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Abstract— Industrial model predictive control (MPC) usually
assumes a step-like disturbance model, which is insufficient
when there is model mismatch in the plant or high order
disturbances. In this paper, we demonstrate that a disturbance
model identified from close-loop data is desirable for dynamic
matrix control (DMC). We introduce a subspace based method
to obtain such a model. The method estimates Markov parame-
ters of the disturbance model using closed-loop data along with
known input-output model information in the DMC controller.
Simulation results are given to compare the proposed approach
with traditional DMC.

I. INTRODUCTION

Model predictive control (MPC) is a widely used con-
trol technique in process industry. One of the first MPC
implementations was developed by Cutler and Ramaker [1]
as dynamic matrix control (DMC). The DMC algorithm
makes predictions of future outputs using a step response
model. The DMC approach was then extended to quadratic
DMC (QDMC) [2] to handle constraints in a quadratic
programming (QP) problem. Recent survey shows that DMC
based MPC products still play an important role in industrial
applications [3].

As a model-based control method, MPC relies heavily on
the accuracy of the model. Either plant model mismatch
or unmodeled disturbances may degrade the control per-
formance. DMC and QDMC uses a step-like disturbance
model to achieve offset-free control. Muske and Badgwell [4]
proposed a block diagonal disturbance model to include both
state and output disturbances. Pannocchia and Rawlings [5]
provided a more general disturbance model without special
structures. However, the filter gain of the state estimator is
predetermined. To avoid the need to specify the disturbances
at the input or the output side, the equivalence between
different disturbance models are shown in [6]. Recently, Xu
et al. [7] proposed an adaptive disturbance modeling method,
but it imposes a special structure on the Kalman filter.

Subspace identification (SID) has drawn tremendous inter-
ests in the last two decades. Several representative algorithms
have been developed, including CVA [8], N4SID [9] and
MOESP [10]. The unifying theorem by Van Overschee and
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De Moor [11] provides a framework in which these algo-
rithms can be interpreted as a singular value decomposition
of a weighted matrix. These algorithms have been widely
used for the open-loop systems because of the advantage
of simple parametrization. However, due to the correlation
between the current input and the past output caused by
feedback, the application of most SID methods to the closed-
loop data typically gives biased estimation. To address this
problem, The SID methods for the closed-loop system were
investigated and developed in the last decade. Qin and Ljung
developed the closed-loop SID algorithm by innovation
estimation [12]. In [13], the pre-estimation of the Markov
parameters are proposed to avoid the non-causal projection.
The statistical consistency is studies in [14].

Most closed-loop subspace identification methods involve
three stages [15]. The first step is to identify a high order
ARX model from properly collected input and output data.
Providing the observer Markov parameter estimation for high
order ARX model, this step by itself is a non-parametric
procedure.

Motivated by DMC and subspace estimation of non-
parametric models, we propose a new DMC technique with a
disturbance model identified by the subspace method using
closed loop data. The observer Markov parameters of the
plant and disturbance model are obtained. Then, system
Markov parameters of the disturbance model is computed
recursively. Moreover, we propose a new recursive relation-
ship utilizing the plant model information to better estimate
the disturbance model. A more accurate DMC prediction is
then made possible by the identified disturbance model. This
Scheme can be implemented adaptively as needed.

II. DYNAMIC MATRIX CONTROL

A. Plant model in step response form

DMC algorithm uses a step response model of the plant
to predict future outputs. Denote yt ∈ Rny and ut ∈ Rnu as
the output and input vector of a MIMO plant respectively.
The relationship inputs and outputs can be written as [2]

y(t) =

N∑
i=1

Si∆u(t− i) + y0 + d(t) (1)

where y0 is the output initial condition, d(t) denotes unmod-
elled disturbances ∆u(j) = u(j)−u(j−1), N is the number
of steps for plant to reach steady-state, and Si is the ith step
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response matrix

Si =


s1,1,i s1,2,i · · · s1,nu,i

s2,1,i s2,2,i · · · s2,nu,i

...
...

. . .
...

sny,1,i sny,2,i · · · sny,nu,i

 (2)

in which sj,k,i represents the ith step response coefficient
from the kth input to the jth output. The k-step-ahead
prediction can be made by

ŷ(t + k|t) = y(t) +

k∑
i=1

Si∆u(t + k − i) + d̂(t + k|t) (3)

where ŷ(t + k|t) and d̂(t + k|t) denotes the prediction of
y(t+ k) and unmodelled disturbances given the information
up to time t , respectively,

The step response model and finite impulse response (FIR)
model can be used interchangeably:

S1

S2

...
SP

 =


1
1 1
...

...
. . .

1 · · · 1



Gp

1

Gp
2

...
Gp

P

 (4)

where Gp
1, . . . , G

p
P are the impulse response coefficients, also

known as system Markov parameters, of the plant model.

B. DMC predictions and offset-free control
From (3), the predicted outputs can be rewritten as

ŷ(t + k|t) =

k∑
i=1

Si∆u(t + k − i) +

P∑
i=k+1

Si∆u(t + k − i)

+ y0 + d̂(t + k|t) (5)

where P indicates the prediction horizon. Define

y∗(t + k) = y0 +

P∑
i=k+1

Si∆u(t + k − i)

which is the effect of past inputs, and stack ŷ(t + i|t), (i =
1, . . . , P ) using (5): ŷ(t + 1|t)

...
ŷ(t + P |t)

 =

y∗(t + 1)
...

y∗(t + P )

+ AM
P

 ∆u(t)
...

∆u(t + M − 1)


+

 d̂(t + 1)
...

d̂(t + P )

 (6)

where M is the control horizon and

AM
P =



S1 0 · · · 0
S2 S1 · · · 0
...

...
. . .

SM SM−1 · · · S1

...
...

...
SP SP−1 · · · SP−M+1

...
...

...
SP SP · · · SP


(7)

is called the dynamic matrix of the system.
DMC assumes a step disturbance model and estimate the

step size using the difference between the current measured
and estimated output, i.e.,

d̂(t + i|t) = y(t)− ŷ(t|t− 1), i = 1, . . . , P (8)

This disturbance model is integrating and is able to achieve
offset-free control for DMC.

C. PLANT MODEL IN STATE-SPACE FORM

We use the state-space form of plant model which will be
useful in the derivations later. Assume the plant is described
by {

xp(t + 1) = Apxp(t) + Bpu(t)

yp(t) = Cpxp(t)
(9)

which is considered to be deterministic and the disturbance
model is written in the following innovation form of Kalman
filter: {

x̂d(t + 1) = Adx̂d(t) + Kde(t)

yd(t) = Cdx̂d(t) + e(t)
(10)

which is considered to be stochastic. When the step-like dis-
turbance model in DMC is assumed, Ad = Iny , Kd = Iny ,
and Cd = Iny

; this type of disturbance model corresponds
to the case that disturbance is integrated white noise.

By augmenting (9) and (10), we obtain{
x̂(t + 1) = Aaugx̂(t) + Baugu(t) + Kauge(t)

y(t) = Caugx̂(t) + e(t)
(11)

where

Aaug =

(
Ap 0
0 Ad

)
, Baug =

(
Bp

0

)
Caug =

(
Cp Cd

)
, Kaug =

(
0 Kd

)T
.

(12)

The subscript aug refers to augmented system.
Clearly, the augmented Kalman gain with the structure

Kaug =
(
0 Kd

)T
is insufficient when there exists plant

model mismatch or disturbance model mismatch. With the
help of closed loop data and subspace identification, it is
possible to estimate a complex disturbance model to improve
the model prediction and control performance. Instead, a full
Kalman gain Kaug =

(
Kp Kd

)T
will be used. We propose

a method to estimate disturbance model from closed-loop
data and a revised form of DMC that includes disturbance
model.

III. SUBSPACE IDENTIFICATION OF A DISTURBANCE
MODEL

A. Identification of the observer Markov parameters

In this section, we develop a method for identifying the
disturbance model in the closed-loop subspace identification
framework. Most closed-loop subspace identification meth-
ods involves three stages:

Stage 1: Perform high-order ARX to give observer Markov
parameter estimates, which is a non-parametric procedure.
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Stage 2: Perform SVD on the Hankel matrix or weighted
Hankel matrix, leading to extended observability matrix
Γ̄f and extended controllability L̄p estimates, which by
themselves are reduced order (n) non-parametric models to
estimate the state and predict the output.

Stage 3: Perform least squares to estimate (Ā, B,C,K)
from Γ̄f and L̄p leading to state-space parametric models.

The Stage 1 of the closed-loop subspace identification
gives the observer Markov parameter estimation in the least-
square sense. Collect the sequence of Markov parameters in
the following form:

Ḡ =
(
CaugĀ

l−1
augBaug CaugĀ

l−2
augBaug · · · CaugBaug

)
H̄ =

(
CaugĀ

l−1
augK CaugĀ

l−2
augK · · · CaugK

)
and

G =
(
CaugA

l−1
augBaug CaugA

l−2
augBaug · · · CaugBaug

)
H =

(
CaugA

l−1
augK CaugA

l−2
augK · · · CaugK

)
where l denotes the size of the past horizon and Āaug =
Aaug −KaugCaug. Without loss of generality, we set H to
be monic, i.e., H0 = Iny . The consistent identification of
G and H is to solve the following equation in by the least-
squares,

Yt = CaugĀ
l
augXt−l + GUt−l|t−1 + HYt−l|t−1 + Et (13)

where

Yt =
(
y (t) · · · y (t + N − 1)

)
, (14)

Et =
(
e (t) · · · e (t + N − 1)

)
, (15)

and Xt−l =
(
x̂ (t− l) · · · x̂ (t + N − l)

)
is the sequence

of the initial states. We introduce the assumption that Āaug

is stable and l is chosen to be sufficiently large, Āl
aug ≈ 0.

Then we have the following least squares estimation,(
ˆ̄G ˆ̄H

)
=

Yt

(
Ut−l|t−1
Yt−l|t−1

)T [(
Ut−l|t−1
Yt−l|t−1

)(
Ut−l|t−1 Yt−l|t−1

)]−1
(16)

where

Ut−l|t−1 =u (t− l) u (t− l + 1) · · · u (t− l + N − 1)
...

...
...

u (t− 1) u (t) · · · u (t + N − 2)


and

Yt−l|t−1 =y (t− l) y (t− l + 1) · · · y (t− l + N − 1)
...

...
...

y (t− 1) y (t) · · · y (t + N − 2)

 .

ˆ̄G and ˆ̄H are asymptotically unbiased estimate of the true
observer Markov parameters since the innovations term in
(13) is uncorrelated to the past input and output data.

B. System Markov parameters of the disturbance model

In order to apply the estimated system Markov parameters
for the disturbance model of MPC, the estimated observer
Markov parameters can be converted to the system Markov
parameters based on the recursive relationship [16]. Define
the estimated observer Markov parameters

ˆ̄G =
(
Ḡl−1 Ḡl−2 · · · Ḡ0

)
, (17)

ˆ̄H =
(
H̄l−1 H̄l−2 · · · H̄0

)
. (18)

1) Using ˆ̄H to estimate H: Knowledge of the estimated
observer Markov parameters allows one to obtain the esti-
mated open-loop Markov parameters by using the recursion
[16]

Hi = H̄i +

i−1∑
j=1

H̄jHi−j−1, i = 0, . . . , l − 1. (19)

2) Using G and ˆ̄G to estimate H: To better utilize the
information of plant model Gp in DMC, we will show the
recursive relationship between Hi, G and ˆ̄G.

Equation (5) provides the knowledge of the system
Markov parameter of the process model, which are Gp

i =
CpA

i−1
p Bp. Given the structure of the augmented system

(12),

Gi = CaugA
i−1
augBaug

=
(
Cp Cd

)(Ap 0
0 Ad

)i−1(
Bp

0

)
= CpA

i−1
p Bp

= Gp
i i = 1, . . . , l − 1

which implies that the system Markov parameters of the
augmented model equals that of the plant model. Then, H̄
can be determined by

Gi = Ḡi +

i−1∑
j=0

H̄jGi−j−1, i = 1, . . . , l − 1. (20)

Therefore, H can be estimated by using H̄ from (20) along
with (19). Note that either method has no approximation;
the quality of estimated H solely depends on how good the
estimated observer Markov parameter are.

From either (19) or (20), an FIR model of disturbance
for DMC can be built using the estimated system Markov
parameters. This procedure is non-parametric and convenient
for use in MPC calculations.

IV. DMC WITH MOVING AVERAGE DISTURBANCE
MODEL

In this section, we will discuss how to implement DMC
with the information of disturbance model. Although in the
last section there is no assumption on Ad other than that Ād

is stable, one may still desire to set Ad = Iny because offset-
free control can be achieved by augmenting the system state
with an integrating disturbance model [17].
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It is convenient to differentiate input and output data in or-
der to identify an integrating disturbance model. Converting
step response model of the plant to impulse response model,
(1) becomes

y(t) =

N∑
i=1

Gp
i u(t− i) + y0 +

N∑
i=0

Hie(t− i). (21)

Differentiation of (21) gives

∆y(t) =

N∑
i=1

Gp
i ∆u(t− i) +

N∑
i=0

∆Hie(t− i). (22)

In this model, the differentiated disturbance model ∆Hi is
stable with its integrators cancelled by the differentiation.
Thus, we can directly identify ∆Hi by applying the method
introduced in the last section.

In order to calculate predictions, integrating (22), we
obtain

y(t) =
N∑
i=1

Si∆u(t− i) + y0 +

N∑
i=0

Hie(t− i) + d0 (23)

where d0 is the initial condition for disturbance. Then, k-
step-ahead prediction can be expressed as

ŷ(t + k|t) =

k∑
i=1

Si∆u(t + k − i) +

P∑
i=k+1

Si∆u(t + k − i)

+ y0 + d̂(t + k|t) (24)

d̂(t + k|t) =

N∑
i=0

Hie(t− i) + d0. (25)

The optimal input moves can be optimized by QP problem
with the prediction model (24) and (25).

Remark 1: Unlike traditional DMC, d̂(t + k|t) usually
does not equal d̂(t+1|t) for k > 1, unless there is no model
mismatch and disturbances can be modeled as integrated
moving average (IMA) (1,1). The reason is that with the
mismatch, the Kalman gain for plant model Kp is nonzero.
Thus, the system Markov parameters of disturbance model
are

Hi = CaugA
i−1
augKaug

=
(
Cp Cd

)(Ap 0
0 Ad

)i−1(
Kp

Kd

)
= CpA

i−1
p Kp + CdKd (26)

where the second term remains constant while the first term
does not. Therefore, it can be inferred that the proposed non-
parametric disturbance model is more general than the step-
like one used in DMC.

V. SIMULATION

In the simulation, we use a SISO plant described by the
following system matrices.

A =

(
0.6 0.3
0 0.2

)
, B =

(
0
1

)
C =

(
1 1

)
, D = 0.

(27)

We generate 10000 data points using an arbitrary MPC
in MATLAB. The setpoint is selected to be 0, and a PRBS
signal is added to input signal to improve closed-loop system
identifiability. The size of past horizon in subspace identifi-
cation is set as 30.

To compare the proposed control scheme with DMC, we
run both controllers with 1000 steps. The prediction and
control horizon are chosen as P = 15 and M = 4. We put
zero weights on input and input move and unit weight on
output so that output variance can be served as performance
metric. The setpoint of reference signal is always 0.

A. Case I: no mismatch in plant model, subject to IMA(1,1)
disturbance

In this case, we assume there is no mismatch of the plant
model. The additive output disturbance is generated by

d(t) =
1− 0.3q−1

1− q−1
e(t) (28)

where e(t) ∼ N(0, 1). Due to the integrator, the disturbance
sequence is non-stationary.

The integrating disturbance model Ad = I with Kd is
sufficient for (28). Fig. 1 shows the estimated system Markov
parameters Hi. It can be seen that since there is no mismatch,
Hi (i = 1, . . . , 30) is flat. The values is quite close to the
theoretical one Hi = CdKd = 0.7.

The output variance of traditional DMC is 1.0925, while
the output variance of DMC with disturbance model is
0.9989. Since both controllers shares the same model, the
difference in control performance is caused by Kd.

B. Case II: no plant model mismatch, subject to
ARIMA(1,1,1) disturbance

Now consider the disturbance to be more complicated:

d(t) =
1− 0.3q−1

1− q−1
1

1 + 0.5q−1
e(t) (29)

which has an additional first-order filter compared to (28). In
this case, Kp will no longer be zero, and Hi will be varying
in accordance with (26).

Estimated system Markov parameters of disturbance
model is demonstrated by Fig. 2. One can observe that unlike
Case I, the system Markov parameters do not reach its final
value in one step. This is because first term on the right hand
side of (26) is nonzero.

The output variance of traditional DMC is 1.8684, whereas
the output variance of DMC with disturbance model is
1.4965. If compared to the control results in Case I, DMC
with disturbance model has a larger output variance, which
is the same as variance of prediction errors when minimum
variance control is applied. This shows that reduced order
modeling of disturbances tends to yield larger prediction
errors.
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C. Case III: with plant model mismatch, subject to
ARIMA(1,1,1) disturbance

We further add plant model mismatch to the simulation.
Let the model (27) be multiplied by 1.2× (1−0.4q−1)/(1−
0.5q−1). It is then converted to step disturbance model and
fed into DMC. Then, the system matrices of plant model can
be described by

A =

0.6 0.3 0
0 0.2 0.4
0 0 0.5

 , B =

 0
1.2
0.3


C =

(
1 1 0

)
, D = 0.

whose order is higher than that of the plant. There is a pole
at q = 0.5 in addition to the poles q = 0.6 and q = 0.2 of
the plant. The disturbance to be added is still (29).

In this work, our goal is to find the best non-parametric
disturbance model that accommodates the existing DMC
model. To achieve best control performance, an alternative
approach is to substitute both plant and disturbance models
from close-loop identification results. We make a comparison
of both approaches in this case.
a) Disturbance model identified by the proposed approach

is first shown in Fig. 3. It is observed that due to the
model mismatch Hi oscillates less. This implies that the
mismatch has been modeled into the disturbance part. The
output variance of traditional DMC is 1.5888, compared
to 1.2482 of DMC with disturbance model.

b) Fig. 4 provides the Markov parameters of the identified
plant and disturbance models. The output variance of the
process controlled by the MPC using identified process
and disturbance models is 1.3950, which is greater than
the proposed method only updating disturbance model.
After carefully checking the identified model, it is found
that the MATLAB n4sid method, which is capable of per-
forming closed-loop subspace identification, has problem
in determining the order of augmented system. A second-
order is estimated, as one can observe in Fig. 4, while the
true augmented system is 5-th order. The reduced-order
model identified by traditional SID methods is unable to
capture some dynamics in the true model. This problem
can be even worse, when the process has considerably
higher order than the disturbance model does.

Table I summarizes the control performance of both
controllers in all three cases. It can be concluded from
the comparison that DMC with non-parametric disturbance
model is able to compensate the performance degradation
caused by plant model mismatch or high order disturbances.

VI. CONCLUSIONS

In this paper, we proposed a subspace method for esti-
mating an integrated moving average disturbance model for
MPC from closed-loop data. In contrast to the traditional
subspace identification method, the proposed approach does
not focus on system matrices A, B, C, which are known
in the MPC model. Instead, we try to utilize closed loop
data and the model information in MPC to obtain or update

the disturbance model. Estimation of system matrices and
the Kalman gain, which is usually an intermediate step,
is then avoided. We further incorporate this non-parametric
disturbance model with DMC, which typically uses a (non-
parametric) step response plant model. The simulation results
demonstrate that DMC with the estimated disturbance model
is able to compensate model mismatch and outperforms
traditional DMC that uses a step-like disturbance model.
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TABLE I
CONTROL PERFORMANCE OF DIFFERENT DMC SCHEMES

Output variance
Traditional DMC DMC w/ dist. mdl. DMC w/ proc.

& dist. mdl.

Case I 1.0925 0.9989 N/A
Case II 1.8684 1.4965 N/A
Case III 1.5888 1.2482 1.3950
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Fig. 1. Identified system Markov parameters of the disturbance model in
case I.
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Fig. 2. Identified system Markov parameters of the disturbance model in
case II.
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Fig. 3. Identified system Markov parameters of the disturbance model in
case III a).
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Fig. 4. Identified system Markov parameters of the plant and disturbance
model in case III b). The upper one is Markov parameters of the plant model,
and the lower one is the Markov parameters of the disturbance model.
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