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Canonical Forms for Nonlinear Discrete Time Control Systems

Issa Amadou Tall

Abstract—1In this paper we provide a canonical form
for discrete-time control systems whose linear approximation
around an equilibrium is controllable and prove that two
systems are feedback equivalent if and only if their canonical
forms coincide. This is a nice generalization of results obtained
for continuous time control systems. We also compute the
homogeneous invariants under the action of a homogeneous
feedback group. Consequently, as for the continuous systems,
we deduce that the discrete time systems in consideration do
not admit nontrivial symmetries, i.e., a map preserving the
dynamics.

Keywords: discrete-time, normal forms, homogeneous trans-

formations.

I. INTRODUCTION

The study of normal forms of vector fields (differential
dynamical systems) and maps (discrete-time systems) via a
formal approach can be traced back to the works of Cartan
and Poincaré. Poincaré in his Ph.D. thesis (see [16]) proposed
a formal approach which consists of expanding the dynamics
of the vector field or map via Taylor series and looking for
a change of coordinates (called formal transformation) that
simplifies, step by step, the terms of same degree of the
system. For a vector field v(x) or equivalently, the dynamical
system (resp. map)

+

t=v(z), (resp. z" =v(x))

around an equilibrium point z. = 0, ie., ¥(0) = 0, we
associate the Taylor series expansion for dynamical systems

oo
§ v 7”

m=

i = v(x) = (@) + V2 ()

[

respectively for maps,

x"" = y(aj) — y[ ]( ) + V[Q] Z V”L]

m=1

where for any m > 1, each component of the vector
field vI™(x), say 1/[ ]( ),j =1,...,n, is a homogeneous
polynomial of degree m. For a change of coordinates z =
©(x) we consider its Taylor series expansion

o0

> ).

m=1

2= () = ol (z) + P(2) + - =

The first problem addressed by Poincaré is whether a formal
transformation z = o(x) exists that transforms the dynamical
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system (resp. map) into a linear differential equation (resp.
linear map)

(resp. 2T =p(v(p (2)))

2= p.v(z) = Az, = Az.)
We refer to the literature for conditions on linearization of
vector fields which are strictly related to the eigenvalues of
the matrix A.

For continuous time control systems
z = f(x)+g(zx)u,z € R* u e R™

Krener was the first to adapt Poincaré’s classical method to
control systems and was followed by a vast literature on
normal forms [10], [11], [12], [13], [18].

The continuous time method was extended to discrete time
control systems with various normal forms obtained in [2],
[5]1, [14] for quadratic and cubic terms. Normal forms for all
degrees was obtained by [9] for linearly controllable discrete
control systems and recently another treatment appeared
n [15]. Linearization and/or approximate linearization of
discrete time control systems have been addressed in several
papers [1], [15] and the references therein.

Let us acknowledge that the formal approach has proved
to be very useful for both continuous time and discrete
time systems. Stabilization of systems with uncontrollable
linearization, in continuous and discrete-time, were studied
in [3], [4], [6], [7], [8], [13], [14], a complete description of
symmetries around equilibrium [17], [21], and a characteri-
zation of systems equivalent to feedforward forms obtained
in [19], [20].

In this paper, we generalize the results of [18] by providing
a canonical form for discrete time control systems. The
main result states the fact that two discrete time control
systems are feedback equivalent if and only if their canonical
forms coincide. As a consequence of this canonical form,
we also deduce that single-input discrete-time systems with
controllable linearization do not admit symmetries (see [21]
for continuous-time systems).

The paper is organized as following: we first recall
briefly our result on normal forms [9] and in Section III,
we construct a canonical form for discrete-time nonlinear
control systems whose linear approximation is controllable
followed by an illustrative example. The proofs are given in
Section IV. In the last section we extend the results of [21]
to single-input discrete-time systems whose linear approx-
imation is controllable, showing that if the system is not
truly linearizable, then it admits no symmetries preserving
the equilibrium.
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II. NORMAL FORMS

We briefly recall here some results obtained for normal
forms (see [9] for details) and [15] for a different approach.
Consider a discrete-time nonlinear control system

O:2t = f(x,u), =z()eR” u(-)€R,

where (k) = x(k + 1), and f(z,u) = f(z(k),u(k)) for
any k € N, and a feedback transformation of the form

) 2=(2)
T { u="v(z,v).

The transformation Y brings II to the system
II:2% = f(z,0),
whose dynamics are given by

F(z,0) = @(f (97} (2),7(2,0)) -

Conversely, if systems II and IT are given, we say that they
are feedback equivalent if there is a feedback transformation
Y that maps IT into II as above. We suppose that (0,0) €
R™ x R is an equilibrium point, i.e., f(0,0) = 0, and we
expand the system via Taylor series

T =Fr+Gu+ Zf[m}(amu).

m=2

II°° :

Few important questions are addressed. What is the sim-
plest form the map II can take after action of feedback
transformation Y? Is that form unique? Does there exist
feedback transformations Y that leave invariant the map II,
that is, such that f(z,v) = f(z,v)? We would call the
diffeomorphism z = @(z) a symmetry of II if there is a
feedback u = y(x,v) so that the feedback transformation T
leaves II invariant. We obtained the following [9].

Theorem I1.1 The control system 11°° is feedback equiva-
lent, by a formal feedback transformation Y°° of the form

z=p(x)=Tz+ Y o™(x)
T ! m=2
u=vy(z,v)=Kr+Lv+ > ’y[m](x,v)

m=2

to the normal form

t=Az+ Bv+ Zf[m](z,v),

I¥r: 2z
m=2

where for any m > 2, we have

nil P[m—Q]( ) i1 .
I 212 P55 zi) Hl<j<n
M ey={ it ' (IL1)

0 if j =n.
Above, z,.1 = v denotes the control, Z; = (z1,--- , z;), and

the pair (A4, B) is in Brunovsky canonical form.

FU (, w)=f ) (o u)

The formal transformation T is viewed as a composition
YT®=...0T"o---07Y! where for

Tl z=Tx
' u=Kx+ Lv
and Vm > 2 the homogeneous feedback transformation

om [ =t eM)
u=v+~"(z,v)

act on the corresponding homogeneous part of the system as

Proposition 1.2 The homogeneous feedback transforma-
tion Y™ leaves invariant all terms of 1I*° of degree smaller
than m, and transforms the homogeneous part fI™ (:c, u) as

N(Az+Bu)—Apl™ (2)+ By (x, u)
or equivalently, for all 1 < j <n —1,

P (Az + Bu) — U () = FI"™ (2, u) — £ (2,0)

[m] (Az + Bu) + 4" (z,u) = fr[Lm (z,u) — [m] (x,u).
(I1.2)

A. m-Invariants

First, an invariant under a feedback group transformation
is an object (property, function, vector function, relationship)
that is preserved by the action of the group. In other words
all elements of the same equivalence group share that same
object. In this section we investigate potential invariants
related to the action of the feedback transformation Y.

Let us introduce some notation. For convenience we will
putu =z, 1, and for any 1 < k <14 < n+1, we will write

T = (vk,...,2:,0,...,007 e R*FL

Notice that any homogeneous function Al (21
can be decomposed uniquely as following

n+1 Ty T4
= Y / hi A (@) dsids,

1<k<z<n

. 7$n+1)

h[m] (.’L‘]_, .. $n+1

where in the integrand, the variables = and x; are respec-
tively replaced by s and s;.

Now consider the degree m homogeneous part f[™ (z,u)
of II*°, and decompose each component f][m] (z,u) as:

n+1ln+1

f[m] (z,u) ZZ/ / fJ zm 2] ) dsids.  (IL3)

k=1li=k
Define the homogeneous polynomials a%_ﬂ (z;) as

n—i+2

m2] Z

forany 1 <j<n-1 andanyj+2 <43 <n+1. We claim

. [m—2],_ . .
that the homogeneous polynomials a; ; (Z;) are invariants
under the action of the homogeneous group transformation
T™. This fact is stated in the following proposition.

k[m 2]

Gtk— 1z+k' 1(T4) (IL.4)
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(i)

Proposition IL3 (a) Consider a system 11 and let TI™®

be its transform via a homogeneous feedback transforma-
[m 2] ~[m—2]

tion Y™. Then we have aj; i that is,
n—i+2 n—i+2
k:[m 2] m—2]
Z Gtk— 11+k 1 ( Z fg+k 1itk— 1 (@)

foralllﬁjgn—la[zdallj+2§i§n+1.
(b) The normal form fl™ (z,v) given by (IL.1) is such that

an[m]

92207 b n(z),3<j+2<i<n+1, (L5
1U%4 (%)

where W;(2) = {z € R" : 2y =+ = 2,41 = 0}.

The proof of the proposition is given in the section IV.

III. CANONICAL FORMS.

The objective of this section is to give a canonical form for
discrete-time control systems. Indeed, the normal form II3?
given by is not unique under feedback transformations Y°°.

Let mg be the degree of the first non linearizable homo-
geneous terms of the system 11°°. Without loss of generality,
we can suppose that the system is of the form

1 : o =Ax+Bu+ fI™) (2, u) Z FIml(z,u),  (IIL1)
m=mo+1
where the components of f™ol(z,u) are given by
ndl [mo—2] /=y - .
R ERNS —%zzlzipj’i (z) ifl<j<n (IT1.2)
0 if j =n.

Let 1 < j. < n—2 be the largest integer such that f][z"“] # 0.

Take (il, s ,in+1), with il + -4 in+1 = myo, to be the
largest (n + 1)-tuple of nonnegative integers such that
omo f[mo]
——— 0. (II1.3)
Oz -+ 0z,

Now, we can state our main result.

Theorem III.1 The control system I1*° is feedback equiva-
lent via a formal feedback transformation Y >° to the system

O¥p:2" =Az+ Bv+ Z Mz, 0)

m=mao
where for any m > mg, we have

n+1 [m 2]
S z1z:P (z;) H1<j<n

FMz,v)={ iZ5ts (IIL.4)
0 if j =mn;
Additionally for any m > mgy + 1 we have
gmo _[’mo] gmo Flm]
# = +1; (ii) — 5. - =0. (IL5)
0zy" -+ 0z, 0zy" -+ 0z, W1

The system 11, defined by (II1.4)-(IIL.5) will be called the
canonical form of II°°, and this name is justified by the
following theorem.

Theorem IIL.2 Two discrete time control systems 113° and
II5° are feedback equivalent if and only if their canonical
Jorms 113 g and 115° . coincide.

Proposition I1.3 will play a crucial role in the proof of
Theorem III.1.
IV. PROOFS
In this section we will prove our main results, that is,
Proposition I1.3, Theorem III.1, and II1.2.
A. Proof of Proposition 1.3

(a) It is enough to show the equality when the system
I1°° is transformed into a normal form II®°. The general
case follows from the following commutative diagram

(Tm)fl o Y™
I1°° II*®
T"\ / Tm
HYr
Indeed, on one hand side agm 2 _ a[f':q] and on the
other ag 2= a[m %l Which implies a[ 2= ~§$72].

Mb)Let1 <y < n — 1. Notice that

m ZZ/ / k[m 2] dS (s,

k=1i=k
from which we deduce that

n+1ln+1
[ A:E+Bu ZZ/ / " 1[m 2] Th) ds;dsy.

k=2i=Fk
Decomposition (II.3) and Proposition 11.2 (IL.2) imply

n+1ln+1

Tl QT
D) DY iy zz// o
k=2i=k e ndl k=1i=k

_f[m] (2, u) ;2;/ / f“m 2 (71 dsidsy

for 1 <j<n-—1. Letj+ 2 <i < n+ 1. Differentiating
twice with respect to x and x; yields the following system

32f[m]
i) L = fim k=1i=n+1
(1) a$1axn+1 jn+1 ( , 2 n + )
62f[m]
im=2] Y J5 1[m—2] .

( ) 99j+1 1 83318.]31' - 4, 5 1 S 1 S n

(iii) @ 0 — A = o<k <i<n
(iv) @ 1 = 2 2<k<n+1

From (i) we see that (IL5) holds for ¢ = n + 1. From (ii)
we have -
2 Flm

0°f; _
81'18561'

1[m—2]
Jst N

1[m—2]
J+1,
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Substitute j by 7+ 1, ¢ by ¢ + 1, and k£ = 2 in (iii), to get

1[m—2 2[m—2 2[m—2
gO][‘rl i I= %er z+]1 fjJ[rl,H»]l
and hence
2 Flm]
OF " _ pimal pm=2 2lm)
axlaxi 7 Jj+1,i+1 ¢j+2 i+1°
Using (iii) repeatedly, and at last (iv), we arrive to
82]¢T[m] 1
[m—2] 2[m—2] n—i+2[m—2] _  [m—2]
m =fii Tttt miet = 4

All expressions above are restricted to the set W;(z).
Now fort < j+4+1or 2 <k <i<n-+1 we already have
2 lm]
9°f;

0x0x;

because of the normal form (II1.4) (see [9] for proof).
To complete the proof we need to show that

2 Flm]
am (z;) = o5
7 0x10z; lw;(2)
Using the decomposition
n+1ln+1
f[m] (z,u) ZZ/ / f7m 2] %) dsidsg
k=1i=k
£m] ! [m—2]
and the fact that f; " (z,u) = > zix;iP;; ~(¥;) we

i=j+2
deduce that f Im=2) (i ¢) =0 for k > 2. Thus

ntl ez pa; B )
]?][m] (z,u) = Z/ / fﬁ&m”] (z]) ds;dsy.
i=170 /0

Hence, differentiating twice the above expression, we have

82‘)(-[7”]

_ Flm=2],_;
awléwz Wi(z) - fj,i (1‘11)
n—i+2

k[ 2]
= Z +TZ 1,i+k— 1(:172)

_ [m 2] (m—2]
- Jz (xl) a]z (.1?1)

This achieves the proof of Proposition II.3.

B. Proof of Theorem III.1

Let us consider the system

1> : Ax+Bu+f[m°] (z,u)

Z.f

m=mo+1

(IV.1)
where the components of the vector fields fI™l(z,u) are of
the form (III.2). A linear feedback of the form z = Az, w =
Au takes the system (IV.1) into

£mo) e
I1*° +*Az+Bw+f7(zw)+ Z

FImi(z, w)
AmoT '

A= 1

m=mo+1

We can thus choose A so that (III.5) is satisfied.

Let us suppose that the system (IV.1) is transformed, via
a polynomial feedback, to the form

mo+i—1 oo
I°°:2 =Ax + Bu + Z fimol (2 u) + Z Fiml(a, u)

m=mo+I
Iv.2)
for some [ > 1, where for any mg < m < mo +1—1,
the components of the vector fields fI"™(z,u) satisfy the
conditions (II1.4), (IIL.5).
We will apply the homogeneous feedback transformation

i+ z =+l (z)
| w=v A (),

whose components are given by

m=mg

Py @) = apaatt!
Py (@) = oAz + Bu) = arpaal?
(IV.3)
pn (@) = b Az + Bu) = appalf!
A (g, w) = Pt (Az + Bu) = a;ultL.

It is straightforward from Proposition II.2 that the feedback
transformation Y!*1, defined above, leaves invariant all
terms of degree less or equal to [ 4+ 1 of system (IV.2).
Moreover, it transforms (IV.2) into

mo+l—1 0
I =ArtBrt Y fl(z o4 Y flM(z,0), @V
m=mg m=mgo+I

where

Fomotll (z, )=o)z v)+ | il (z,0), 10 (2) | aV5)

Without loss of generality we can suppose that the compo-
nents of fl™o+(z v) are of the form (II1.4). Now, if we
denote by fImotl(z v) = [flmol(z,v), oI+ 1(2)] with the
components given by

£t (2, v)=a1

afml
3Zk

(1 +1)2 M)z, v) Z 12
k=1

[mo +1-2]

for 1 < j < n. The m-invariants a- associated with

the homogeneous part f flmo+ ](z v) are given by

+fn i+2[mo+1— 2](22)

~[mo+1—2 mo+1—2
a[' 'O = fj[ ’ ]( ) n+j—i+1,n+1

3si i
and for j = j,, ¢ = n+ 1 reduces to (recall definition of j,)

~lmo+1—-2] _ pl[mo+1-2]
Jue,n+1 fj*,n+1 (ZTH‘l)
from which we have
mo+1—2 4 [mOJFl 2] mgo Flmol
ame J*,n+1 9 Of
i1+1—1 fnty1—1 = —al+1(l+ 1)| i1 G4l
0z 2y - 0z i Ozyt -+ 0z,
By the superposition principle of invariants, we deduce

from (IV.5) the identity

[mo—i-l 2] [mo+1—2] /- ~[mo+1—2] /=
a;; (zi) = aj; (zi) +a; (%)
gmoti—25 [mo+1-2]
and we can choose a;41 so that — s utl = 0.
+ 021 T ozi2 g i T
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C. Proof of Theorem II1.2

Consider two systems 1I°° and I1°° and suppose they are
feedback equivalent. Let

0¥ : 2T=Az+ Bv + Z FIr (2, 0),

m=mygo
and

gy :st=Az+Bo+ Y fI"(z,9)

m=mg

be their respective canonical forms with fI™l(z v) and
fIM(%,0) as in (IIL4)-(IIL5). Necessarily, mg = rmg. Oth-
erwise if mog > o the homogeneous terms of degree
mgo of II°® being zero implies (Proposition II.3) that the
corresponding invariants are also zero. Thus f[o] (z,v) =0
which contradicts the definition of mg. The argument works
similarly if mg < mg by inverting the role of the systems.
Consequently fl0l(z, v) = flmol(z, ). ~

Assume that for [ > 1 we have fl"(z,0) = fI™(z, 0)
for mg < m < mg + 1 — 1. Then the transformation

F=z+ 3 o™(2)
T: m=2
v=0+ Y, 'y[m](z,ﬁ),

m=2

mapping 112 into f[%OF should preserve all terms of degree
less or equal to mo + I — 1 and transform the terms
flmotl(z,0) into flmotl(z 5). It is easy to see that the
components of T are given by

oM(z) =
ebl(z) = PM(Az 4 BO) = apmzp

am2T"

wgn](z) = @L?Z]l(Az + B?) = a2
Al (z,0) = gpgn] (Az + B?) = a,, 0™

for my < m < mg+I[—1. Moreover, the action of Y implies
the following equality

Frmot(z,v) = frmotll(z,0)+ [ Fmo] (2, ), o141 (2)]
from which we deduce (see steps above) that

m :[m +]
o™ fi”

il in+l_ 1:1
R Ene i ELARER

amO f_[in'O'H]

Gn41
azn+1

87710 f_[inO]

—aj41(14+1)!

Taking the restriction on the subset
Wi(z) = {(zl,...,an) ER™! | zp = =241 = 0}

and using the fact that fI"*™ and F7™ ™ sadisty (IILS)Gi),

*

we deduce that a;1; = 0 and thus flmotll(z v) =
flmotl(z, v). This completes the proof of Theorem III.2.

i1 Tn41
Ozt -+ 0z,

V. EXAMPLES

Consider the Bressan and Rampazzo’s variable length
pendulum (see [18]) described by the equations

T 1 = X2

Ty = —gsinzs + z1u?

j?g = u,
where x; denotes the length of the pendulum, x5 its velocity,
x3 the angle of the pendulum with respect to the horizontal,

u its angular velocity, and g the gravity constant.
We discretize the system by taking

T1=Ty —T1,T2==Ty — T2,L3=T3 — T3

The system above rewrites

r{ = X1+ T2
x; = 29 —gsinzs +zu?
xg' = X3+ u.

The change of coordinates

(fl = I

532 = T9 + X1

T3 = —gsinxs + 2x9 + 21
U = i;

takes the system into the form

xq = jg
~+ _ ~ ~ 2 ~ ~ ~ ~
Ty = T3+ T1h*(%1,%2,T3,0)
o= @

Actually the function h2(Z1, o, 73, %) can be decomposed as
h?(&1, &2, 83,0) = ha(T1, T2, T3) + Wha(Z1, T2, T3, 4)

where the 1-jet at 0 of h; is zero and ho(0) = 0. Put
Hy(Z1,%2,%3) = T1h1(T1, T2, T3)

The objective is to show that we can get rid of the
terms H,(Z1,Z2,T3). Let us suppose that the k-jet at 0 of
Hy(Z1,&2,%3) is zero. Consider the change of coordinates
Z1 = T1,29 = To,23 = T3 + Hl(i'h.i‘g,{z‘g),’l} = Z; This
change of coordinates takes the system into the form

2 = 22

y = zm+H 3) + z10H

z3 = 23 1(21, 22, 23) + 210Ha (21, 22, 23, V)
zs = .

where ﬁl(zl,z%z:;) and H2(21,22,23) are some smooth
functions. It is enough to remark that the (k+2)-jet
at 0 of f{g(zl,zg,Zg,) is zero because the 2-jet of
z10Hy (21, 22, 23, v) is zero. Then by iteration we can cancel
terms Hl(Zl,ZQ,Z3) and put the system into the desired
normal form

29 = 29

+
ze = z3+ 210P(21, 29, 23,0)
i = o

Since the linear approximation of the transformation above
is such that 21 = x1, 29 = 1 + 2, 23 = 1 + 229 — gx3, We
have z3 ~ é(zl + 229 — z3) and we can thus show that the
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degree of the first non linearizable terms is 3, i.e., my = 3,
and the largest 4-tuple is (i1, i2,%3,%4) = (2,0,0,1). In other
words z1vP(z,v) can be expanded in Taylor series as

21vP(z,v) =2z1v (clzl + 929 + 323 + cqv + P2 (z, v))

where ¢; # 0. By a linear change Z = Az with A = /||
the coefficient of the term z?v becomes equal to sign(c;).
A change quadratic change of coordinates of the form

Z = 21+ a2,
Zy = 23+ a7,
23 = z3+ 0,22%
whose inverse is in the form
a = & —af+ e (3),
zZ9 = 22 — a22§ + (,0[223](22),
z3 = Z3—agii+ 90[323](53)

yields z;” = Z2 and

75 = 2 +ag(2)?=23 + 210P(2,0) + az(23 + 210 P(2,v))?

= 23 + agz3 + z1v (sign(c1) 21 + c229 + 323 + c4v
+210P2A(2,v))
= Z3 +sign(c1) (51 — a23})%(0 — ag0?) + 210P(3, 9),

where ¥ = 2§ = v + axv?. Notice that this system is still

in normal form as the nonlinear terms are still in the form
219Q(%, 7). The expansion of (31 —a3?)?(—ag0?) contains
the term —2a22§’6 and the value of as can be chosen to
cancel the corresponding term in 2117]5(57 ). Repeating the
same process we show that we can eliminate all terms zi“v
with [ > 3 and put the system in the canonical form

Zfr = 22
2y = 23+ 21vP(21, 22, 23,0)
z = v,
D320 P(z,v .
where M = 0 or equivalently
0z70v 21=0

P(z,v) = sign(cy) + 22 P (Z2) + 23P(23) + vP3(2,0).
Symmetries
Consider I*® : zF = f(z,u) = Fx+Gu+ > f" (2, u)

and let A(zx) = {f(z,u),u € R} be its ﬁeldmof2velocities.
A diffeomorphism z = o(z) is called a symmetry of II*° if
0. A(z) = A(o(x)), where 0, A(z) = {o(f(z,u)),u € R}.
In other words z = o(z) is a symmetry of II*° if there
is a feedback u = ~(x,v) such that the feedback trans-
formation T : (o(z),7y(x,v)) transforms II*° into itself.
Following [21], we can show, using the commutative diagram

g
I1°° I1°°
P P
00 oo
CF CF

that the system do not admit nontrivial symmetries pre-
serving the equilibrium. This is due to the uniqueness of
the feedback transformation Y°° that takes a system into its
canonical form. Indeed, any symmetry o of II°*° gives rise
to a symmetry ¢ of the canonical form IIg¥.
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