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Abstract— To better understand human walking, three
bipedal robotic models—starting with the compass gait biped
and increasing in complexity to a 3D kneed biped—are studied
with controllers of human-inspired design; these controllers are
derived from experimental data measuring the kinematics of
human test subjects. The collected data are examined in an
attempt to classify some of the most fundamental behaviors
underlying human walking; it is found that a subset of functions
on the kinematics of humans can be represented as a single class
of functions. The control scheme uses feedback linearization
to track the human output functions on a robot. A state-
based parameterization for time is introduced to make these
human functions time-invariant. Simulation results indicate the
existence of locally exponentially stable periodic orbits for
each model of interest; these orbits represent stable, steady-
state walking gaits. The application of the human-inspired
control approach results in “humanlike” walking as supported
by agreement between the outputs of the robot models and
humans.

I. INTRODUCTION

Essential to the advancement of anthropomorphic robotics

is the development of control techniques which result in

humanlike bipedal walking. Until recently, research in the

field of robotic walking has focused on obtaining walking via

mechanism design and strict control theory using passivity-

based control [1], [2], control of zero-moment point [3], [4],

hybrid zero dynamics [5], [6], [7], central pattern generators

[8], [9], and compliance-based control [10], to name a few

methods. The biomechanical component of robotic walking

has been largely overlooked, though it is starting to be

considered [11]. The authors’ previous work [12] takes this

into consideration, developing a walking controller based on

experimental human walking data. Simple functions are used

to model fundamental kinematics behaviors associated with

human walking; these functions are tracked through feedback

linearization and ultimately lead to stable, humanlike walking

on an anthropomorphic model in simulation. The goal of

this paper is to understand this method in the context of

well-studied bipedal models with the hopes that the intuition

gained will lead to improvements in the control approach.

This study of bipedal walking begins by introducing the

notion of a hybrid system—a particular type of system which

exhibits continuous dynamics, i.e., the dynamic model gov-

erning continuous motion, and discrete dynamics, resulting

from rigid-body impacts such as foot-strike. This definition
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provides a theoretical framework upon which to construct

hybrid models and controllers for the models studied in this

paper. After model construction, a control strategy is intro-

duced which can be used to achieve humanlike walking on

the constructed hybrid models. Specifically, human walking

data are analyzed and it is found that many of the kinematics

behaviors associated with human walking can be modeled

using a single canonical human function; this concept is

leveraged to construct functions encoding human walking.

Obtaining the canonical human function from experimen-

tal human data is a major result of the paper; this func-

tion gives an effective and viable representation of specific

kinematic outputs of human walking, without requiring any

knowledge of the intricacies of the dynamics or control

governing these outputs. Indeed, the human control system

responsible for walking is highly complex. From the regula-

tion of muscle behavior via transmission of electrochemical

waves in the nervous system to the generation of forces by

the firing of muscle fibers, the relationship between inputs

and outputs in the human motor control system can be quite

challenging to decipher. We claim, however, that the most

relevant outputs of the human walking control system are

governed by the canonical human function (10). We can

use this idea, without knowledge of the human controller or

internal dynamics, to provide a control method for a robot

by which we can regulate the internal dynamics, and achieve

the same outputs as a human. While this discovery allows

us to obtain bipedal robotic walking which is kinematically

similar to human walking in simulation, the implications of

this result extend far beyond simulation alone. In fact, the

universality of these kinematics outputs provides insight into

human walking. This result suggests that at the most basic,

innate level, the primary outputs of the human locomotive

system actually constitute a system of spring dampers.

Using the the canonical equation (10) and feedback lin-

earization [13], walking is achieved on three well-studied

bipedal models. Specifically, the compass gait biped [14],

[15], [16], the 2D kneed biped [17], [18], and the 3D

kneed biped [19] are studied. Simulations are given which

show stable walking, and it is found that the results of

these simulations match the human data remarkably well—

an indication that the robotic walking achieved in these three

models is indeed humanlike.

II. HYBRID SYSTEMS AND ROBOTIC MODELS

Hybrid systems are systems that display both continuous

and discrete behavior and so bipedal walkers are naturally

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 682



modeled by systems of this form. This section, therefore,

introduces the basic terminology of hybrid systems.

A. Formal Definition of Hybrid Systems

Hybrid systems or systems with impulse effects [20] have

been studied extensively in a wide variety of contexts and

have been used to model a wide range of bipedal robotic

systems [21]. In this section, we introduce a definition of

hybrid systems applicable to bipedal walking.

Definition 1: A hybrid control system is a tuple,

H C = (D, U, S,∆, f, g),
where

• D is the domain with D ⊆ X a smooth submanifold of

the state space X ⊆ R
2n,

• U ⊆ R
m is the admissible control,

• S ⊂ D is a proper subset of D called the guard or

switching surface,

• ∆ : S → D is a smooth map called the reset map,

• (f, g) is a control system on D, i.e., ẋ = f(x)+ g(x)u.

A hybrid system is a hybrid control system with U = ∅,

e.g., any applicable feedback controllers have been applied,

making the system closed-loop. In this case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ X , i.e., ẋ = f(x).

Hybrid Period Orbits and the Poincaré Map. In order to

establish the stability of k-periodic orbits, we will use the

standard technique of studying the corresponding Poincaré

map. In particular, taking G to be the Poincaré section, one

obtains the Poincaré map, P : G → G, which is a partial

map defined by:

P (z) = c(τ(z)).

where c(t) is the solution to ẋ = f(x) with c(0) = R(z)
and τ(z) is the time-to-impact function. In particular, if

z∗ is a k-fixed point of P (under suitable assumptions on

z∗, G, and the transversality of O and G) a k-periodic

orbit O with z∗ ∈ O is locally exponentially stable if and

only if P k is locally exponentially stable (as a discrete-time

dynamical system, zi+1 = P (zi)). Although it is not possible

to explicitly compute the Poincaré map, one can compute a

numerical approximation of this map through simulation and

thereby test its stability numerically. This gives a concrete

method for practically testing the stability of periodic orbits.

B. Constructing Hybrid Systems

We will now show how to construct a hybrid system

for a biped given a Lagrangian and a discrete event (in

this case, foot strike). We begin with the assumption that

the stance foot is pinned to the ground and use this to

describe the continuous dynamics. In order to derive the

discrete dynamics, we must introduce additional Cartesian

coordinates ψ,wx, wy, wz at the stance foot with ψ a rotation

about the z-axis. A more general discussion applicable to a

wider range of bipeds can be found in [21].

Domain and Guard. The domain specifies the allowable

configuration of the system. For the models considered in

this paper, the non-stance foot must be above the ground.

This condition is specified by a unilateral constraint, h, which

naturally leads to a definition for the domain:

D = {(q, q̇) ∈ TQ : h(q) ≥ 0} . (1)

The guard is just the boundary of the domain with the addi-

tional assumption that the unilateral constraint is decreasing,

i.e., the vector field is pointed outside of the domain, or

S =

{

(q, q̇) ∈ TQ : h(q) = 0 and
∂h(q)

∂q
q̇ < 0

}

. (2)

Continuous Dynamics. The Lagrangian of a bipedal robot,

L : TQ → R, can be stated in terms of the kinetic energy,

K : TQ → R, and the potential energy, V : Q → R,

as L(q, q̇) = K(q, q̇) − V (q). The Euler-Lagrange equation

gives the dynamic model, which, for robotic systems (see

[22]), is stated as:

D(q) q̈ +H(q, q̇) = B(q)u (3)

with inertia map D(q) and torque distribution map B(q), and

H(q, q̇) = C(q, q̇) q̇ +G(q)

containing terms resulting from the Coriolis effect and

gravity; C(q, q̇) can be found using standard methods [22].

Manipulation of (3) leads to the control system (f, g):

f(q, q̇)=

[

q̇

−D−1(q)H(q, q̇)

]

, g(q)=

[

0

D−1(q)B(q)

]

. (4)

Discrete Dynamics. In order to define the reset map, it

is necessary to first augment the configuration space Q.

Attach a frame Re to the stance foot; then w represents the

Cartesian position of Re and ψ ∈ S ⊂ SO(3)1 represents

the orientation of Re about the z-axis. The generalized

coordinates are then written

qe = (px, py, pz, ψ, q) ∈ Qe = R
3 × S×Q.

Without loss of generality, we assume that the values of the

extended coordinates are zero throughout the gait. Moreover,

the configuration variable does not change through impact

so these values will be zero right after impact. Therefore,

we introduce the embedding ι : Q → Qe defined by

(0, 0, 0, 0, q) 7→ qe; this will allow us to write the generalized

coordinates in terms of the shape coordinates.2

The impact model [23] under consideration assumes that

an impulsive force is applied at the non-stance foot upon

impact. This motivates the use of the holonomic constraint

J(q)q̇ =

[

v

ωz

]

,

1SO(n) represents the special orthogonal group in n dimensions.
2For a biped in two dimensions (in the xz-plane), it is only necessary to

consider the additional coordinates px and pz .
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Fig. 1: Configuration, and the mass and length distribution,

for compass gait (CG), 2D kneed (K2), and 3D kneed (K3)

models. Values for parameters are available online [26].

with J(q) a Jacobian matrix, v = ẇ the velocity of Re, and

ωz the angular velocity of Re about the body-fixed z-axis.3

An impulsive wrench is used to impose these constraints

through impact. Specifically, the configuration q does not

change through impact and the post-impact velocity q̇+ is

given in terms of the pre-impact velocity q̇− by balancing

angular momentum. Using the Schur complement (see [25]),

the post-impact velocity can be written as a map:

q̇+ = P (qe, q̇
−
e ) = (5)

(I −D−1(qe)J
T (qe)(J(qe)D

−1(qe)J(qe))
−1J(qe))q̇

−
e

with I the identity matrix.

Motivated by the desire to simplify a bipedal model and

obtain biperiodic behavior, the left and right legs must be

“swapped” at impact; this trick is common throughout the

literature [20]. A coordinate transformation R (i.e., a state

relabeling procedure) switches the roles of the left and right

legs and is included in the reset map:

∆(q, q̇) =

[

R 0

0 R

] [

π ◦ ι(q)
π∗ ◦ P (ι(q), ι∗(q̇))

]

, (6)

where ι∗ is the pushforward of ι and π is the canonical

projection associated with ι with pushforward π∗. The reset

map (6) takes a point on the guard and maps it to the domain.

C. BIPEDAL MODELS

Three related point-foot bipedal models will be considered

in this paper; these models are shown in Fig. 1. In order of

increasing complexity, these models are: 2D compass-gait

(CG) biped, 2D kneed biped (K2), 3D kneed biped (K3).

We will now describe the construction of these models.

2D Compass Gait Biped (CG). The 2D compass gait

biped consists of two links with physical parameters given

3The body-fixed angular velocity ωz can be found using standard kine-
matics analysis methods [24].

in Fig. 1(d). For this model, the configuration space QCG

has coordinates

qCG = (θsf , θsh )
T .

Combining these coordinates with the configuration of

the model as given in Fig. 1(a) results in Lagrangian

LCG(qCG, q̇CG). Assuming full control authority, i.e.,

UCG = R
2, one obtains the appropriate control system

(fCG, gCG) as is given by (4).

Let hCG(qCG) be a unilateral constraint representing the

height of the non-stance foot above the ground. Using the

methods of Sec. II leads to the domain DCG and guard SCG

given by (1) and (2), respectively.

The reset map ∆CG is given by (6); the corresponding

relabeling map RCG is given by

(θsf + θsh ,−θsh) 7−→ (θsf , θsh).

We can now express the hybrid control system for the

model CG as

H CCG = (DCG, UCG, SCG,∆CG, fCG, gCG). (7)

2D Kneed Biped (K2). The 2D kneed biped has knees and a

torso for a total of five links with physical parameters given

in Fig. 1(e). The configuration space QK2 has coordinates

qK2 = (θsf , θsk , θsh , θnsh , θnsk )
T .

Combining these coordinates with the configuration of

the model as given in Fig. 1(b) results in Lagrangian

LK2(qK2, q̇K2). We again assume full control authority, i.e.,

UK2 = R
5, and obtain control system (fK2, gK2) as in (4).

Let hK2(qK2) be a unilateral constraint representing the

height of the non-stance foot above the ground; this con-

straint naturally leads to domain DK2 and guard SK2 given

by (1) and (2), respectively.

The reset map ∆K2 is given by (6) with relabeling map

RK2 given by

(−θsf −θsk−θsh+θnsh+θnsk , θnsk , θnsh , θsh , θsk )

7−→ (θsf , θsk , θsh , θnsh , θnsk ).

We can now express the hybrid control system for the

model K2 as

H CK2 = (DK2, UK2, SK2,∆K2, fK2, gK2). (8)

3D Kneed Biped (K3). The 3D kneed biped has knees and a

hip with two degrees of freedom at each hip joint. Like K2,

this model has five links; however, this model operates in

three dimensions and thus requires additional coordinates.

The physical parameters are shown in Fig. 1(e) and the

configuration space QK3 for K3 has coordinates

qK3 = (ϕsf , θsf , θsk , θsh , ϕsh , ϕnsh , θnsh , θnsk )
T .

Combining these coordinates with the configuration of the

model as given in Fig. 1(c) results in a Lagrangian LK3.

Assuming full control authority, i.e., UK3 = R
8, one obtains

the appropriate control system (fK3, gK3) as is given by (4).
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Let hK3(qK3) be a unilateral constraint representing the

height of the non-stance foot above the ground; this con-

straint naturally leads to domain DK3 and guard SK3 given

by (1) and (2), respectively.

Because K3 operates in three dimensions, the reset map is

more complicated. The impact map PK3 : SK3 → DK3 given

by (5) is used with generalized coordinates as described

in Sec. II. The additional complexity arises in the state

relabeling procedure. The coordinates other than those at the

foot are exchanged viz.

(θnsk , θnsh , ϕnsh , ϕsh , θsh , θsk )

7−→ (θsk , θsh , ϕsh , ϕnsh , θnsh , θnsk ).

The coordinates at the new stance foot, ϕsf and θsk , and their

associated velocites are found via a nonlinear transformation

as described in [27]. The reset map ∆K3 is given by applying

the state relabeling procedure just described to the impact

map PK3(qK3, q̇K3).
We can now express the hybrid control system for the

model K3 as

H CK3 = (DK3, UK3, SK3,∆K3, fK3, gK3). (9)

III. HUMAN-INSPIRED CONTROLLER DESIGN

In Sec. II, we introduced hybrid systems and showed how

to construct hybrid models for the bipeds of interest in this

paper. Our goal now is to develop control laws which result

in stable humanlike walking when applied to the hybrid

control systems H C CG, H CK2, and H C K3. Motivated by

our desire to mimic human walking in some capacity, we will

draw inspiration from experimental human kinematics data.

Specifically, we will design functions which mimic some of

the fundamental behaviors of human walking and track these

human functions using feedback linearization. Before going

into detail on the function design process, a description of

the experiment is appropriate.

A. Experimental Setup

The Phase Space System [28] comprises 12 high precision

cameras positioned to allow for spatial measurements of

a number of LED sensors to within an accuracy of one

millimeter. For a given test subject, we fixed 19 LED sensors

at strategic points on the subject and instructed the subject

to walk straightly on flat ground. We collected the positions

of the sensors at 480 Hz. We repeated the process 11 times

for a given subject—three of the test runs represent normal

walking while the other eight represent fast walking, slow

walking, backward walking, etc. Overall, we measured the

gait of nine subjects; the collected data are available online

[29]. In this paper, we selected the subject whose data were

the least noisy—we use these data for the controller design

process specified presently.

B. Extracting Human Functions from Data

We now describe the process of designing human functions

which characterize behaviors fundamental to human walking.

From this point on, it is assumed that we are considering the

Fig. 2: The experimental setup. Left—placement of the

sensors on test subject; the walking path is in blue. Right—

leg sensor locations.

data for a single test subject; specifically, we consider subject

four for the rest of this paper.

Canonical Human Function. Using the data for our chosen

subject, we examine various output functions on the subject’s

kinematics, i.e., we consider angles, slopes, and end-effector

positions. The idea is to determine a set of behaviors which

can be used to represent human walking.4 We found that

the following functions (see Fig. 1(f)) describe fundamental

behaviors intrinsic to human walking: sagittal leg slopes,

knee angles, torso angle and hip velocity. In the coronal

plane, we examined the angles of the hip and the angle

between the stance leg and the ground.

One of the primary motivations behind this choice of func-

tions is the trajectory each function follows over time. Each

of behaviors mentioned qualitatively resembles a second-

order system response and can thus be characterized with

the following canonical human function:

yd(t) = (10)

e−a5t(a1 cos(a2t+ a3) + a4 sin(a2t+ a3)) + a6t+ a7.

Function Fitting. We would like to apply the cannonical

human function (10) to our data to model the behaviors

described. Formally, this means that we would like to find

the parameters a1, . . . , a7 for a given function which result in

functions that fit the data closely as possible; in other words,

for each function, we would like to solve the optimization

problem

min
{ai}7

i=1

K
∑

k=1

(yd(τ [k], ai, . . . , a7)− x[k])2, (11)

where τ [k] and x[k] represent the time and human data,

respectively, with k ∈ [1, . . . ,K] ⊂ Z an index for the K

data points, and yd(·) the fitting function with parameters

4When deciding on a choice of functions, it is necessary to choose one
function for each degree of actuation. Moreover, a good choice of functions
is one in which there is an approximate one-to-one correspondance between
actuators and functions. For example, we would not want to track both the
angle and slope of the stance leg as one actuator would do most of the work
in tracking these functions.
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a1, . . . , a7. To be clear, x[k] is the value of the kinematics

function on the human at data point k.

Solving the optimization problem (11) parameters for the

chosen functions; these parameters are given in Table I. The

correlations, as given in the same table, show that the fitted

functions very closely model the human data. Indeed, the

coefficients of correlation are all between 0.984 and 0.999.

The accuracy can best be seen in Fig. 4. It is important to

note that we also track the angle of the torso in two of our

three models (K2 and K3); however, the magnitude of motion

is relatively small and thus has comparatively little effect on

the dynamics of the system. We therefore decide to track the

mean value of the torso angle for the sake of simplicity.

C. Function Tracking through Feedback Linearization

The human functions described by (10) with parameters

given in Table I essentially encode the human gait. In

order to reproduce this gait on the robotic models under

consideration, a control strategy must be leveraged to track

these functions. The particular control method we will use

is feedback linearization (see [13, ch. 9]). As a general

goal, we would like to achieve autonomous (time-invariant)

feedback. Yet the canonical human function (10) is time-

dependent. To this end, we will first describe a control law

which achieves walking with time-dependent functions; then,

we will introduce a state-based parameterization in order

to express (10) as a state-dependent function without time

dependence. Then, we will describe a control law which

achieves walking using this autonomous function.

Time-Based (TB) Feedback Control. As mentioned, we

will use feedback linearization to track (10). To begin, define

the virtual output

y(q, t) = ya(q)− yd(t). (12)

To satisfy the ouputs (15), we use the standard method

of feedback linearization (see [13, ch. 9]., Because we are

tracking functions of position q which have no dependence

on velocitiy q̇, we have a relative degree two system. Our

goal is to drive (12) to zero, i.e., y(q, q̇, t) → 0. Using the

Lie derivative notation Lf(x)y(x) =
dy
dx
f(x) for ẋ = f(x),

the control law which accomplishes this is given by

uTB(q, q̇, t) = − (LgLfy2(q, t))
−1 · (13)

(

LfLfy(q, t) + 2εLfy(q, t) + ε2y(q, t)
)

TABLE I: Optimized parameter values for human functions.

yd = a1 cos(a2t+a3)+a4 sin(a2t+a3)

ea5t + a6t+ a7

f. a1 a2 a3 a4 a5 a6 a7 Corr.

msl 0 0 0 0 0 -1.267 0.249 0.995

mnsl 0 7.46 -2.452 -0.404 0 0 -0.119 0.999

θsk -0.082 13.31 0 0.207 4.154 0 0.257 0.99

θnsk -0.380 10.979 0 0.197 -0.421 0 0.658 0.993

ϕsh -0.028 14.480 0.830 0.008 1.166 0 .206 0.990

ϕnsh 0 13.209 -4.161 0.053 0 0 0.158 0.992

ϕsa 0 0 0 0 0 -0.259 -0.184 0.984

px
hip

0 0 0 0 0 1.177 0.705 0.999

θT 0 0 0 0 0 0 0.059 0

with control gain ε for control system (f, g). Applying this

control law yields

fcl(q, q̇) = f(q, q̇) + g(q)uTB(q, q̇, t).
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Fig. 3: Forward position of hip.

Time-Invariant Pa-

rameterization. Mo-

tivated by our desire

to design autonomous

or time-invariant con-

trollers, we introduce

a parameterization for

time as is common in

the literature [5], [7].

Denote the parame-

terization by ς : Q →
R

+
0 where R

+
0 rep-

resents forward time;

we would like ς(t) to be approximately linear, i.e., ς(t) ≈ αt

for some α. From Fig. 3, we see that pxhip ≈ v̄xhipt with v̄xhip
the average x velocity of the hip; this approximately linear

relationship motivates the following parameterization:

ς(t) :=
pxhip(q)− pxhip(q

−)

v̄xhip
. (14)

We choose to track vxhip , driving it to a constant. The value

of this constant should be the parameter v̄xhip from (14).

Autonomous (AT) Feedback Control. The parameterization

(14) is a map from state to time and is applied to the desired

human functions. Motivated by our desire to track the human

functions and using (14), we define the following virtual

output:

y(q, q̇) = ya(q, q̇)− yd(ς(q))

with ya the actual function on the kinematics of the robot

and yd the desired value from the human functions. Because

of the use of hip velocity, we have a mixed relative degree

system. Group the output functions as

y(q, q̇) = (yT1 (q, q̇), y
T
2 (q))

T , (15)

where y1 and y2 represent the relative degree one and two

outputs respectively. Similar to the time-based case, the

TABLE II: Function choices for models of interest.
Function CG (TB) CG (AT) K2 (TB) K2 (AT) K3 (TB)

msl • • •

mnsl • • • • •

θsk • • •

θnsk • • •

θT • • •

vx
hip

• •

ϕsh •

ϕnsh •

ϕsf •
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(b) Sagittal Angular Constraints
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(c) Coronal Angular Constraints

Fig. 4: Human data over the course of one step with one leg and the “canonical” functions that are fitted to this data. The

specific variables that are plotted can be seen in Table I.

Fig. 5: Walking with TB (top)/AT (bottom) on model CG.

Fig. 6: Walking with TB (top)/AT (bottom) on model K2.

Fig. 7: Walking with TB on model K3.

control law which drives y(q, q̇) → 0 is given by

uAT(q, q̇) = −A−1(q, q̇)

([

0
LfLfy2(q)

]

(16)

+

[

Lfy1(q, q̇)
2εLfy2(q, q̇)

]

+

[

εy1(q, q̇)
ε2y2(q)

])

,

with control gain ε and decoupling matrix A(q) given by

A(q, q̇) =

[

Lgy1(q, q̇)
LgLfy2(q, q̇)

]

for a given control system (f, g). We apply this control law:

fcl = f(q, q̇) + g(q)uAT(q, q̇).

0 0.02 0.04 0.06 0.08 0.1 0.12

CG−TB

CG−AT

K2−TB

K2−AT

K3−TB

Fig. 8: Eigenvalue magnitudes for all models.

IV. SIMULATION RESULTS

In this section, we describe simulations modeling the

bipeds discussed. For models CG and K2, we simulate both

TB and AT control, and for model K3 we simulate only TB.

Through trial and error, we found that tracking the stance

leg slope with TB control is the best choice; however, we

achieve better results with AT control by replacing the stance

leg slope with the velocity of the hip.

Hybrid System Construction. In order conduct a given

simulation, we must construct a closed-loop hybrid system

by applying some form of feedback control to a hybrid

control system. We do this for each of the models: we apply

(13) to (7), (8), (9) to obtain the hybrid systems H TB
CG ,

H TB
K2 , H TB

K3 , respectively; we apply (16) to (7) and (8) to

obtain H AT
CG and H AT

K2 , respectively. The control gains for

the CG models are set to ε = 15 and the gains for the K2

and K3 models are set to ε = 50. The human functions used

in the control laws (13) and (16) are given in Table II.

Stability Analysis. Fixed points were found for each

model—the presence of a fixed point implies the existence

of a periodic orbit. The eigenvalues (see Fig. 8) are all below

unity implying that the respective periodic orbits are locally

exponentially stable.

A. Compass Gait (CG) Simulation Results

The phase portraits for the TB and AT CG models are

shown in Fig. 9(a); the behaviors agree with the human data.

This trend is further confirmed in the plots of the virtual

outputs, Figs. 9(b) and 9(c). It is important to note that, in

order to achieve walking in the CG models, we had to shift

the y-intercept of the md
nsl output function from −0.119 to 0;

this allowed the non-stance leg to clear the ground. This is the

687



only parameter we had to alter, and we used this parameter

change in the K2 and K3 models to maintain consistency.

B. 2D Kneed Biped (K2) Simulation Results

The phase portraits for the TB and AT K2 models are

shown in Figs. 9(d) and 9(e). Examination of these figures

reveals that AT control and TB control result in slightly dif-

ferent behaviors. This discrepancy is even more pronounced

in Figs. 9(f), 9(g), 9(h), 9(i). The difference in the behaviors

of the two K2 models is a result of the parameterization of

time, ς (14), which we use to obtain state feedback control;

ς is linear in time with respect to the human data, however, it

becomes slightly nonlinear when used as a parameterization

of time in the autonomous model. The nonlinearity in ς has a

greater effect on the system as the complexity of the bipedal

robotic model increases; thus, the discrepancy in behaviors

is more apparent in the K2 models than in the CG models.

C. 3D Kneed Biped (K3) Simulation Results

The phase portraits for the TB model are shown in

Figs. 9(j), 9(k), 9(l). The phase portraits show the inherent

biperiodicity of 3D walking, as a set of two limit cycles

for each angle, which is incurred by the “sway” of the hips

in the lateral plane. We assume this swaying motion to be

relatively insignificant to the overall walking, see [19]; as

such, to obtain walking, we scale down the functions for

the lateral angle constraints of the human. This scaling is

shown in Fig. 9(o) along with the sagittal output constraints

in Figs. 9(m) and 9(n). The slight discrepancy between the

K3 and the human from tracking 2D angle projections.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we showed that kinematics outputs of human

walking can be represented by a single mathematical func-

tion. This result allows us to construct walking controllers

for bipedal robots without any knowledge of the human’s

complex internal dynamics or control methods. The human

functions are relatively “simple” yet, when implemented via

feedback linearization control, yield locally exponentially

stable, periodic orbit or in other words, stable walking gaits,

which are remarkably humanlike in nature.

The methods presented seem to be easily extensible:

in [30], the canonical human walking function is used to

achieve stable walking in the simulation of a human with

a transfemoral prosthesis. In [31], a method is presented

for obtaining the parameters of the canonical functions in

a manner which guarantees stable walking. Our current goal

is to utilize these methods to achieve walking on our 10-DOF

bipedal robot, AMBER. Videos can be found online [32].
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(a) Phase portraits—CG TB/AT
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(c) Outputs—CG AT
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(d) Phase portraits—K2 TB/AT foot/knees
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(e) Phase portraits—K2 TB/AT hip
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(f) Outputs—K2 TB knees
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(g) Outputs—K2 AT knees
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(h) Outputs—K2 TB slopes
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(i) Outputs—K2 AT hip position/slope
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(j) Phase portraits—K3 TB foot/knees
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(k) Phase portraits—K3 TB hip
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(l) Phase portraits—K3 TB 3d
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(m) Outputs—K3 TB knees
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(n) Outputs—K3 TB hip position/slope
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(o) Outputs—K3 TB hip roll

Fig. 9: Phase portraits and human function tracking.
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