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Abstract— In this paper we exploit the connection between
disturbance observer and L1 adaptive control theories. We
consider L1 adaptive output–feedback control framework,
for which the L1 reference controller is equivalent to the
disturbance observer. Using this fact, we investigate several
properties of the disturbance observer architecture, leading to
various filter design methods towards verification of the stability
conditions for the L1 adaptive output–feedback controller.

I. INTRODUCTION

In [1], [2], L1 adaptive output feedback controllers are
presented, which ensure uniform transient and steady–state
tracking for uncertain systems in the presence of bounded
disturbances. The transient performance of the closed–loop
adaptive system is quantified both for the system output
and the input by uniform performance bounds with respect
to an L1 reference system, which incorporates a lowpass
filter. The performance bounds can be arbitrarily improved
by increasing the adaptation gain. The L1 reference control
law contains system uncertainties and, therefore, is usually
used only for the analysis purposes. In [3], we have shown
that for numerous L1 adaptive control architectures, the
L1 reference system can be rewritten in the form free of
the system uncertainties. For output–feedback architectures,
this representation of the reference controller is structurally
equivalent to disturbance observer (DOB).

DOB is a widely used method for designing a two degree
of freedom control architecture to achieve robustness to mod-
eling errors and provide disturbance rejection [4]–[6]. Sev-
eral DOB–based controllers have been employed in industrial
applications for classes of parametric uncertain systems, [5],
[7]–[9], and in the presence of unmodeled dynamics, [10]–
[12]. However, these methods were application–oriented and
did not have general treatment of theoretical issues. Analyt-
ical investigation of the architecture is given in [13], [14].

In this paper we address the problem of selection of the
lowpass filter satisfying the L1–norm sufficient condition
of stability using the equivalence between the L1 reference
system and the DOB control architecture. Whereas the prior
results in L1 adaptive output feedback control were shown
only to achieve uniform transient and steady–state perfor-
mance without specifying the desired performance, [15],
[16], with the proposed tools in this paper for parametriza-
tion of the lowpass filters we address stability and desired
performance of L1 adaptive output feedback controllers
simultaneously. We borrow a theoretical result from [14]
to show that for minimum–phase systems with parametric
uncertainties the design requirements of L1 adaptive output
feedback control can be always satisfied, and we modify
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the DOB structure in [13] to solve the design problems for
the case of nonminimum–phase systems. In the presence
of unmodeled dynamics, affecting the relative degree of
the unknown system, we resort to different methods for
analysis and synthesis of robust stability and performance, in
particular, structured singular value (SSV) framework and µ–
synthesis (see, for example, [17]–[19] and references therein
for general results on µ–synthesis). However, due to the
special structure of L1 adaptive output feedback controller,
application of these methods needs to be done with special
consideration.

This paper is organized as follows. Section II gives a
review of the L1 adaptive output feedback control solution,
and defines the DOB architecture. In Section III, we perform
a transition of some of the robust control design methods to
L1 adaptive control theory. In particular we investigate the
robust stability and robust performance of the L1 reference
system, and suggest guidelines for selection of lowpass filters
for different classes of systems. Section IV concludes the
paper.

II. L1 ADAPTIVE OUTPUT–FEEDBACK CONTROLLER

AND DISTURBANCE OBSERVER

In this section we first give a brief review of the L1 adap-
tive output–feedback control architecture with piecewise
constant adaptation laws. Then we define the L1 reference
system for this adaptive architecture and give the equivalent
DOB architecture.

A. L1 Adaptive Output–Feedback Control

Consider the following SISO system:

y(s) = A(s)(u(s) + d(s)) , (1)

where y(s) and u(s) are the Laplace transforms of the
system’s output and input signals, respectively, A(s) is a
strictly proper unknown transfer function with known relative
degree dr, d(s) is the Laplace transform of the time–varying
uncertainties d(t) = f(t, y(t)), while f is an unknown map,
for which there exist constants L > 0 and L0 > 0, such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| , |f(t, y)| ≤ L|y|+ L0 ,

for arbitrary y, y1, y2 ∈ R uniformly in t ∈ R
+
0 . We also

assume that there exist constants L1, L2, L3 > 0, such that

|ḋ(t)| ≤ L1|ẏ(t)|+ L2|y(t)|+ L3 , ∀t ∈ R
+
0 .

Let the control specifications be given via the ideal system
M(s), which is assumed to be minimum–phase and stable.

We notice that the system in (1) can be rewritten in terms
of the ideal system M(s):

y(s) = M(s)(u(s) + σ(s)) ,

where σ(s) ,
(A(s)−M(s))u(s)+A(s)d(s)

M(s) . Let (Am ∈
R

n×n, bm ∈ R
n, c⊤m ∈ R

1×n) be the minimal realization
of M(s). Further, since Am is Hurwitz, there exists P =
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P⊤ > 0 that satisfies the algebraic Lyapunov equation
A⊤

mP + PAm = −Q, for arbitrary Q = Q⊤ > 0. From
the properties of P , it follows that there exits nonsin-

gular
√
P such that P = (

√
P )⊤

√
P . Given the vector

c⊤m(
√
P )−1, let D ∈ R

(n−1)×n contain the null–space of

c⊤m(
√
P )−1, i.e. D(c⊤m(

√
P )−1)⊤ = 0, and further let Λ ,

[cm (D
√
P )⊤]⊤ . Finally, let Ts ∈ R

+ be the sampling rate

of the available CPU, and 11 , [1, 0, . . . , 0]⊤ ∈ R
n. The

elements of L1 adaptive controller are introduced next:
The state–predictor is given by

˙̂x(t) = Amx̂(t) + bmu(t) + σ̂(t) , x̂(0) = 0 ,

ŷ(t) = c⊤mx̂(t) ,
(2)

where σ̂(t) ∈ R
n is the vector of adaptive parameters

propagated according to the following adaptation law:

σ̂(t) = −Φ−1(Ts)µ(iTs) , t ∈ [iTs, (i+ 1)Ts) , (3)

where i = 0, 1, 2, . . ., ỹ(t) , ŷ(t)− y(t), and

Φ(Ts) , ΛA−1
m

(

I− eAm(Ts−τ)
)

,

µ(iTs) , eΛAmΛ−1Ts11ỹ(iTs) , i = 0, 1, 2, . . . .

The control law is defined as follows:

u(s) = C(s)r(s)− C(s)c⊤m(sI−Am)−1

c⊤m(sI−Am)−1bm
σ̂(s) , (4)

where r(t) ∈ R is the reference command, and C(s) is a
stable strictly–proper lowpass filter of relative degree dr,
with C(0) = 1.

The development of L1 adaptive output–feedback con-
troller proceeds by considering the L1 reference system,
based on partial compensation of uncertainties within the
bandwidth of the given control channel:

yrf(s) = M(s)(urf(s) + σrf(s)) ,

urf(s) = C(s)(r(s)− σrf(s)) ,
(5)

where σrf(s) ,
(A(s)−M(s))urf (s)+A(s)drf(s)

M(s) , drf(s) is the

Laplace transform of drf(t) , f(t, yrf(t)). The reference
system (5) is stable if the lowpass filter C(s) and the desired
model M(s) are chosen to verify the following bound:

‖G(s)‖L1
L < 1 , (6)

where

G(s) ,
A(s)M(s)(1− C(s))

C(s)A(s) + (1− C(s))M(s)
. (7)

The main result on the performance bounds is summarized
in the following theorem.

Theorem 1 (Theorem 1, [2]). Consider the system in (1)
and the L1 adaptive controller in (2), (3), and (4), subject to
the L1–norm condition in (6). If we choose Ts to ensure

γ0(Ts) < γ̄0 ,

where γ0(Ts) is a computable bound, dependent upon the
sampling time Ts, and γ̄0 is an arbitrary positive constant,
then

‖ỹ‖L∞
< γ̄0 ,

‖yrf − y‖L∞
≤ γ1(Ts) , ‖urf − u‖L∞

≤ γ2(Ts) ,

in which γ1(Ts), and γ2(Ts) are computable bounds that can
be arbitrarily reduced by decreasing the sampling time Ts.

Disturbance observer

A(s)C(s)

C(s)

C(s)

M(s)

r u y
d

Fig. 1: Disturbance observer architecture

B. Disturbance Observer

We notice that the L1 reference system achieves the same
control objective as the DOB given in Figure 1 [14]. In [3]
we have shown that for linear output–feedback systems the
L1 reference controller is equivalent to the DOB. Therefore
the robust control design theory used for DOB can be also
applied to the design of the L1 adaptive controller. In the
next section of the paper we use the equivalence between
the architectures and introduce modifications of the robust
control methods and µ–analysis and synthesis to perform
design of the lowpass filter, which achieves robust stability
and robust performance for the L1 adaptive controller.

Remark 1. Notice that in [3] we have shown that the
architectures of the L1 reference system and DOB for
nonlinear systems are different. Namely, they both perform
the ideal system inversion in the feedback loop, however
the system inversion is performed before filtering of the
measured system state in the L1 reference system, while in
the DOB the inversion is performed after the filtering. Also
notice that for linear reference systems these architectures
are identical, since the linearity of the system permits an
interchange in the order of filtering and inverting.

III. ROBUST FILTER DESIGN FOR L1 ADAPTIVE

OUTPUT–FEEDBACK CONTROL

We start by considering the systems with known relative
degree and parametric type of uncertainties. In this case
we extend the result from DOB literature to ensure robust
stability and performance of the L1 reference system along
with satisfaction of the L1–norm stability condition. Next we
consider the case of systems with unknown relative degree
or nonparametric type of uncertainties. For these systems we
propose application of µ–analysis and synthesis theory.

A. Filter Design in the Presence of Parametric Uncertainty

Let A(s) belong to the following set of transfer functions:

Πp ,

{

P (s) =

∑n−dr
i=0 bis

i

∑n

i=0 aisi

∣

∣

∣

∣

∣

ai ∈ [ali, aui], bi ∈ [bli, bui]

}

,

where ali, aui, bli, bui are known conservative bounds, and
an, bn−dr

are assumed to be nonzero and such that the
relative degrees of the transfer functions from this set are
fixed and equal to dr. We consider the filter design problem
for minimum–phase and nonminimum–phase systems sepa-
rately. In the first case we show the existence of a lowpass
filter satisfying the L1–norm stability condition, and we
propose a systematic methodology for filter design satisfying
the L1–norm condition. In the second case of nonminimum–
phase systems we again show the existence of the lowpass
filter, which ensures stability of H(s), but the design has a
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limitation, which does not allow for reducing the L1–norm
of the transfer function G(s) in (6) arbitrarily. We introduce

the following notation: let C(s; τ) , C(τs)1 be the lowpass
filter.

Remark 2. Notice that there are similar results on the filter
design in literature. Namely, in [1], [20] it has been shown
that one can ensure the stability of H(s) for A(s) with
relative degree 1 and 2. In this paper we consider arbitrary
relative degree of the system.

1) Filter Design for Minimum–phase Systems: The next
lemma states a sufficient condition for the existence of the
filter, which ensures stability of H(s).

Lemma 1 (Robust stability [14]). Consider the transfer
function H(s) given in (7). If M(s) and A(s) ∈ Πp are
minimum phase and have the same relative degree dr, M(s)

is stable, and the transfer function C(s; 1) = Cn(s;1)
Cd(s;1)

ensures

that the polynomial

χf (s) , Cd(s; 1) +

(

lim
s→∞

A(s)

M(s)
− 1

)

Cn(s; 1) (8)

is Hurwitz, then there exists τ∗ > 0, such that the transfer
function H(s) is stable with any C(s; τ) for τ ∈ (0, τ∗].

The following theorem justifies that increasing the bandwidth
of the lowpass filter C(s) ensures satisfaction of the L1–
norm condition (6).

Theorem 2 (Robust performance). Assume that all the
conditions of Lemma 1 hold. Then the following limit holds:

lim
τ→0

‖G(s)‖L1
= 0.

Proof. For notation convenience, we use G(s; τ) for
G(s) and it can be rewritten as G(s; τ) = G(s; 0) +
∂G(s;τ)

∂τ

∣

∣

∣

τ=0
τ + o(τ), where o(τ) satisfies limτ→0

o(τ)
τ

= 0

uniformly, i.e., for all s ∈ C. Since G(s; τ) can be rewrit-

ten as
τsF (s;τ)Cd(s;τ)An(s)Mn(s)

Cn(s;τ)An(s)Md(s)+τsF (s;τ)Mn(s)
, where F (s; τ) ,

(Cd(s; τ) − Cn(τ ; s))/(τs), we have G(s; 0) = 0 and
∂G(s;τ)

∂τ

∣

∣

∣

τ=0
= sF (s; 0)M(s), where F (s; 0) is a nonzero

constant. Thus, the inverse Laplace transform of G(s; τ)
becomes g(t; τ) = ḡ′(t)τ + o(τ), where ḡ(t) denotes the

inverse Laplace transform of Ḡ(s) , F (s; 0)M(s), such
that its time derivative ḡ′(t) is uniformly bounded for all

time t. Notice that from the fact limτ→0

∫
o(τ ;s)sstds

τ
=

∫

limτ→0
o(τ ;s)

τ
sstds = 0 it follows that the inverse

Laplace transform of o(τ ; s) is o(τ ; t), where s and t are
used to denote the frequency and time domains, respec-
tively. Therefore, we conclude that limτ→0 ‖G(s; τ)‖L1

=
limτ→0

∫∞

0
|g(t; τ)|dt =

∫∞

0
limτ→0 |g(t; τ)|dt = 0. �

Remark 3. Notice that the Hurwitz condition on the poly-
nomial in (8) is equivalent to the stability of the negative
feedback interconnection of the transfer function C(s; τ) and

the bounded constant υ0 , lims→∞
A(s)
M(s) − 1 ∈ [υ−, υ+].

The filter satisfying the latter requirement can be designed
using well established tools from linear systems theory.

1τ corresponds to the scaling of the cut–off frequency of C(s) and in
this paper we often use the notation C(s; τ) for the lowpass filter C(s) to
emphasize its dependence on τ

Assume that we designed a filter C(s) satisfying (8).
Lemma 1 and Theorem 2 indicate that there exists a pa-
rameter τ0, for which the transfer function H(s) is stable
and the L1 norm condition in (6) holds. To find the value
of τ0 we may use the bisection method. For this purpose we
state the following theorem and the corollary.

Lemma 2 (Kharitonov theorem, [21]). The polynomial
family P (s, Ia) = {p(s, a) =

∑n
i=0 ais

i : a ∈ Ia}, an > 0,
is stable if and only if the following four polynomials are
all stable:

κ1(s) = au0 + al1s+ al2s
2 + au3s

3 + au4s
4 + · · · ,

κ2(s) = au0 + au1s+ al2s
2 + al3s

3 + au4s
4 + · · · ,

κ3(s) = al0 + au1s+ au2s
2 + al3s

3 + al4s
4 + · · · ,

κ4(s) = al0 + al1s+ au2s
2 + au3s

3 + al4s
4 + · · · ,

(9)

where Ia , {a ∈ R
n : ai ∈ [ali, aui], i = 1, . . . , n}. The

polynomials (9) are called Kharitonov polynomials.

Consider the characteristic polynomial of the transfer
function H(s) in (7):

Hd(s),Md(s)An(s)Cn(s)+Ad(s)Mn(s) (Cd(s)−Cn(s)) ,

where the subscripts n and d denote the numerator and the
denominator of the transfer functions respectively. Lemma 2
implies that to check stability of H(s), we need to check if
the polynomials κ1(s), · · · , κ4(s) are Hurwitz. We use this
test in the bisection method, which helps us to compute the
maximum value of τ∗ given in Lemma 1. Next, decreasing
the value of τ ∈ (0, τ∗], according to Theorem 2 we can
always find the value of τ0, which leads to the filter choice
satisfying the L1–norm condition in (6). The next example
illustrates the filter design procedure.

Example 1. Consider the ideal system model

M(s) = ω2
n/(s

2 + 2ζωns+ ω2
n) , (10)

where ζ and ωn are given parameters. Let

A(s) = c/(s2 + as+ b) ,

where a ∈ [al, au], b ∈ [bl, bu], and 0 < c ∈ [cl, cu]. In this
example we consider the following numeric data: ωn = 1,
ζ = 0.7, a ∈ [−1,−3], b ∈ [1, 3], c ∈ [1, 4]. Consider the
following lowpass filter:

C(s; τ) = 1/(τs+ 1)3 .

It is straightforward to see that the polynomial

χf (s) = s3 + 3s2 + 3s+ c/ω2
n

is robustly stable for every c > 0. Next we follow the
design procedure using the bisection method and compute
τ∗ ≈ 0.0217 such that H(s) is robustly stable for all
τ ∈ (0, τ∗]. The root locus of the Kharitonov polynomials
for τ ∈ [0.0001, 0.02] is shown in Figure 2. One can see that
the polynomials are stable for all τ ∈ [0.0001, 0.02]. Next

we compute the value of ‖Ĝ(s)‖L1
, and obtain ‖Ĝ(s)‖L1

≈
0.0029 for τ = 0.001, where Ĝ(s) is the transfer function

G(s) with A(s) replaced by its nominal model Â(s) =
2.5

s2−2s+2 .
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Fig. 2: Root locus of the four Kharitonov polynomials for
τ ∈ [0.0001, 0.02] (Example 1)

Modified disturbance observer

A(s)

CV (s)

V (s)

CV (s)

M(s)

r u y
d

Fig. 3: Modified DOB structure

2) Filter Design for Nonminimum–phase Systems: Con-
sider the characteristic equation Hd(s) = 0. It can be
rewritten as:

Md(s)An(s) (Cn(s)− 1) +Ad(s)Mn(s) (Cd(s)− Cn(s))

= −An(s)Md(s) .

We see from the above equation that the solutions of the
characteristic equation Hd(s) = 0 converge to the zeros of
the transfer function A(s) as τ → 0. From the continuity
property, if there exists a RHP zero for A(s), then the transfer
function H(s) cannot be stabilized by any choice of C(s; τ)
with small value of τ . This shows the limitations of the
methods considered in the previous section in the case of
nonminimum–phase systems. In this section we consider a
modification of the DOB configuration for nonminimum–
phase systems. A systematic design methodology, specialized
to the proposed DOB structure, is given with the help of
Youla parameterization (or Q–parameterization) of stabiliz-
ing controllers.

We proceed with modifying the DOB controller structure
in Figure 1, and introduce an additional feed–forward loop
with a transfer function V (s) as shown in Figure 3. Next,
we rewrite the transfer functions H(s) and G(s) in terms of
CV (s) and V (s):

H(s) =
A(s)(M(s) + V (s))

CV (s)(A(s) + V (s)) + (1− CV (s))(M(s) + V (s))
,

G(s) =
A(s)M(s)(1− CV (s)) +A(s)V (s)

CV (s)(A(s) + V (s)) + (1− CV (s))(M(s) + V (s))
.

(11)

The main result of this section is given in the following
theorem.

Theorem 3. Consider the transfer function H(s) given in
(11). If M(s) is stable, and there exists a stable transfer

function V (s) such that A(s) + V (s) is minimum phase for
all A(s) ∈ Πp, and the transfer function CV (s; 1) ensures
that the polynomial

χg(s) , CV d(s; 1)+

(

lim
s→∞

A(s) + V (s)

M(s) + V (s)
− 1

)

CV n(s; 1) (12)

is Hurwitz, then there exists τ∗ > 0 such that the transfer
function H(s) is stable with any CV (s; τ) for τ ∈ (0, τ∗].
Furthermore, if CV n(s) is Hurwitz and independent of τ ,
then it also achieves

lim
τ→0

‖G(s)‖L1
≤ sup

A(s)∈Πp

∥

∥

∥

∥

A(s)

V −1(s)A(s) + 1

∥

∥

∥

∥

L1

. (13)

Proof. First, if CV (s; τ) satisfies the stability condition for
χg(s) in (12), then it directly follows from Lemma 1 that
there exists τ∗ such that H(s) is robustly stable for every
A(s) ∈ Πp with any CV (s; τ) for τ ∈ (0, τ∗]. Next, we prove
the inequality (13). The transfer function G(s) in (11) can

be rewritten as the sum of two transfer functions G1(s) ,

H(s)(1 − CV (s)) and G2(s) , A(s)V (s)CV (s)/Gd(s).
Then from Theorem 2, for any ǫ1 > 0 there exists a
τ1 ∈ (0, τ∗] such that ‖G1(s)‖L1

≤ ǫ1 for CV (s; τ1). In
addition, if CV n(s) does not depend on τ , then G2(s) can

be rewritten as
An(s)CV n(s)Vn(s)Md(s)

Md(s)CV n(s)(Vd(s)An(s)+Vn(s)Ad(s))+τG̃d(s)
,

where G̃d(s) is a polynomial with G̃d(0) = 0. From the
continuity of the induced norm of a transfer function in its
coefficients, for any ǫ2 > 0 there exists a τ2 ∈ (0, τ∗],

such that ‖G2(s)− An(s)CV n(s)Vn(s)Md(s)
Md(s)CV n(s)(Vd(s)An(s)+Vn(s)Ad(s))

‖L1
≤

ǫ2 for CV (s; τ2). Since CV n(s) and Md(s) are assumed
to be stable, we conclude that for any ǫ1, ǫ2 > 0 there

exists τm , min{τ1, τ2} ∈ (0, τ∗], such that ‖G(s)‖L1
≤

‖A(s)/(V −1(s)A(s) + 1)‖L1
+ ǫ1 + ǫ2 for CV (s; τm). This

completes the proof. �

The next lemma proposes a method to select V (s) that
achieves minimum–phase A(s)+V (s) for every A(s) ∈ Πp.

Lemma 3 (Achievement of minimum–phase property). If a
stable transfer function VQ(s) stabilizes the transfer function
A(s) − M(s) for all A(s) ∈ Πp, then A(s) + V (s) is
minimum phase for any A(s) ∈ Πp with

V −1(s) ,
VQ(s)

1−M(s)VQ(s)
. (14)

Proof. It can be easily verified that A(s)+V (s) is minimum
phase for any A(s) ∈ Πp if and only if the transfer function

J(s) ,
V −1(s)A(s)

V −1(s)A(s)+1 is stable for any A(s) ∈ Πp. In

addition, we choose V (s) according to Youla parametrization
of all stabilizing controllers for the nominal transfer function
V −1(s)M(s)

V −1(s)M(s)+1 . This leads to V −1(s) in (14). Then we rewrite

J(s) as
VQ(s)A(s)

VQ(s)(A(s)−M(s))+1 . The proof is complete. �

Remark 4. Alternatively, instead of using the model–based
parametrization of stabilizing controllers, we may consider
a simple PID structure for the additional filter V (s):

V −1(s) =
ki + kps+ kds

2

s
,

where (kp, ki, kd) are the user–defined design parameters to
be determined.

5656



−1500 −1000 −500 0
−800

−600

−400

−200

0

200

400

600

800

Re

Im

 

 

κ
1
(s)=0

κ
2
(s)=0

κ
3
(s)=0

κ
4
(s)=0

Fig. 4: Root locus of the four Kharitonov polynomials for
τ ∈ [0.001, 0.01] (Example 2)

Once we obtain V (s), which makes A(s) + V (s) min-
imum phase, we perform the same design procedure as in
Section III-A.1 to find the transfer function CV (s) satisfying
the design requirements. The next example illustrates this
design procedure.

Example 2. Consider the ideal system model

M(s) = ω2
n/(s

2 + 2ζωns+ ω2
n) ,

where ωn = 1, ζ = 0.7. Let the plant be given by

A(s) = (d− s)/(s3 + as2 + bs + c) ,

where a = 6, b = 5, c = 1 are known, but 0 < d ∈ [dl, du] is
unknown with known bounds dl = 3, du = 5. Note that A(s)
is nonminimum phase. We select V (s) = 2s

s3+as2+bs+c
so

that A(s)+V (s) = s+d
s3+as2+bs+c

is minimum phase for every

0 < d ∈ [dl, du] and the lowpass filter CV (s; τ) =
1

(τs+1)3 . It

is straightforward to verify that χg(s) = s3+3s2+3s+ 1
ω2

n+2

is stable for all 0 < d ∈ [dl, du]. Then there exists τ∗

such that H(s) is stable for all τ ∈ (0, τ∗]. Next, we
follow the design procedure presented in this section and
obtain τ∗ ≈ 0.057. Furthermore, the nominal performance

of the closed–loop system is given by ‖Ĝ(s)‖L1
≈ 0.67

for τ = 0.001, where Ĝ(s) is the transfer function G(s)
with the replacement of A(s) by its nominal model Â(s) =

4−s
s3+6s2+5s+1 . Figure 4 shows the root–locus of the four
Kharitonov polynomials in (9). We see that this design
achieves robust stability of H(s) for all τ ∈ (0, τ∗].

B. Filter Design Using µ Analysis and Synthesis

While under limited information on the actual plant the
analysis and synthesis for robust stability and performance
based on the SSV framework might not be completely infor-
mative, we will resort to this well–developed and systematic
method to design a lowpass filter that guarantees the robust
stability of the closed–loop reference system in (5) and the
robust performance given by (6).

Since the step of rewriting an uncertain system as the
standard N − ∆ configuration, known as linear fractional
transformation (LFT), has been shown in literature (see [19],
for example), we assume that the system transfer function

A(s) is parameterized by a set of possible plants Π ,

{Fu

(

Ā(s),∆
)

: ∆ ∈ ∆c}, i.e., A(s) ∈ Π, where ∆c de-
notes the set of block diagonal perturbation matrices, which
reflects the structure of the uncertainties. To demonstrate
how robust control theory can be applied to the problem

Ā(s)

∆

−K(s)

yδ

r
d

uδ

u y

(a)

N(s)

[

∆ 0

0 ∆p

]

K(s)

yδuδ

u y

w z

(b)

Fig. 5: LFT representation of the closed–loop reference
system

at hand, consider a special case of unstructured uncertain
system, where A(s) = M(s) (1 + ∆(s)) , ∆(s) ∈ RH∞.
Then from the Nyquist stability criterion, if C(s) satisfies
∣

∣

∣

∣

C(jω)

1− C(jω)
(1 + ∆(jω))

∣

∣

∣

∣

< 1 ⇔ |C(jω)| <
1

|∆(jω)|
∀ω ∈ R,

then H(s) is robustly stable. However, this sufficient condi-
tion might be too conservative, as it does not use complete
information about the uncertainties. Next, we rely on the SSV
approaches to reduce the possible conservatism and utilize
more of the available information about the uncertainties.

Figure 5a shows a reconfiguration of the closed–loop
reference system in (5), and Figure 5b provides an equivalent
LFT description of Figure 5a. The next two theorems propose
methods of analyzing the robust stability and performance of
the closed–loop reference system in (5), by adopting the SSV
framework for Figure 5.

Theorem 4 (Robust stability: Analysis). Consider the un-
certain system A(s) ∈ Π and the transfer function H(s)
given in (7). If there exists a transfer function KI(s), such
that the inequality µ∆c

(N11(jω)) < 1 holds for all ω ∈
R ∪∞ with

N(s) ,

[

1 −Ā12(s)K(s)
0 1− Ā22(s)K(s)

]−1 [

Ā11(s) Ā12(s)CH(s)
Ā21(s) Ā22(s)CH(s)

]

,

where K(s) , 1
s
KI(s), C(s) ,

−M(s)KI(s)
s−M(s)KI(s)

, CH(s) ,
C(s)

1−C(s) , and KI(s) is a transfer function, which has no zeros

in the origin, then the transfer function H(s) is stable for all
A(s) ∈ Π. Furthermore,

N11(s) = Fℓ(Ā,K) = Fℓ(ĀI ,KI) ,

where

ĀI(s) ,

[

Ā11(s) Ā12(s)
Ā21(s)

1
s

Ā22(s)
1
s

]

.

We omit the proof due to space considerations.

Theorem 5 (Robust stability and performance: Analysis).
Consider the uncertain system A(s) ∈ Π and the transfer

function H(s), given in (7). Let ∆̄γ
c , {diag[∆, γ∆p] :

∆ ∈ ∆c}, where γ is a predetermined performance bound,
and ∆p is a full square matrix with its dimension equal to
the number of outputs. Also define

N̄(s) ,
[

N11(s) N12(s)
N21(s) (1− C(s))N22(s)

]

,

where N(s), K(s), C(s), KI(s), and CH(s) are the same as
in Theorem 4. If there exists a transfer function KI(s) such
that the inequality µ∆̄γ

c
(N̄(jω)) < 1 holds for all ω ∈ R∪∞,
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then the transfer function H(s) is stable and ‖G(s)‖∞ ≤ 1/γ
for all A(s) ∈ Π.

We omit the proof due to space considerations.
In addition to the analysis of robust stability and perfor-

mance, we also propose a design method for the lowpass
filter of L1 adaptive controller. Due to the unit DC–gain
requirement for C(s), the proposed optimal design reduces
to the problem of finding a transfer function KI(s) that mini-
mizes ‖G(s)‖L1

. However, since the L1–norm minimization
problem is not convex, we resort to minimization of the H∞–
norm to exploit the existing iterative algorithms and off–the–
shelf softwares [22], [23]. The relation between the L1 and
the H∞–norm of a transfer function is

‖G(s)‖∞ ≤ ‖G(s)‖L1
≤ (2n+ 1)‖G(s)‖∞ ,

where n denotes the number of states in the minimal real-
ization of G(s).

Next, we suggest application of the µ synthesis problem
for filter design of L1 adaptive controller. Namely, computa-
tion of C(s) that minimizes the H∞–norm of G(s) reduces
to the synthesis problem minKI

µ∆

(

Fℓ(N̄I ,KI)
)

, under
the assumption of nominal stability of the system. While
this synthesis problem is not yet fully solved, a common
approach is the so–called D −K iteration:

min
KI

inf
D,D−1∈D

‖DFℓ(N̄I ,KI)D
−1‖∞ , (15)

where D is a set of commutative H∞ operators to the
uncertainty ∆. One needs to solve (15) for KI and D. For
this, the off–the–shelf software [22] can be used.

Example 3. Consider the ideal system model in (10) and
the actual plant with an input multiplicative uncertainty:

A(s) = Âδ(s)(1 + ∆m(s)) ,

where Âδ(s) = 1/(s2 − 4s + δ1), δ1 ∈ [1.6, 5.6], and
∆m(s) ∈ ∆c. In particular, we consider the unmodeled
dynamics ∆m(s), about 10% at low–frequency, rising to
100% at 50 radians/second. If we consider the standard
internal model controller for K(s) with a lowpass filter
C(s; τ, k) = 1

(τs+1)k
, it gives the following transfer functions

of consideration:

ĀI(s) =

[

0 1
1

s(s−1)2
1

s(s−1)2

]

, KI(s) =
s2 + 2ζωns+ ω2

n

((τs+ 1)k − 1)ω2
n

,

N11(s) =
s2 + 2ζωns+ ω2

n

ω2
n(s− 1)2((τs+ 1)k − 1)− (s2 + 2ζωns+ ω2

n)
.

Using the Matlab Toolboxes [22], [23], the robust stability
and performance margins are obtained as γs = 1.500
and γp = 1.497, respectively. Furthermore, its nominal

performance is given by ‖Ĝ(s)‖L1
≈ 0.028 for τ = 0.01

and k = 3, where Ĝ(s) is the transfer function G(s) with

the replacement of A(s) by its nominal model Â(s) =
1

s2−4s+4 (1 +
1

s2+20s+10 ).

IV. CONCLUSION

In this paper we exploited the connection between the
L1 adaptive output–feedback control and the disturbance
observers, which helped us to show that the methods for

compensator design from DOB and robust control literature
can be used towards the filter design in L1 adaptive output
feedback controller.
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