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Abstract— We address the adaptive stochastic control prob-
lem for a discrete time system described by controlled Markov
chain with finite number of states. The mirror descent random-
ized control algorithm on the class of controlled homogeneous
finite Markov chains with unknown mean losses has been
proposed and studied. Here we develop the approach repre-
sented in Nazin and Miller (2011). The main assumptions are
the following: processes are independent and stationary, non-
negative random losses are almost surely bounded by a given
constant, and the connectivity assumption for the controlled
Markov chain holds. The uncertainty is that the mean loss
matrix is unknown. The novelty of the approach is in extension
of the class of controlled homogeneous finite Markov chains
to the chains with connectivity assumption. The main result
consists in demonstration of the asymptotical upper bound (that
is asymptotic by time) and in determining the explicit constant
which is weakly depending on the logarithm of the number of
states.

I. INTRODUCTION

Controlled Markov chains play an important role in the

optimal control of stochastic systems. One of the most

important advantages of this class of models is that they

admit the complete numerical solution which can be obtained

by solving the system of difference equations (dynamic

programming equation) [2], perhaps of very large dimension.

Solution of this system gives the complete characterization

of the cost functions and the optimal control of Markov

type as a function of the current state and time. However,

the application of the methodology of controlled Markov

chains requires the knowledge of complete information about

the cost functions and the properties of controlled transition

matrices of the Markov chain. This is rather rare in real

systems and usually it becomes necessary to simplify the

general model by using the representation of unknown state

by a finite number of possible ones like in the theory of

Hidden Markov Models [2]. Typical example where com-

plete information is not available, is the Internet Congestion
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Control [3], [7], [14], [15], where the transition rate at the

user side is determined by the router feedback (unknown to

the user) and provided to the user just as a flow of rejected

demands. The real state of the router is covered in the flow

intensity, so the user has either to evaluate it [8] or to adjust

your behavior to the state of router and to unknown state of

the transmission line [9].

The idea of this work is to extend the methodology

introduced in [9] to more general class of weakly regular

controlled Markov chain. Here we develop the approach to

control of homogeneous finite Markov chains with unknown

mean losses which was first introduced in [10]. We study

a Mirror Descent Algorithm in the spirit of [4], [9] as an

extension of this control methodology [10].

We assume that for given control action, the matrix of

state transition probabilities is known a priori, but the current

random losses are statistically undefined.

The main result of the article is as follows: under as-

sumption of nonnegative losses being a.s. bounded by known

constant σ > 0 we demonstrate that the expected excess

bound of losses for large enough horizon T implies the

convergence rate O(T−1/3)σ (N ln(KN))1/3 where N means

the number of control actions, K stands for the number of

states.

The structure of the paper is as follows: we give the

problem statement in Section II, define the asymptotic upper

bound in Section III and define the randomized strategy in

Section IV. All proofs are presented in Appendix.

II. STATEMENT OF PROBLEM

This section is essentially adopted from chapter 5 in

[10]; c.f. [9]. First, denote vector e0
N , (1, . . . ,1)⊤ ∈R

N and

standard simplex in R
m

Sm ,

{
(x1, . . . ,xm)

⊤ ∣∣xi ≥ 0, ∑
m

i=1
xi = 1

}
. (1)

A. Preliminary assumptions

Let (Ω,F ,P) be a given probability space. Let a discrete-

time stochastic control system be modeled as a homogeneous

controlled finite Markov chain where

• the set of states Z , {z(1), . . . ,z(K)} is given, K ≥ 2;

• the system state zt ∈ Z at current time t ∈ {0,1, . . .} is

observable;

• the given set U , {u(1), . . . ,u(N)} represents the set of

possible control inputs, N ≥ 2;
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• the transition probabilities of the system state zt ∈ Z

at current time t ∈ {0,1, . . .} to the next state zt+1 ∈ Z

under the applied control ut ∈U are given by the given

conditional probabilities: ∀ t,

P{zt+1 = z( j) |zt = z(i) ,ut = u(ℓ) ,Ft}= πℓ
i j ; (2)

here σ -algebra Ft is generated by the prehistory of

observations up to time t; in other words, equation (2)

relates to the system Markov property;

• the losses ξt , ξt(zt ,ut ,ω) at current time t ∈ {0,1, . . .}
are observable and statistically depend only on the state

zt and the applied control ut with unknown conditional

distributions; the random variables ξt , ξt(z(i),u(ℓ),ω)
form i.i.d. sequences by time t for all i ∈ {1,K} and

ℓ ∈ {1,N};

• the time-mean losses Φt on time interval {1, t} are

defined by

Φt =
1

t
∑

t

s=1
ξs . (3)

Introduce the further assumptions A1-A2-A3.

A1. For each t = 1,2, . . . the totalities of random variables

{ξt(z,u,ω) |z ∈ Z,u ∈ U} and {ξs(z,u,ω),zk,uk |z ∈
Z, u ∈U, s = 1, t − 1, k = 1, t} are independent.

A2. For each z(i) ∈ Z, u(ℓ) ∈ U and t = 1,2, . . . the

losses ξt(z(i),u(ℓ),ω) are non-negative a.s. and their

unavailable expectations are time-invariant:

E{ξt(z(i),u(ℓ),ω)} , aiℓ ∀t . (4)

A3. The losses ξt(z(i),u(ℓ),ω) are a.s. bounded by given

constant σ > 0, i.e.

ξt(z(i),u(ℓ),ω) ≤ σ < ∞ . (5)

B. Control strategies

Consider arbitrary control strategy U which is a se-

quence of (randomized, generally speaking) rules ut : τt →U

with prehistory sets τt of all possible values of sequences

{zt ,zs,us,ξs |s = 1, t − 1}, t ≥ 0. Given strategy U , define

σ -algebras Ft = σ{zt ,zs,us,ξs |s = 1, t − 1}. Then

P{zt+1 = z( j) |zt = z(i), Ft} (6)

= ∑N
ℓ=1P{zt+1 = z( j) |zt = z(i), ut = u(ℓ), Ft}
·P{ut = u(ℓ) |zt = z(i), Ft}

= ∑
N

ℓ=1
πℓ

i j d iℓ
t (7)

where

d iℓ
t , P{ut = u(ℓ) |zt = z(i), Ft} (8)

represent the conditional probabilities of control ut = u(ℓ)
at instant t under the state zt = z(i) and the prehistory

{zs,us,ξs |s = 1, t − 1}.

The conditional expectation of losses

E{ξt |zt}= ∑
K

i=1
1{zt=z(i)}E{ξt |zt = z(i)} (9)

= ∑K
i=1 1{zt=z(i)}∑N

ℓ=1E{1{ut=u(ℓ)}
· E{ξt |zt = z(i),ut = u(ℓ)}|zt = z(i)} (10)

= ∑
K

i=1
1{zt=z(i)}∑

N

ℓ=1
aiℓE{d iℓ

t |zt = z(i)} (11)

holds with arbitrary control strategy. In particular, a station-

ary control strategy USt (with the stationary state distribution

d , ‖diℓ‖) leads to the expectation of losses

E{ξt} = E

{
∑

K

i=1
1{zt=z(i)}∑

N

ℓ=1
aiℓd iℓ

}
(12)

= ∑
K

i=1
pi(d)∑

N

ℓ=1
aiℓd iℓ (13)

, A(d) (14)

where

pi(d), P{zt = z(i)} (15)

defines stationary probabilities of the stationary controlled

Markov states, the matrix of conditional probabilities

d iℓ = P{ut = u(ℓ) |zt = z(i)} (16)

may be treated as a stationary randomized control strategy

USt, stochastic matrix d = ‖d iℓ‖ ∈ D,

D ,

{
d

∣∣∣d iℓ ≥ 0, ∑
K

i=1
d iℓ = 1(i = 1,K, ℓ= 1,N )

}
. (17)

As a consequence of (6)–(7), the stochastic vector p(d) =
(p1(d), . . . , pK(d))

⊤ solves the stationary distribution equa-

tion for the stationary controlled Markov chain that is

p(d) = Π⊤(d)p(d) , p(d) ∈ SK . (18)

Here the transition probability matrix Π(d) has the (i j)-entry

∑N
ℓ=1 πℓ

i j d iℓ .

Denote matrix set of non-degenerate stationary random-

ized control strategies U
+
St that is

D+ , D
⋂{

d = ‖d iℓ‖
∣∣∣d iℓ > 0,(i = 1,K, ℓ= 1,N)

}
. (19)

C. Weak regularity assumption

A4. The controlled Markov chain is weakly regular, i.e., for

any non-degenerate matrix d ∈ D+, the related Markov

chain having the transition probability matrix Π(d) is

regular (or, in other words, the state set Z represents a

unique ergodic class).

Remark 1: Assumption A4 implies that the Markov chain

with the transition matrix Π(d) is irreducible for any non-

degenerate stationary control strategy d ∈ D+. Hence, A4

implies the existence of a unique solution p(d) to (18) for

any d ∈ D+ and pi(d) > 0 for all i = 1,K. However, the

minimum

c− , inf
d∈D+

min
i=1,K

pi(d)

may be zero; this extends the assumption in [9] where

positive c− was assumed and used in the algorithm. �

The idea in designing the randomized control strategy is

to minimize the mean loss function A(d) in (14) on set D+

Amin , inf
d∈D+

A(d) . (20)
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However, the direct minimization problem is non-convex,

since function p(d) is non-linear. To cope with this objection

we introduce another variables

ciℓ , d iℓpi(d) , i = 1,K , ℓ= 1,N ; (21)

observe the correctness of their existence on set D+ mapping

the latter onto

C+ ,

{
c = ‖ciℓ‖

∣∣∣ciℓ > 0,∑
K

i=1 ∑
N

ℓ=1
ciℓ = 1 , (22)

∑
N

ℓ=1
c jℓ = ∑

K

i=1 ∑
N

ℓ=1
πℓ

i j ciℓ, ∀(i, j, ℓ)
}
. (23)

Notice that assumption A4 implies the positiveness of all

pi(d) in (21) subject to any d ∈ D+. Therefore, the matrix

mapping (21) which transits d from set D+ onto C+ is non-

degenerate due to all

∑
N

ℓ=1
ciℓ = pi(d)> 0 , (24)

and inverse mapping gives the explicit formulas for d ∈ D+,

d iℓ = ciℓ
/

∑
N

k=1
cik , i = 1,K , ℓ= 1,N , c ∈C+ . (25)

By the construction under assumption A4 the set C+ rep-

resents a non-empty convex set. Thus, the minimization

problem in (20) subject to (18) is equivalent to that of

Ã(c), ∑
K

i=1 ∑
N

ℓ=1
aiℓ ciℓ → inf

c∈C+

. (26)

III. MAIN RESULTS

Below we propose the online decision strategy in which,

at every step t + 1, the control action ut ∈ U is randomly

drawn according to a conditional distribution dt = ‖diℓ
t ‖ ∈ D

where

diℓ
t , P(ut = u(ℓ) |zt = z(i), Ft) , ∀(i, ℓ) . (27)

The update rule of the distribution dt over time is given by

the algorithm described in Section IV and uses stochastic

gradient for Ã(c), i.e. random matrix entries

Ξiℓ
t+1 , ξt+11{zt=z(i),ut=u(ℓ)}/ciℓ

t , (28)

where matrices ct and dt correspond to each other by

one-to-one mappings (21), (25). Indeed, under stationarity

assumption of control strategy c ≡ ct , d ≡ dt , and, for all

(i, ℓ),

E

(
Ξiℓ

t+1

)
= E

{
E

(
ξt+11{zt=z(i),ut=u(ℓ)}

ciℓ
|Ft+1

)}
(29)

= E

{aiℓ

ciℓ
1{zt=z(i),ut=u(ℓ)}

}
=

aiℓ

ciℓ
diℓpi(d)

= aiℓ =
∂ Ã(c)

∂ciℓ
. (30)

The expected average loss equals to the average over time

of EA(dt), that is

E(ΦT ) =
1

T
∑

T

t=1
E(E(ξt |zt−1, Ft−1)) (31)

=
1

T
∑

T

t=1
E(A(dt−1)). (32)

Theorem 1: Let assumptions A1-A2-A3-A4 be satisfied

and let the conditional distributions (dt)t≥0 be defined by the

randomized control algorithm of Section IV with parameters

(42), (43), and ∆ts = ts+1 − ts → ∞ as s → ∞. Then

sup lim
T→∞

3
√

T (E(ΦT )−Amin)≤ O(1)σ (N ln(KN))1/3 (33)

where O(1) stands for an absolute constant. �

IV. DEFINITION OF THE RANDOMIZED STRATEGY

In this section we introduce our online strategy (cf. [6] and

[5]). We refer to [11] and [1] for the general idea of mirror

descent and its development in non-stochastic optimization,

as well as to [12] for the pioneering extension to a stochastic

setup.

First we introduce a Gibbs distribution defined by the

probability vector

Gβ (z) = [Sβ (z)]
−1
(

e−z(1)/β , . . . ,e−z(m)/β
)⊤

where Sβ (z) = ∑m
j=1 e−z( j)/β for arbitrary fixed z ∈ R

m and

some parameter β > 0. We will also use the notation

em(k) = (0, . . . ,0,1,0, . . . ,0)⊤ for vectors in R
m with 1 on

k-th position and 0 elsewhere. Note, that z represents a dual

vector variable, see (44) below in the Appendix.

Proposition 1: Notice that the closed set C+ in (22)

represents a convex polyhedron with m vertices ck ∈ C+

situated in the unique hyperplane, and (N −1)K < m ≤ NK.

It can be parameterized on standard simplex Sm by θ =
(θ (1), . . . ,θ (m))⊤ ∈ Sm, i.e.

C+ = {c = ψ(θ ) |θ ∈ Sm} (34)

with function

ψ(θ ), ∑
m

k=1
ckθ (k), θ = (θ (1), . . . ,θ (m))⊤. (35)

�

Remark 2: Calculation of vertices ck, k= 1,m, can be seen

from the Proposition proof in [9]. �

Function (35) leads to the linear operator

Ψ , ∇θ ψ⊤(θ ) = (c⊤1 , . . . ,c
⊤
m)

⊤. (36)

Now take into account that Markov chain is a dynamical

system. To adequately observe its behavior, we fix decision

rules dt ≡ dts of control actions ut = u(ℓt) between a priori

given sequential instances ts < ts+1,s = 0,1, . . . , t0 = 0, and

change them only at the instances ts. By assumption A4

constants µ and ρ > 0 provide for all ts ≤ t < ts+1

|P{it = i |Fts}− pi(dts)| ≤ µ e−ρ(t−ts) , (37)

cf. [13]. Natural number s defines horizon T = ts . Thus, we

introduce the positive sequences (βt) and (εt) and define the

control randomized strategy by the following algorithm.
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1) Fix the initial matrix c0 ∈C and zero dual matrix

ζ0 = 0∈R
K×N . Define sequential instances t0 = 0,

ts < ts+1,s = 0,1, . . . .
2) For each s = 0, . . . ,s− 1 and t = ts, . . . , ts+1 − 1:

a) compute matrices dts via cts by mapping

(25) and apply dt ≡ dts and ct ≡ cts for

ts ≤ t < ts+1; for each t ≥ 0, by having the

observed state zt = z(it), draw control action

ut = u(ℓt) with random ℓt ∈ {1, . . . ,N}, being

distributed according to stochastic vector

(1+ εts)(d
it 1
ts , . . . ,d it N

ts )⊤+ εts N
−1e0

N;

b) compute a stochastic gradient

Ξt+1 =
ξt+1

c
itℓt
t

eK(it)e
⊤
N (ℓt) ; (38)

c) applying operator Ψ in (36), update dual

variables at time t + 1 and initial variables

at time ts+1

ζt+1 = ζt +Ξt+1 , (39)

cts+1
= ψ

(
Gβts

(Ψ◦ ζts+1
)
)
. (40)

3) At horizon T = ts, output sequences of states

(z0, . . . ,zT ), control actions (u0, . . . ,uT ), matrices

(c0, . . . ,cT ) and (d0, . . . ,dT ), and the observed

losses (ξ1, . . . ,ξT+1) and ΦT .

Remark 3: Notice that matrix Ξt+1 in (38) contains a

unique nonzero entry. Thus, vectors Ψ ◦Ξt+1 in (38)–(40)

can be easily computed by

Ψ◦Ξt+1 = (c itℓt
1 , . . . ,c itℓt

m )⊤ξt+1/c
itℓt
t , (41)

simplifying real calculations in (39)–(40). However, the

presented algorithm explains its understanding structure: at

each time t, by obtaining stochastic gradient Ξt+1, we make

a step in the dual space and map into set C+, by applying

the result to transformation ψ ◦Gβts
and obtaining cts+1

. �

The tuning algorithm parameters (βt) and (εt ) are defined

as follows: ∀s = 0,1, . . . , ∀ ts ≤ t < ts+1,

βt ≡ βts = β0(ts + 1)2/3, εt ≡ εts = ε0(ts + 1)−1/3, (42)

β0 = O(1)
σN1/3

(ln(NK))2/3
, ε0 = O(1)(N ln(NK))1/3 . (43)

It is important to note that horizon T is not known in

advance. Therefore, the algorithm is completely recursive.

V. CONCLUSIONS

We obtained an extension of the results in [9] for the

case of weakly regular controlled Markov chain. The asymp-

totic upper bound has the form O(T−1/3)σ (N ln(KN))1/3.

Therefore, the upper bound dependence on the losses scale

parameter σ and on the number of control actions N remain

the same as in the regular case [9]; furthermore, its depen-

dence on the horizon T essentially remains the same (up

to a logarithmic term lnT in [9]). Finally, the upper bound

has insignificant log-dependence on K. We suppose this is a

remarkable feature of the proposed algorithm especially for

large values of K.
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APPENDIX

For the convenience of reader, recall the properties of

function Gβ (·) (cf., e.g., [6]). We have Gβ (z) =−∇Wβ (z),

Wβ (z) = β ln

(
1

N
∑

m

k=1
e−z(k)/β

)
, z ∈R

m.

Function Wβ and the entropy type function

V (θ ), lnN +∑
m

j=1
θ ( j) lnθ ( j) ≥ 0 , θ ∈ Sm ,

are related to each other via convex duality formula:

Wβ (z) = sup
θ∈Sm

{
−z⊤θ −βV(θ )

}
, z ∈ R

m . (44)

Recall ∇Wβ (z)≡−Gβ (z) .

A. Proof of Theorem 1

Introduce variables ζ̃t = Ψ◦ζt and write the algorithm in

variables (θ , ζ̃ ) instead of (c,ζ ). Since Ξ̃t ,Ψ◦Ξt represents

the stochastic gradient by θ for function A(ψ(θ )) at time

t − 1, equations (39)–(40) are written

ζ̃t+1 = ζ̃t + Ξ̃t+1 , (45)

θts+1
= Gβts

(ζ̃ts+1
) . (46)
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Note that

Wβt
(ζ̃t+1)−Wβt

(ζ̃t) = βt ln

(
∑m

k=1 e
−ζ̃

(k)
t+1

/βt

∑m
k=1 e−ζ̃

(k)
t /βt

)

= βt ln(θ⊤
t vt+1)

where the k-th entry of vector vt equals v
(k)
t = e−Ξ̃

(k)
t /βt−1 .

Since ex ≤ 1+ x+ x2/2 for x ≤ 0, we get

v
(k)
t ≤ 1− Ξ̃

(k)
t

βt−1

+
(Ξ̃

(k)
t )2

2β 2
t−1

.

Recalling Ξ̃
(k)
t+1 = c

itℓt

k ξt+1/c
itℓt
t by (41), we obtain

θ⊤
t Ξ̃t+1 =

(
∑

m

k=1
θ
(k)
t c

itℓt

k

)
ξt+1/c

itℓt
t = ξt+1,

and introducing

η̃t ,
m

∑
k=1

θ
(k)
t (c itℓt

k )2

we bound

βt ln(θ⊤
t vt+1) ≤ βt ln

(
1− ξt+1

βt

+
ξ 2

t+1η̃t

2(citℓt
t )2β 2

t

)

≤ −ξt+1 +
ξ 2

t+1η̃t

2(citℓt
t )2βt

. (47)

Note that Wβ is monotone decreasing in β , as follows from

(44). Using this, taking expectation of both sides of (47)

(first over ℓt , conditional on it and ct , then taking the full

expectation) and applying assumption A2 we obtain

E

(
Wβt+1

(ζ̃t+1)−Wβt
(ζ̃t)
)

≤ −E(ξt+1)+
σ 2

2βt
E

(
η̃t

(c
it ℓt
t )2

)
.

(48)

The latter expectation in RHS (48) is bounded:

E

(
η̃t

(citℓt
t )2

)
= E

{
E

(
η̃t

(citℓt
t )2

| it ,Ft

)}
(49)

= E




N

∑
ℓ=1

1+O(εt)

∑N
ℓ′=1 c

itℓ′
t

·
∑m

k=1 θ
(k)
t

(
c

it ℓ
k

)2

∑m
k=1 θ

(k)
t c

itℓ
k




≤ (1+O(εt))N

c−+O(εt)
max
i,ℓ,k

c iℓ
k ≤ O(1)N

εt

. (50)

Summing up from t = 0 to t = T − 1 we obtain

∑
T

t=1
E(ξt ) ≤ −EWβT

(ζ̃T )+∑
T−1

t=0

O(1)Nσ2

βtεt

. (51)

The minimizer θ ∗ , argmin
θ∈Sm

Ã(ψ(θ )) satisfies Ã(ψ(θ ∗)) =

infc∈C+ Ã(c) = Amin due to (26). The following idea is to

apply (44) and use inequality

WβT
(ζ̃T )≥−ζ̃⊤

T θ ∗−βTV (θ ∗). (52)

Therefore, cf. (28)–(30) and (37), (41), and for ts ≤ t < ts+1 ,

m

∑
k=1

E

(
θ ∗(k)

E{Ξ̃
(k)
t+1|Fts}

)
=E

m

∑
k=1

θ ∗(k)
N

∑
ℓ=1

aiℓ (1+O(εt))c
itℓ
k

∑N
ℓ′=1 c

itℓ′
t

= E

N

∑
ℓ=1

K

∑
i=1

aiℓ c∗iℓ

∑N
ℓ′=1 ciℓ′

ts

P{it = i |Fts}(1+O(εt))

≤ Amin +σO(εt)+E

K

∑
i=1

N

∑
ℓ=1

aiℓ c∗iℓ

∣∣∣∣∣
P{it = i |Fts}

∑N
ℓ′=1 ciℓ′

ts

− 1

∣∣∣∣∣

+1{t=ts+1}E
K

∑
i=1

N

∑
ℓ=1

aiℓ c∗iℓ ∑N
ℓ′=1 |ciℓ′

ts+1
− ciℓ′

ts
|

∑N
ℓ′=1 ciℓ′

t

≤ Amin +σO(εt)+σ µ e−ρ(t−ts)O(ε−1
t ) (53)

+1{t=ts+1}E‖θts+1
−θts‖1σO(ε−1

t ) . (54)

The last term with 1-norm is bounded by (L)-property [6]

‖∇Wβ (z)−∇Wβ (z
′)‖1 ≤ β−1‖z− z′‖∞

and the following formula, for 0 < β ≤ β ′,

‖∇Wβ (z)−∇Wβ ′(z)‖1 ≤ β−2‖z‖∞(β
′−β ) .

So, we set ∆βts , βts+1
−βts and get by (46)

‖θts+1
−θts‖1 ≤ ‖∇Wβts

(ζ̃ts+1
)−∇Wβts−1

(ζ̃ts)‖1

≤ ∆βts

β 2
ts

‖ζ̃ts‖∞ +
Nσ ∆ts

O(εts)βts

.

Using (44), (51)–(54), the fact that sup
θ∈Sm

V (θ ) = lnm, and the

last display we obtain

EWβT
(ζ̃T )≥−E(ζ̃ ⊤

T θ ∗)−βT lnm

=−∑
T−1

t=0 ∑
m

k=1
E

(
Ξ̃
(k)
t+1θ ∗(k)

)
−βT lnm

≥−TAmin −βT lnm−∑
s−1

s=0
σO(εts)

(
∆ts +

σ µ

1− e−ρ

)

−O(1)Nσ2 ∑
s−1

s=0

1

εts

(
∆βts

β 2
ts

ts +
∆ts

βts

)
,

and, by applying the algorithm parameters (42) and evaluat-

ing the sums by the integrals, we get

E(ΦT )−Amin ≤ O(1)T−1/3

(
β0 lnm+σε0 +

Nσ2

ε0β0

)
.

The result of the theorem easily follows by optimizing

parameters β0 and ε0 in RHS. N
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