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Abstract— We consider an on-line inventory control in single-
echelon systems with time-dependent environment over multiple
periods, in which full backlogging and average cost function
are adopted. We seek to control order quantity for each period
so as to minimize a cost function involving maintenance cost
and setup cost for each order. Most of state-of-art inventory
control methods require the assumption that demands are
independent and identically distributed over multiple periods
which could result in a stationary optimal (s, S) or (Q, R) or
base stock policy throughout the whole process. The assumption
is not quite realistic in practice, especially when we face those
disruptive events in supply chain systems. To consider this
time-dependent demands, we develop a novel on-line inventory
control algorithm to directly obtain the optimal order quantity
for the current stage instead of the computation of those
optimal policies like (s, S). A “best solution in probability”
is introduced, which leads to a high-performance inventory
system and can be efficiently obtained by solving a series of
corresponding off-line inventory control problems. Numerical
examples are included to illustrate our results and show
substantial performance improvements over off-line analysis.
Keywords: Inventory Control, Single-Echelon, Time-Dependent
Demand, Multiple Periods, Average Cost, Full Backlog.

I. INTRODUCTION

Supply chain managers and academic researchers have
been taking huge efforts to improve the efficiency of sup-
ply chain systems over years. Many solutions have been
developed to increase overall customer value, such as the
lean production techniques, which can minimize operating
cost by eliminating several types of wastes. However, the
effectiveness issues have been ignored somehow (the fast
growth of the world economics until several years ago might
be a reason). Although those lean techniques could efficiently
minimize the operating cost by eliminating several types of
wastes, they may tremendously increases the vulnerability of
whole supply chain system because they largely reduce the
slackness in the supply chain system.

Many disruptive events have occurred in this decade such
as 911 Attacks in 2001, SARS Pandemic in 2003, Fuel Crisis
in 2008 and H1N1 Pandemic in 2009, which dramatically
affected the international business environments. Currently,
we are still experiencing the historical financial crisis that re-
sults in stock price markdown and demands plummeting over
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the world. Supply chain managers and researchers gradually
realize the importance of supply chain risk management, but
the related research works are quite scarce [6]. When facing
those catastrophes, managers urge quick-fix solutions in a
fire-fighter mode to maintain profitability. Due to the paucity
of the literatures about these effectiveness issues, managers
can only make snap decisions based on a rule of thumb. They
may overreact to time-dependent environment, which may
cause unnecessary waste and an opportunity loss in quickly
catching up when the economic recovery comes.

Inventory control is one of core issues in supply chain
management. To improve the effectiveness of supply chain,
time-dependent environment must be taken into account
when applying inventory control. Many optimal policies have
been developed and studied over decades such as (s, S),
(Q,R) and base stock policies [1], [14]. The (s, S) policies is
one of the most popular policies, which has been proved to be
optimal for some inventory systems since [5] and [8]. More
recent optimality results are obtained in [13] and [3]. The
computation of the optimal policy is much more complicated
than the optimality proofs. Many efforts have been made for
many years [9], [12] and [4]. Most of state-of-art inventory
control methods require the assumption that demands are
independent and identically distributed over multiple periods,
whereas the assumption of i.i.d demand only works for the
case when products are in a mature stage of a product life
cycle and are used regularly [1]. As mentioned above, the
assumption is not quite realistic in practice, especially when
we face disruptive events in supply chain systems. Even if
without those disruptive events, while products are in an
initial growth stage or a phase-out stage at the end of the
life cycle, the demand will commonly follow a trend model,
that is, the demand can be assumed to increase or decrease
systematically. Thus, the assumption of i.i.d demand is a little
bit strong and not quite matched to many real practices.

Although the (s, S) type policy may be still optimal, the
corresponding optimal (s, S) is not stationary, that is, (s, S)
differs over periods, which largely increases the computa-
tional complexity for policy iteration. The algorithm in [12]
is only valid for the i.i.d discrete demand case. The smooth
perturbation analysis method proposed in [4] can get an
unbias estimator of the expected derivative with respect to a
specific control variable based on the sample path analysis,
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which has a potential to extend to the time-dependent case.
However, the dimensionality of the corresponding optimiza-
tion problem will be changed from 2 to 2N (where N is
the number of periods) because of the non-stationary (s, S)
policy over each period, which makes it intractable for those
perturbation analysis based methods.

In this paper, we develop a novel on-line optimal inventory
control algorithm to the single-echelon problem with time-
dependent environment, in which the optimal order quantity
is directly obtained instead of computing the optimal policy
(s, S) for each period. The corresponding on-line optimiza-
tion problem could be formulated as a stochastic program-
ming problem that is very hard to solve for the following two
reason. First, the expected value of the cost function cannot
be analytically calculated. Thus, it is necessary to invoke
simulation-based methods to estimate quantities of interests.
Second, the evaluation of the cost function itself is an off-
line optimization problem. More details will be provided in
the next section. We propose and analyze a new idea that can
reduce the complexity of such simulation-based approaches
by orders of magnitude.

In a standard stochastic programming method, we first
estimate the expected value of the cost function and then
optimize based on the estimated cost. Since the cost function
itself is an off-line optimization problem, O(IM) off-line
problems are required to solve to derive the optimal solution,
where M is the number of sample paths simulated for
estimation purposes, and I is the total number of solutions
evaluated. Since I and M are usually very large, standard
stochastic programming methods may not be applicable to
on-line control. The idea we develop in this paper is to
reverse the estimation-optimization order above: we first
optimize over sample paths and then use the cumulative
distribution function of the solutions to estimate an optimal
solution termed “best solution in probability”(BSIP), which
was first defined in [7]. We show that the BSIP can be
obtained by only solving O(M) off-line problems, leading
to a much faster process amenable to on-line control.

In Section II, we first formulate the off-line inventory
control problem. Based on it, the on-line problem is defined
afterwards, In Section III, we study the structural property
for the off-line problem and an efficient algorithm is derived
to solve the off-line problem. In Section IV, we introduce
the “best solution in probability”, leading to an algorithm
for deriving a complete solution of the on-line problem.
Simulation results are given in Section V illustrating the on-
line capability of the proposed approach and we close with
conclusions presented in Section VI.

II. PROBLEM FORMULATION

In this section, we will consider a periodic review in-
ventory system with time-dependent environment, which
includes random demand, lead time and yield ratio. The
demand is continuous and full backlogging. In what follows,
to avoid the distraction, we will start with the case without
lead time and random yield where only the time-dependent
demand is considered, whose solution method can be easily

extended to the case with random lead time and yield ratio
by using the framework proposed in this paper.

A. Off-line Problem Formulation

Before proceeding to the on-line problem, we need first
to formulate its corresponding off-line inventory control
problem. Let
• xi: the inventory level in period i;
• di ≥ 0: the demand in period i;
• ui ≥ 0: the order quantity in period i;
• h ≥ 0: the holding cost for the inventory;
• p ≥ 0: the penalty cost for the backlog;
• K: the set-up cost;
• c: the purchase cost;
• s: the selling price.
A typical inventory control process could be depicted by

Fig. 1, in which the order ui is set at the beginning of each
period and it is followed by the demand di. The inventory
level xi for the ith period is the inventory level on hand after
the demand di.

Fig. 1. Inventory Control Process

The off-line problem in this paper is an optimization
problem defined over some specific sample path. Although
the demand di for each period is a random variable, it be-
comes a deterministic parameter over a specific sample path.
Therefore, the off-line problem is actually a deterministic
optimization problem. Its objective is to maximize the profit
by setting optimal order quantities for each period.

Let H(x) denote the maintenance cost involving both the
holding cost and shortage cost, which could be defined by
tradition as

H(x) = h ·max(x, 0) + p ·max(−x, 0) (1)

Then the off-line problem over a finite horizons (N periods)
can be formulated as:

min
u1,...,uN

N∑

i

{
H(xi) + K · δ(ui) + c · ui

}

− s ·min

(
N∑

i=1

di, x0 +
N∑

i=1

ui

)

s.t. xi = xi−1 − di + ui, i = 1, ..., N.

where

δ(ui) =
{

1 ui > 0
0 ui = 0
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and x0 is the initial inventory level. The cost function is
the inverse profit function. Its first term is the operating cost
including maintenance cost, set up cost and purchase cost.
Its second term is the total revenue over the N periods.

Since demands are deterministic over a specific sample
path, it is possible to match the total demands by ordering
exact same amount of orders. It is common to assume that
more sales should result in a higher profit when the selling
price s is reasonably larger than the purchase cost c, that
is, the optimal solution of the off-line problem above must
satisfy the equality below:

∑N

i=1
ui + x0 =

∑N

i=1
di

Based on this property, the off-line problem above could be
equivalently reduced to the following one:

min
u1,...,uN

∑N

i=1

{
H(xi) + K · δ(ui)

}

s.t. xi = xi−1 − di + ui, i = 1, ..., N
∑N

i=1
ui + x0 =

∑N

i=1
di.

(2)

Its cost function only involves the maintenance cost and
set up cost, which is actually a common practice in most
inventory control models defined in literatures.

B. On-line Problem

After defining the off-line problem, we now proceed to
formulate the on-line problem. The off-line problem is based
on an open-loop control scheme and its optimal controls
are all obtained at the very beginning. While in the on-line
problem, a closed-loop control policy is adopted, i.e., only
the optimal control for the current period is computed and
applied at the beginning of the corresponding period. Since
the exact amount of the demand cannot be known in advance,
a closed-loop scheme can derive a much better solution than
the off-line solution based on an open-loop scheme because
the closed-loop scheme could take opportunity to improve its
control based on most updated information observed in the
uncertain environment. However, this advantage of the on-
line framework does not come at free, which causes a much
higher computational complexity. It is very crucial to develop
an efficient on-line algorithm to fully utilize this advantage.
The detail analysis will be revealed after the on-line problem
formulation.

Since only the optimal control of the current period needs
to be determined in the on-line framework, we will begin
with an auxiliary problem below, which is adapted from the
off-line problem (2) and only focusing on the control u1,

min
u1

J(u1;x0, ωN ) = H(x1) + K · δ(u1) + L(x1)

s.t. x1 = x0 + u1 − d1.
(3)

where ωN represents a specific sample path over a finite
horizons of N periods, i.e., a sequence of d1, ..., dN in this

case and the function L(x1) is defined as follows,

L(x1) ≡ min
u2,...,uN

∑N

i=2

{
H(xi) + K · δ(ui)

}

s.t. xi = xi−1 − di + ui, i = 2, ..., N
∑N

i=2
ui + x1 =

∑N

i=1
di.

(4)

Clearly, for a specific sample path ωN , the problem (3)
is equivalent to the off-line problem (2) and its optimal
solution u∗1 can be obtained by solving (2). However, the
demands d1, ..., dN are random variables and they may not
be independent and identically distributed. To consider this
uncertain effects, it is necessary to introduce a stochastic
programming setting to formulate the on-line problem. In
this paper, we adopt the average cost over infinite horizons
to measure the system performance. Let

J̄(u1;x0, ωN ) = lim
N→+∞

J(u1;x0, ωN )
N

(5)

and on-line problem could be formulated as

min
u1

{
Eω

(
J̄(u1;x0, ωN )

)}
(6)

The on-line problem (6) is tremendously hard to solve.
It might be able to be approached by dynamic program-
ming method, but the policy iteration is notoriously time
consuming. The estimation of the expected value is very
costly. Since the demands are not independent and identically
distributed, it is impossible to reach a closed form of the
expected value of J̄(u1;x0, ωN ). Besides, evaluating the
function J(u1;x0, ωN ) for some u1 is equivalently to solve
an off-line problem because the function L(x1) involved
in J(u1;x0, ωN ) is an off-line optimization problem. Now
imagine if there are total I solutions are evaluated over M
sample paths during the whole optimization process, then
there are total MI off-line problems required to solve to
find the best solution among these I solutions. To obtain
a good enough solution, we have to accurately evaluate a
large amount of solutions, which implies M and I should
be large. Furthermore, we could not let N go to infinity in
practice. Usually, we pick a large enough N to approximate
the cost function of (6), which also largely increases the
computational burden because of the high dimensionality N .
To overcome these difficulties, a new solution framework are
required. As mentioned in the introduction, we are going
to develop a new idea to solve this problem, in which the
estimation-optimization order is reversed.

III. OFF-LINE SOLUTION

To evaluate the function J(u1;x0, ωN ) for some u1, the
problem (4) is required to solve. Since the problem (4) is
actually a kind of off-line problem defined in (2), we will
first focus on developing an efficient algorithm to solve the
off-line problem in this section.

Several methods had been proposed to solve problems
similar to the off-line problem defined in this paper. In [10],
an efficient algorithm is developed to solve the case without
backlogging. In [11], although backlogging is considered,
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it is not quite efficient to implement because the dominant
set is required to generate and its size grows exponentially
with respect to N . In the following, we will develop a
new algorithm to solve the off-line problem (2) in the
computational complexity of O(N2 log N).

We will start with solving a special case with zero initial
inventory level, that is, x0 = 0. For those cases with non-
zero initial inventory, they could be equivalently reduced to
the case with x0 = 0.

A. Renewal Cycle Property
To solve the off-line problem (2) with x0 = 0, we need to

first reveal an optimality property, termed as “Renewal Cycle
Property”. Let us first introduce the concept of “Renewal
Cycle” as follows.

Definition 1: A renewal cycle is a continuous set of peri-
ods {k, ..., n} such that x∗k−1 = 0, x∗n = 0 and x∗i 6= 0 for
i = k, ..., n− 1.

Since x0 = 0 and xN = 0, there is at least one renewal
cycle within the periods {1,...,N}. Before proceeding to the
“Renewal Cycle Property”, we need to reveal a lemma below
to show that each order should always cover the demands in
a number of consecutive periods.

Lemma 1: If u∗l > 0, then there exists some p, q such that
u∗l =

∑q
j=p+1 dj .

(The proofs in this paper are omitted due to page limits.)
Following this lemma, we could finally prove the “renewal

cycle property” addressed in the theorem below.
Theorem 1: Only one order will be set within a renewal

cycle.
A typical optimal trajectory could be illustrated as in Fig.

2 based on Theorem 1.

Fig. 2. A Typical Optimal Trajectory

B. Off-line Algorithm
Let Jn denote the optimal cost over period {1, 2, ..., n}

ending with the inventory level as zero and Gk,n denote

the optimal cost over a single renewal cycle over period
{k, ..., n}. Then we could have

Jn = min
1≤k≤n−1

{
Jk + Gk,n

}

Based on the renewal cycle property revealed in Theorem 1,
we could define Gk,n as the optimal cost of the following
problem

Gk,n ≡ min
zk,...,zn

∑n

i=k
H(xi)

s.t. xi = −
∑i

j=k
dj + u · zi, i = k, ..., n;

∑n

i=k
zi = 1; u =

∑n

i=k
di;

zi = {0, 1}, i = k, ..., n.

(7)

The problem (7) can be easily solved by a binary search
algorithm with the computational complexity of O(log N).

The off-line algorithm is developed in Table I, in which we
start from J1 and gradually increase n from 1 to N . Finally,
we reach JN that corresponds to the off-line problem (2). Its
computational complexity is O(N2 log N).

TABLE I
OFF-LINE ALGORITHM

Step 1: Start from n = 1 and J1 = G1,1;

Step 2: Compute Gk,n for k = 1, ..., n;

Step 3: Compute Jn = min1≤k≤n−1{Jk + Gk,n};

Step 4: n = n + 1; if n > N stop, otherwise goto step 2.

C. Nonzero Initial Inventory

Before proceeding to the case with non-zero initial inven-
tory, we need to first reveal the follow lemma.

Lemma 2: If x0 ≥ d1, then u∗1 = 0.
There are two possible non-zero initial inventory cases:

x0 < d1 and x0 ≥ d1.
Case (I) x0 < d1. We could reduce it to an equivalent zero

initial inventory case where d′1 = d1 − x0 and d′i = di for
i = 2, ..., N .

Case (II) x0 ≥ d1. Without loss of generality, there always
exists some k such that

x0 −
∑k−1

i=1
di ≥ dk and x0 −

∑k

i=1
di < dk+1

We can have u∗i = 0 for i = 1, ..., k based on Lemma 2.
The remain process {k + 1, ..., N} becomes to Case (I) we
discussed above.

D. Lead Time and Yield Ratio

Let L denote the lead time and α denote the yield ratio.
The L and α may also be random variables like the demand
di. However, over a specific sample path, L and α are
just deterministic parameters. To solve an off-line problem
considering L and α, we could still first solve the off-line
problem (2) and obtain its optimal order quantity u∗i . Then
we just need to set of the amount of order as u∗i /α and place
it L periods before the ith period.
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IV. ON-LINE SOLUTION

In this section, we will develop an efficient on-line algo-
rithm to solve the stochastic programming problem (6), in
which we search for the best solution in probability instead
of the one minimizing the expected value.

A. Best Solution in Probability

Although we find an efficient way to evaluate the function
J(u1;x0, ωN ) in (3), we still face the difficulty of evaluating
its expected value. In the following, we provide an alternative
to standard stochastic programming based on a new idea
which can bypass the difficulty of evaluating this expected
value and fully utilizes the efficiency of the algorithm which
solves the off-line problem(2) as discussed earlier.

Clearly, a closed-form expression for Eω{J̄(u1;x0, ωN )}
in (6) cannot be derived and has to be estimated. If we
proceed via Monte Carlo simulation as in standard stochastic
programming, there are several notable difficulties: (i) it
is costly to evaluate J(u1;x0, ωN ) for each u1. Assume
we randomly generate M sample paths (i.e., realizations of
demands di, i = 1, ..., N , the lead time L and the yield
ratio α) and solve problem (4) for each sample path. Since
problem (4) can be solved in O(N2 log N) by using the
off-line algorithm, the complexity of evaluating a solution
ui is O(MN2 log N). Due to the central limit theorem, the
accuracy of the estimation of this expected value is improved
in the rate of O(1/

√
M), which implies a large number, M ,

of simulations are required to get a good estimation; (ii) if
one is to use derivatives in an optimization algorithm, both
dEω

(
J̄(u1;x0, ωN )

)
/duk and dJ̄(u1;x0, ωN )/duk are hard

to compute because J(u1;x0, ωN ) involves L(x1) defined
in (4) which has no closed form. Only finite differences
can be obtained, which requires two time-consuming eval-
uations; (iii) assuming the total number of iterations is
I , the total complexity of solving the on-line problem is
O(IMN2 log N). It usually may take many iterations to
converge to the optimal solution of (6), which implies that I
is also very large; (iv) the cost function in (6) is defined over
infinite horizons. Although we could use a finite-horizon set-
ting to approximate it, we need to choose a large enough N
to reach a better approximation of the cost function. For the
analysis above, the computational complexity of the standard
stochastic programming method is O(IMN2 log N) where
I , M and N are all very large. Such huge complexity is not
suitable for on-line control.

In the following, we will bypass much of this complexity
by developing a probabilistic comparison algorithm, in which
we search for the “Best Solution in Probability” defined
below instead of the on-line optimal solution, i.e., the one
minimizing Eω{J̄(u1;x0, ωN )}.

Definition 2: u∗1 is the Best Solution in Probability (BSIP)
if and only if u∗1 satisfies,

Pr
[
J̄(u∗1;x0, ωN ) ≤ J̄(u1;x0, ωN ))

] ≥ 0.5 (8)
By this definition, when comparing to any arbitrary solution
u1, the BSIP u∗1 is always more likely to be better than the
arbitrarily selected solution u1.

Remark 1: Generally, the BSIP is not the on-line optimal
solution in the sense of minimizing an expected value as
in (6). One can interpret it as an alternative definition of
optimality to the usual “optimality in expectation” (which
may in fact not be the best choice in some applications).

Remark 2: The BSIP coincides with the on-line optimal
solution under the Non-singularity Condition (NSC) intro-
duced in [7].

Remark 3: It remains an open problem whether the NSC
is satisfied in this particular problem. If so, the BSIP is an
estimate of the optimal solution of the on-line problem (6)
which as we will see converges to the true solution very
fast. Otherwise, the BSIP is a sub-optimal solution which we
expect to be quite close to optimal, assuming “optimality” is
still in the traditional sense of minimizing an expectation.

Based on the analysis above, even if NSC cannot be
satisfied, the BSIP can still serve as a near optimal or good
enough solution to approximate the on-line optimal solution.
In the following, we will prove the existence of the BSIP
for this particular problem by using a construction method.
Then, an algorithm is developed to determine the BSIP in
O(MN2 log N + M log M) complexity. To begin with, we
exploit a property of J(u1;x0, ωN ) as shown next.

Lemma 3: L(x1) is K-convex with respect to x1, that is,
for any x1 < x′1 < x′′1 , it satisfies that

K+L(x′′1) ≥ L(x′1) + (x′′1 − x′1)(
L(x′1)− L(x1)

x′1 − x1
).

L(x1) is actually a cost-to-go function and Lemma 3 can
be similarly proved in the context of dynamic programming
as shown in Section 4.2 in [2].

Let t denote the optimal solution of the problem below

t = arg min
u1

J(u1;x0, ωN )
N

and the function J1(u′′1) possesses the following property.
Lemma 4: If t < u′1 < u′′1 , then

2K + J1(u′′1) ≥ J1(u′1)
Since J(u′′1 ;x0, ωN ) depends on the sample path ωN , t is

also a random variable. Let us define G(u1) = Pr[t ≤ u1]
and

u∗1 = inf
u
{u : u = G−1(0.5)} (9)

where G−1(·) is the inverse function of G(·). Generally,
the BSIP may not always exist. As we proved in [7], if
J(u1;x0, ωN ) is unimodal in u1, then the BSIP is guar-
anteed to exist. Although a K-convex function might not
be unimodal, the parameter K can be regard as the degree
of the unimodality. When K approaches 0, the function
approaches unimodal. Based on this insight, we have the
following lemma.

Lemma 5: If t < u′1 < u′′1 , then

J̄(u′′1 ;x0, ωN ) ≥ J̄1(u′1;x0, ωN )
This lemma finally leads us to the following theorem that
determines the BSIP.

Theorem 2: The u∗1 defined in (9) is a BSIP satisfying (8).
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B. On-line Algorithm

From Theorem 2, we can obtain u∗1 through the cumulative
distribution function of t, G(u1). Since G(u1) is not avail-
able in closed form, we need to estimate u∗1 by estimating
G(u1). We can resort to a Monte Carlo simulation method, in
which we generate M sample paths where a sample path is
generated based on the time-dependent demands d1, ..., dN .
Let ωj

N denote the jth sample path for j = 1, ..., M and let
tj denote the solution of minimizing J(u1;x0, ω

j
N ) in the

jth sample path ωj
N . Then, G(u1) can be estimated by

Ĝ(u1) =
1
M

∑M

j=1
1[tj ≤ u1]

where 1[·] is an indicator function. Let û∗1 = infu{u :
u = Ĝ−1(0.5)}. Based on the strong law of large number,
Ĝ(u1) converges to G(u1) w.p.1 as M approaches to infinity.
Combining this with û∗1 = Ĝ−1(0.5) and u∗1 = G−1(0.5),
û1 also converges to u∗1 w.p.1 as M → +∞. Furthermore,
using the Chernoff bound, we can show that û∗1 approaches
u∗1 exponentially fast as M increases, that is,

Lemma 6: For any ε > 0, there always exists C > 0 such
that Pr

[ |û∗1 − u∗1| ≥ ε
] ≤ 2e−CM .

The remaining question is how to obtain tj for its corre-
sponding sample path ωj

N , which can be fulfilled by apply
the off-line algorithm in Table I. Finally, we could develop
the on-line algorithm in Tab II to efficiently obtain an
estimate of BSIP u∗1. In Step 2 of this algorithm, we only
solve M off-line problems, which can be accomplished in
O(MN2 log N). Moreover, although a good approximation
of the cost function J̄(u1;x0, ωN ) requires a large N , the
optimal solution t could quickly converge with respect to
N . Since we only need to compute the optimal solution tj

for each sample path ωj
N in the on-line algorithm, we can

just pick n << N , a much smaller number of total periods
to approximate the optimal solution tj . This effect can be
observed in the numerical results. The complexity of the
sorting procedure in Step 3 is O(M log M). Thus, deriving
u∗1 is accomplished in O(Mn2 log n+M log M) complexity,
which is clearly a vast improvement over O(IMN2 log N).

TABLE II
ON-LINE ALGORITHM

Step 1: Randomly generate M Sample paths, ω1
N , ..., ωM

N ;

Step 2: Obtain tj by using the off-line algorithm for each sample
path ωj

N , for j = 1, ..., M ;

Step 3: Sort t1, ..., tM to derive Ĝ(u1) and then obtain û∗1 .

(The numerical results are omitted in this paper due to
page limits)

V. CONCLUSIONS

In this paper, we have addressed the on-line inventory con-
trol problem in single-echelon systems with time-dependent
environment, in which a stationary optimal policy like (s, S)
does not exist. To consider this time-dependent environment,
we introduced a close-loop control scheme and developed

a novel on-line inventory control algorithm, in which only
the optimal order quantity for the current stage will be
computed and applied. To fulfill this task, we first obtained an
highly efficient algorithm to solve its corresponding off-line
problem and then proposed an approach leading to a “best
solution in probability” (BSIP). This solution estimates the
on-line optimal control (and converges to it exponentially
fast) if the non-singularity condition holds and otherwise
provides suboptimal solutions. Obtaining the BSIP entails
reversing the order of the usual stochastic programming
approach where one first estimates an expected cost and
then seeks to minimize it; we first optimize the cost over
individual sample paths and then estimate the cumulative
distribution function of the solutions from which the BSIP
is easily obtained. This has the advantage of drastically
reducing computational complexity.

Future work is aiming at studying a more general in-
ventory control system where the inventory depletion is
also allowed. Moreover, we assume that information on
probability distributions of these time-dependent demands
are known beforehand. However, in some applications only
rough information of this type may be available. We plan
to incorporate a forecasting technique, such as time series
analysis, to estimate these probability distributions based on
past history and study their convergence properties when
stationarity applies.
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