable after a large enough initial delay.

IV. DECODING OVER THE BEC

Owing to the simplicity of the erasure channel, it is pos-

sible to come up with an efficient way to perform maximum

likelihood decoding at each time step. We will show that

the average complexity of the decoding operation at any

time t is constant and that it being larger than KC3 decays

exponentially in C. Consider an arbitrary decoding instant

t, let c = [cT
1 , . . . , cT

t ]T be the transmitted codeword and

let z = [zT
1 , . . . , zT

t ]T denote the corresponding channel

outputs. Recall that H
t
n,R denotes the nt × nt leading

principal minor of Hn,R. Let ze denote the erasures in z
and let He denote the columns of H

t
n,R that correspond to

the positions of the erasures. Also, let z̃e denote the unerased

entries of z and let H̃e denote the columns of H
t
n,R excluding

He. So, we have the following parity check condition on ze,

Heze = H̃ez̃e. Since z̃e is known at the decoder, s , H̃ez̃e is

known. Maximum likelihood decoding boils down to solving

the linear equation Heze = s. Due to the lower triangular

nature of He, unlike in the case of traditional block coding,

this equation will typically not have a unique solution, since

He will typically not have full column rank. This is alright

as we are not interested in decoding the entire ze correctly,

we only care about decoding the earlier entries accurately. If
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ze = [zT
e,1, zT

e,2]
T , then ze,1 corresponds to the earlier time

instants while ze,2 corresponds to the latter time instants.

The desired reliability requires one to recover ze,1 with an

exponentially smaller error probability than ze,2. Since He

is lower triangular, we can write Heze = s as
[

He,11 0
He,21 He,22

] [

ze,1

ze,2

]

=

[

s1

s2

]

(7)

Let H⊥
e,22 denote the orthogonal complement of He,22, ie.,

H⊥
e,22He,22 = 0. Then multiplying both sides of (7) with

diag(I,He,22), we get
[

He,11

H⊥
e,22He,21

]

ze,1 =

[

s1

H⊥
e,22s2

]

(8)

If [HT
e,11 (H⊥

e,22He,21)
T ]T has full column rank, then ze,1

can be recovered exactly. The decoding algorithm now

suggests itself, i.e., find the smallest possible He,22 such that

[HT
e,11 (H⊥

e,22He,21)
T ]T has full rank and it is outlined in

Algorithm 1.

Algorithm 1 Decoder for the BEC

1) Suppose, at time t, the earliest uncorrected error is at a

delay d. Identify ze and He as defined above.

2) Starting with d′ = 1, 2, . . . , d, partition

ze = [zT
e,1 zT

e,2]
T and He =

[

He,11 0
He,21 He,22

]

where ze,2 correspond to the erased positions up to

delay d′.

3) Check whether the matrix

[

He,11

H⊥
e,22He,21

]

has full

column rank.

4) If so, solve for ze,1 in the system of equations
[

He,11

H⊥
e,22He,21

]

ze,1 =

[

s1

H⊥
e,22s2

]

5) Increment t = t + 1 and continue.

A. Complexity

Suppose the earliest uncorrected error is at time t−d+1,

then steps 2), 3) and 4) in Algorithm 1 can be accomplished

by just reducing He into the appropriate row echelon form,

which has complexity O
(

d3
)

. The earliest entry in ze is at

time t−d+1 implies that it was not corrected at time t−1, the

probability of which is P e
d−1,t−1 ≤ η2−nβ(d−1). Hence, the

average decoding complexity is at most K
∑

d>0 d32−nβd

which is bounded and is independent of t. In particular,

the probability of the decoding complexity being Kd3 is

at most η2−nβd. The decoder is easy to implement and

its performance is simulated in Section VII. Note that the

encoding complexity per time iteration increases linearly

with time. This can also be made constant on average if

the decoder can send periodic acks back to the encoder with

the time index of the last correctly decoded source bit.

V. SUFFICIENT CONDITIONS FOR STABILIZABILITY

Consider an unstable m−dimensional linear system whose

state space equations in canonical form are given by (1), i.e.,

λ(F ) > 1, and recall that the characteristic polynomial of

F is zn + a1z
n−1 + . . . + am. Suppose the observer does

not have any feedback from the controller, in particular, it

does not have access to the control inputs. Then we can

stabilize such a system in the mean squared sense over

a noisy channel provided that the rate R and exponent β
of the (R, β)−anytime reliable code used to encode the

measurements satisfy the following sufficient condition.

Theorem 5.1 (No Feedback to the Observer): It is possi-

ble to stabilize (1) in the mean squared sense with an

(R, β)−anytime code provided (F,B) is controllable and

R > Rn =
1

n
log2

m
∑

i=1

|ai|, β > βn =
2

n
log2 λ(F ) (9)

If the observer knows the control inputs, it turns out that

one can make do with lower rates. This is stated as the

following Theorem

Theorem 5.2 (Observer Knows the Control Inputs):

When the observer has access to the control inputs, it is

possible to stabilize (1) in the mean squared sense with an

(R, β)−anytime code provided (F,B) is controllable and

R > Rf
n = argmin

r

{

λ(FDnr) < 1
}

(10a)

β > βf
n =

2

n
log2 λ(F ) (10b)

where Dnr = diag (2−nr, 1, . . . , 1). Moreover

Rf
n ≤ 1

n
log2 max

{

|am|2m−1, max
1≤i≤m−1

|ai|2i

}

(11)

The superscript f in Rf
n denotes ‘feedback’ to emphasize

the fact that the observer has access to the control inputs.

Note that both results are non-asymptotic, e.g., Theorem 5.1

states that at least log2

∑m
i=1 |ai| information bits need to

be communicated for each step of the system evolution. Due

to space limitations, the proofs for Theorems 5.1 and 5.2

have been presented in the extended version [12]. We give

a brief outline of the proofs here. At each time t, using the

channel outputs received received till t, we bound the set

of all possible states that are consistent with the estimates

of the quantized measurements using a hypercuboid, i.e.,

a region of the form
{

xt ∈ R
m|xmin,t|t ≤ xt ≤ xmax,t|t

}

,

where xmin,t|t, xmax,t|t ∈ R
m and the inequalities are

component-wise. If ∆t|t = xmax,t|t −xmin,t|t, then one can

show that ∆t+1|t = F∆t|t + W1m. The anytime exponent

is determined by the growth of ∆t in the absence of mea-

surements, hence the bound βn = βf
n = 2 log2 λ(F ). The

bound on the rate is determined by how fine the quantization

needs to be for ∆t to be bounded asymptotically. The

observer simply quantizes the measurements yt according

to a 2nR−regular lattice quantizer with bin width δ, i.e., the

quantizer is defined by Q : R 7→ {0, 1, . . . , 2nR − 1}, where

Q(x) = ⌊x
δ
⌋ mod 2nR. Then, it is possible to stabilize the
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system in (1) provided that the rate, R, satisfies

2nR > max







m
∑

i=1

|ai| +
V + V

∑m
i=1 |ai| + mW

δ
,
∆

(1)
0|−1

δ







Note that as δ → ∞, R → 1
n

log2

∑m
i=1 |ai|.

A. The Limiting Case

The sufficient conditions derived above are for the case

when the measurements are encoded every time step. Al-

ternately, one can encode the measurements every, say ℓ,

time steps, and consider the asymptotic rate and exponent

needed as ℓ grows. Note that this amounts to working with

the system matrix F ℓ. So, one can calculate this limiting rate

and exponent by writing the eigen values of F , {λi}m
i=1, as

λi = µn
i and letting n scale. The following asymptotic result

allows us to compare the sufficient conditions above with

those in the literature (eg., see [3], [5], [13]).

Theorem 5.3 (The Limiting Case): Write the eigen values

of F , {λi}m
i=1, in the form λi = µn

i . Letting n scale, Rn and

Rf
n converge to R∗, and βn and βf

n converge to β∗, where

R∗ =
∑

i:|µi|>1

log2 |µi|, β∗ = 2 log2 max
i

|µi| (12)

In addition, the upper bounds on Rf
n in (11) also converges

to R∗.

Proof: See Section C of the Appendix in [12].

For stabilizing plants over deterministic rate limited chan-

nels, [3] showed that a rate R > R∗, where R∗ is as

in (12), is necessary and sufficient. So, asymptotically the

sufficient conditions for the rate R in Theorems 5.1 and 5.2

are tight. [6] proposes encoding and decoding each unstable

mode of the plant separately. For stabilization, one then

needs to decode the bit stream corresponding to the eigen

value µi with a reliability exponent 2 log2 |µi| and hence

one needs a reliability exponent of 2 log2 maxi |µi| only

for the bits corresponding to the mode maxi |µi|. So, the

sufficient condition we present here is suboptimal since we

demand an exponent 2 log2 maxi |µi| for all the bits. But this

suboptimality will manifest itself only for large n. Though

the above limiting case allows one to obtain a tight and an

intuitively pleasing characterization of the rate and exponent

needed, it should be noted that this may not be operationally

practical. For, if one encodes the measurements every ℓ
time steps, even though Theorem 5.3 guarantees stability, the

performance of the closed loop system (the LQR cost, say)

may be unacceptably large because of the delay we incur.

This is what motivated us to present the sufficient conditions

in the form that we did above.

VI. TIGHTER BOUNDS ON THE ANYTIME EXPONENT

From Theorem 5.1, using the technique outlined in the

previous section, one needs an exponent nβ ≥ 2 log λ(F ).
It turns out that a smaller exponent of 2 log2 λ(F ) suf-

fices. The idea is to alternately bound the set of all

possible states that are consistent with the estimates of

the quantized measurements using an ellipsoid E(P, c) ,

{

x ∈ R
m|〈x − c, P−1(x − c)〉 ≤ 1

}

. This technique can be

of independent interest for applications in distributed estima-

tion. If m = 1, λ(F ) = λ(F ). So, let m ≥ 2.

In view of the duality between estimation and control,

we can focus on the problem of tracking (1) over a noisy

communication channel. For, if (1) can be tracked with an

asymptotically finite mean squared error and if (F,B) is

stabilizable, then it is a simple exercise to see that there exists

a control law {ut} that will stabilize the plant in the mean

squared sense, i.e., lim supt E‖xt‖2 < ∞. In particular, if

the control gain K is chosen such that
√

2F +BK is stable,

then ut = Kx̂t|t will stabilize the plant, where x̂t|t is the

estimate of xt using channel outputs up to time t. Hence,

in the rest of the analysis, we will focus on tracking (1).

The control input ut therefore is assumed to be absent, i.e.,

ut = 0.

We will first present a recursive state estimation algorithm

using the channel outputs and then state the sufficient con-

ditions needed for the estimation error to be appropriately

bounded using such a filter. Recall that the channel outputs

corresponding to the code bits ct ∈ GFn
2 are zt ∈ Zn.

Let x0 ∈ E(P0, 0) and suppose using {zτ}τ≤t−1, we have

xt ∈ E(Pt|t−1, x̂t|t−1). Note that, since H = [1, 0, . . . , 0],
the measurement update provides information of the form

x
(1)
min,t|t ≤ x

(1)
t ≤ x

(1)
max,t|t, which one may call a slab.

E(Pt|t, x̂t|t) would then be an ellipsoid that contains the

intersection of the above slab with E(Pt|t−1, x̂t|t−1), in

particular one can set it to be the minimum volume ellipsoid

covering this intersection. Lemma A.1 in [12] gives a formula

for the minimum volume ellipsoid covering the intersection

of an ellipsoid and a slab. Note that the width of the slab

above tends to be smaller if the observer has access to

the control inputs than when it does not. For the time

update, it is easy to see that for any ǫ > 0 and Pt+1 =

(1 + ǫ)FPt|tF
T + W 2

4ǫ
1m, E(Pt+1, F x̂t|t) contains the state

xt+1 whenever E(Pt|t, x̂t|t) contains xt. This leads to the

following Lemma. For convenience, we write Pt for Pt|t−1.

Lemma 6.1 (The Ellipsoidal Filter): Whenever E(P0, 0)
contains x0, for each ǫ > 0, the following filtering equations

give a sequence of ellipsoids
{

E(Pt|t, x̂t|t)
}

that, at each

time t, contain xt.

Pt+1 = (1 + ǫ)FPt|tF
T +

W 2

4ǫ
1m, x̂t+1 = Fx̂t|t (13a)

Pt|t = btPt − (bt − at)
Pte1e

T
1 Pt

eT
1 Pte1

, x̂t|t = ξt

Pte1
√

eT
1 Pte1

(13b)

where at, bt and ξt can be calculated in closed form using

Lemma A.1 in [12].

Using this approach, we get the following set of sufficient

conditions. The proofs are similar to the proofs of Theorems

5.1 and 5.2, and hence skipped due to space limitations.

Theorem 6.2 (No Feedback to the Observer): It is possi-

ble to stabilize (1) for m ≥ 2 in the mean squared sense with

an (R, β)−anytime code provided (F,B) is controllable and
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R > Re,n =
1

n
log2

[√
m

2

m
∑

i=1

|ai|θi−1

]

(14a)

β > βe,n =
2

n
log2 λ(F ) (14b)

where θ = m
m−1

Theorem 6.3 (Observer Knows the Control Inputs):

When the observer has access to the control inputs, it is

possible to stabilize (1) in the mean squared sense with an

(R, β)−anytime code provided (F,B) is controllable and

R > Rf
e,n = argmin

r

{

λ(FDm,nr) < 1
}

(15a)

β > βf
e,n =

2

n
log2 λ(F ) (15b)

where Dm,nr = diag
(√

m2−nr,
√

θ, . . . ,
√

θ
)

, θ = m
m−1 .

Moreover

Rf
e,n ≤ 1

2n
log2 m+

1

n
log2 max

{

|am|(2θ)m−1, max
1≤i≤m−1

2|ai|(2θ)i−1

}

(16)

In the same limiting sense as described in Section V, Rf
e,n

and Re,n converge to R∗ while βf
e,n and βe,n converge to

β∗, where R∗ and β∗ are as in the Lemma 5.3.

VII. SIMULATIONS

We demonstrate stabilizing a vector linear system over

a binary erasure channel with erasure probability ǫ = 0.3.

The number of channel uses per measurement is fixed to

n = 15. In both cases, time invariant codes H15,R ∈
TZ 1

2

, for an appropriate rate R, were randomly generated

and decoded using Algorithm 1. Consider a 3-dimensional

unstable system (1) with a1 = −2, a2 = −0.25, a3 = 0.5
and B = I3. Each component of wt and vt is generated i.i.d

N(0, 1) and truncated to [-2.5,2.5]. The eigen values of F
are {2,−0.5, 0.5} while λ(F ) = 2.215. The observer has

access to the control inputs and we use the hypercuboidal

filter outlined in Section VII of [12]. Using Theorem 5.2,

the minimum required bits and exponent are given by k =
nR ≥ 2 and nβ ≥ 2 log2 2.215 = 2.29. The control input

is ut = −x̂t|t−1. For k ≤ 5, nβ ≥ 2.53. The compe-

tition between the rate and the exponent in determining

the LQR cost is evident when we look at the LQR cost
1

200

∑100
i=1 E

[

‖xt‖2 + ‖ut‖2
]

in Fig 2. When k = 2, the error

exponent nβ = 6.3 is large. So, at any time t, the decoder

decodes all the source bits {bτ}τ≤t−1 with a high probability.

Hence, the limiting factor on the LQR cost is the resolution

the source bits bt provide on the measurements. But when

k = 5, the measurements are available almost losslessly but

the decoder makes errors in decoding the source bits. Fig 2

suggest that the best choice of rate is R = 3/15 = 0.2.

VIII. CONCLUSION

We presented a near explicit construction of anytime

reliable tree codes with efficient encoding and decoding over
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Fig. 2. The CDF of the LQR costs for different realizations of the codes

erasure channels. We also gave several sufficient conditions

on the rate and reliability required of the tree code to

guarantee stability, and argued that they are asymptotically

tight. Although the work described here is an important

step towards controlling plants over noisy channels, there

are many issues to study and resolve. The tradeoff between

rate and reliability (how finely to quantize the measurements

vs. how much error protection to use) to optimize system

performance (such as an LQR cost) remains to be studied,

as well as how best to quantize and generate control signals.

Furthermore, the problem of constructing efficiently decod-

able tree codes for other classes of channels, such as the

BSC and the AWGNC, remains open.
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