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Abstract— This paper presents a probabilistic formulation of
the model validation problem. The proposed validation frame-
work is simple, intuitive, and can account both deterministic
and stochastic nonlinear systems in presence of parametric and
nonparametric uncertainties. Contrary to the hard invalidation
methods proposed in the literature, our formulation allows a
relaxed notion of validation in probability. The construction of
probabilistically robust validation certificates provides provably
correct guarantees. Computational complexities and numerical
examples are given to illustrate the method.

I. INTRODUCTION

Model validation problem refers to the quantification of

reliability to which a given model is consistent with the

physical observations. It has been argued in the literature

[1], [2] that the term ‘model validation’ is a misnomer since

it would take infinite number of experimental observations

to do so. Hence the term ‘model invalidation’ is preferred. In

this paper, instead of hard invalidation, we will consider the

validation/invalidation problem in a probabilistically relaxed

sense.

Given the experimental measurements of the physical

system in the form of a distribution, we compare the shape

of this measured output distribution with that predicted by

the model. At every instant of time, if the model-predicted

distribution matches with the experimental one “reasonably

well”, we conclude that the model is validated to be a good

candidate with some quantification of such “goodness”.

Fig. 1. The proposed model validation framework compares experimentally
observed output PDF η (y, t) with the model-predicted one η̂ (y, t), the
comparison being made with respect to some suitable metric J (η, η̂).

Fig. 1 shows the outline of the proposed model validation

framework. The experiment is carried out with the physical

plant taking some initial distribution ξ0 (x̃). Given the data

for experimentally observed output distribution η (y, t), one

starts propagating the same initial state probability density

function (PDF) through the proposed model’s state dynamics,

thereby computing instantaneous state PDF ξ (x̃, t) and from
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it, obtains the output PDF η̂ (y, t) using the output dynamics

prescribed by the model. If the output PDFs η (y, t) and

η̂ (y, t) are “close” in the sense that a suitable distance metric

on the space of probability densities, J (η, η̂) remains small

(within the specified tolerance level) at all times t when the

experimental data are available, then it will be concluded

that the model is “close” to the physical plant with some

quantitative measure.

Since the basic idea relies on comparing the concentration

of output trajectories at each instant of experimental obser-

vation, one can think of three distinct segments of such a

model validation framework. These are

1) Uncertainty propagation: evolving state and output

PDF using the proposed model.

2) Distributional comparison: measuring distance be-

tween the experimentally observed and model-

predicted output PDFs and computing the margin by

which the model-prediction obeys/violates the speci-

fied tolerance level.

3) Construction of validation certificates: probabilistic

quantification of provably correct inference in this

framework and providing sample complexity bounds

for the same.

With respect to the literature, the contributions of this

paper are as follows.

1) Instead of interval-valued structured uncertainty (as

in H∞ control framework [1]–[3]) or moment based

uncertainty (as in parametric statistics framework [4]),

we deal with model validation in the sense of nonpara-

metric statistics by considering aleatoric uncertainty. In

other words, the uncertainty in the model is quantified

in terms of the PDFs of the associated random vari-

ables. We argue that such a formulation offers some

advantages. Firstly, we show that model uncertainty

in the parameters and initial states can be propagated

accurately by spatio-temporally evolving their joint

pdf. Since experimental data usually come in the form

of histograms, it’s a more natural quantification of

uncertainty than specifying sets [5] to which the trajec-

tories are contained at each instant of time. However, if

needed, such sets can be recovered from the supports

of the instantaneous pdfs. Secondly, as we’ll see in

Section IV, instead of simply invalidating a model, our

methodology allows to estimate the probability that a

proposed model is valid or invalid. This can help to

decide which specific aspects of the model need further

refinement. Hard invalidation methods don’t cater such

constructive information. Thirdly, the framework can
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handle both discrete-time and continuous-time nonlin-

ear models which need not be polynomial. Previous

work like [5] dealt with nonlinearities specified by

semialgebraic sets and relied on sum of squares (SOS)

decomposition [6] for computational tractability. From

an implementation point of view, the approach pre-

sented in this paper doesn’t require such conservatism.

2) Due to the uncertainties in initial conditions, param-

eters, process and measurement noise, one needs to

compare output ensembles instead of comparing in-

dividual output realizations. This requires a metric

to quantify closeness between the experimental data

and the model in the sense of distribution. We use

Wasserstein distance to compare the output pdfs and

argue why common information-theoretic quantities

like Kullback-Leibler (KL) divergence are not appro-

priate for this purpose.

3) We show that the uncertainty propagation through

continuous or discrete-time dynamics can be done in

a numerically efficient way, even when the model is

high-dimensional and strongly nonlinear. Moreover,

we outline how to compute the Wasserstein distance

from scattered data, in this multivariate setting. Fur-

ther, borrowing ideas from the analysis of randomized

algorithms, we give sample-complexity bounds for

probabilistically robust model validation.

The paper is organized as follows. Given a model, we

outline the uncertainty propagation methodologies in section

II. Section III describes how to compare the joint output

PDFs for model validation. Next, section IV provides a

constructive algorithm to compute probabilistically robust

validation certificates to guarantee provably correct deci-

sions. A numerical example is provided in section V to

illustrate the efficacy of the proposed formulation. Section

VI concludes the paper.

II. UNCERTAINTY PROPAGATION

A. Deterministic System

1) Continuous-time models: Consider the continuous-

time nonlinear system with state dynamics given by the ODE

ẋ = f (x, p) , (1)

where x (t) ∈ X ⊆ R
n is the state vector , p ∈ P ⊆ R

p

is the parameter vector, the dynamics f (., p) : X 7→ R
n

∀ p ∈ P and is at least locally Lipschitz . It can be put in an

extended state space form

˙̃x = f̃ (x̃) , (2)

by introducing x̃ :=

{
x

p

}
∈ X × P ⊆ R

n+p, and f̃ =
{

fn×1

0p×1

}
. The output dynamics can be written as

y = h (x̃) , (3)

where y (t) ∈ Y ⊆ R
ℓ is the output vector and h : X ×P 7→

Y is a surjection. If uncertainties in the initial conditions

(x0 := x (0)) and parameters (p) are specified by the initial

joint PDF ξ0 (x̃), then the evolution of uncertainties subject

to the dynamics (1), can be described by evolving the joint

PDF ξ (x̃, t) over the extended state space. Such spatio-

temporal evolution of ξ (x̃, t) is governed by the Liouville

equation given by

∂ξ

∂t
= L ξ = D1ξ = −∇. (ξf) = −

n∑

i=1

∂

∂xi

(ξfi) ,(4)

which is a quasi-linear partial differential equation (PDE),

first order in both space and time. Notice that, the spatial

operator L is a drift operator D1 that describes the advection

of the PDF in extended state space. The output PDF η̂ (y, t)
can be computed from the state PDF as

η̂ (y, t) =
ν∑

j=1

ξ
(
x̃⋆

j

)

|det
(
J

(
x̃⋆

j

))
|

(5)

where x̃⋆
j is the jth root of the inverse transformation of

(3) with j = 1, 2, . . . , ν. J is the Jacobian of this inverse

transformation and det(.) stands for the determinant.

2) Discrete-time models: We start with the following two

definitions.

Definition 1: Let X × P ⊆ R
n+p be a compact set and

let B (X × P) be the Borel-σ algebra defined on it. With

respect to the measure space (X × P,B, µ), a transformation

T : X × P 7→ X × P is called measurable if T −1 (B) ∈
B, ∀B ∈ B.

Definition 2: A measurable transformation T : X ×P 7→
X × P is said to be nonsingular on the measure space

(X × P,B, µ), if µ
(
T −1 (B)

)
= 0 ∀B ∈ B such that

µ (B) = 0.

Consider the discrete-time nonlinear system with state dy-

namics given by the vector recurrence relation

x̃k+1 = T (x̃k) , (6)

where T : X × P 7→ X × P is a measurable nonsingular

transformation and the time index k takes values from the

ordered index set of non-negative integers {0, 1, 2, . . .}. Then

the evolution of the joint pdf ξ (x̃k) is dictated by the Perron-

Frobenius operator P , given by
∫

B

Pξ (x̃k) µ (dx̃k) =

∫

T −1(B)

ξ (x̃k) µ (dx̃k) (7)

for B ∈ B. Equation (7) ensures that the evolution of ξ (x̃k)
is Markov and it respects the properties of a PDF. Further,

assuming the output dynamics as yk = h (x̃k), one can

derive η̂ (yk) from ξ (x̃k) using the discrete analogue of the

transformation rule (5).

B. Stochastic System

1) Continuous-time models: Consider the continuous-

time nonlinear system with state dynamics given by the Itô

SDE

dx̃ = f̃ (x̃) dt + g (x̃) dW, (8)
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where W (t) ∈ R
ω is the ω-dimensional Wiener process at

time t, and the noise coupling g : X × P 7→ R
n×ω. For the

Wiener process W (t), at all times

E [dWi] = 0, E [dWidWj ] = Qij = αi δij ∀ i, j = 1, . . . , ω,

where E [.] stands for the expectation operator and δij is

the Kronecker delta. Thus Q ∈ R
ω×ω with αi > 0 ∀ i =

1, 2, . . . , ω, being the noise strength. The output dynamics

is still assumed to be given by (3). In such a setting,

the evolution of the state PDF ξ (x̃, t) subject to (8) is

governed by the Fokker-Planck equation, also known as

forward Kolmogorov equation

∂ξ

∂t
= L ξ = (D1 + D2) ξ

= −
n∑

i=1

∂

∂xi

(ξfi) +

n∑

i=1

n∑

j=1

∂2

∂xi∂xj

((
gQgT

)
ij

ξ
)

, (9)

which is a homogeneous parabolic PDE, second order in

space and first order in time. In this case, the spatial operator

L can be written as a sum of a drift operator (D1) and a

diffusion operator (D2). The diffusion term accounts for the

smearing of the PDF due to process noise. Once the state

PDF is computed through (9), the output PDF can again be

obtained from (5).

2) Discrete-time models: In this case, we consider the

nonlinear state space representation given by the stochastic

maps of general form

x̃k+1 = T (x̃k, ζk) , ỹk = h (x̃k, ζk) , (10)

where ζk ∈ R
ω is the i.i.d. sample drawn from a known

distribution for the noise (stochastic perturbations). Here, the

dynamics T is not required to be a non-singular transforma-

tion. Since T defines a Markov chain on X × P , it can be

shown that [7] evolution of the joint PDFs follow

ξk+1 := ξx̃k+1
(x̃) =

∫

X×P

KT (x̃|z) ξx̃k
(z) dz, (11)

η̂k := η̂yk
(y) =

∫

X×P

Kh (y|z) ξx̃k
(z) dz, (12)

where KT (x̃|z) and Kh (y|z) are known as the stochastic

kernels for the maps T and h respectively. (12) can be seen

as a special case of the Chapman-Kolmogorov equation [8].

C. Computational Aspects

For deterministic flow, the Liouville PDE (4) can be solved

in exact arithmetic [9] via method-of-characteristics (MOC)

[10]. Since the characteristic curves for (4) are the trajecto-

ries in the extended state space, ξ (x̃, t) and hence η̂ (y, t)
can be computed directly along these characteristics. Unlike

Monte-Carlo, this is an “on-the-fly” computation and does

not involve any approximation, and hence offers a superior

performance [11]–[13] than Monte-Carlo in high dimensions.

For deterministic maps, cell-to-cell mapping [14] achieves

a finite dimensional approximation of the Perron-Frobenius

operator.

TABLE I

COMPARISON OF KL DIVERGENCE AND WASSERSTEIN DISTANCE FOR

MODEL VALIDATION

Validation requirements KL divergence Wasserstein distance

Shape comparison No Yes

Metric No Yes

Support robustness No Yes

Sampling robustness No Yes

Consistency Yes Yes

Rate of convergence Arbitrarily slow Fast

For stochastic flow, solving Fokker-Planck PDE (9) is nu-

merically challenging [15] but has seen some recent success

[16] in moderate (4 to 5) dimensions. For stochastic maps,

discretizations for stochastic kernels (11) and (12), can be

done through cell-to-cell mapping [14] resulting a random

transition probability matrix [17].

III. COMPARING OUTPUT PROBABILITY DENSITY

FUNCTIONS

Once the observed and model-predicted output PDFs

η (y, t) and η̂ (y, t), are obtained, we need a metric to

compare the shapes of these two PDFs at each time t, where

the measurement PDF η̂ (y, t) is available. We argue that the

suitable metric for this purpose is Wasserstein distance.

A. Choice of Metric

Distances on the space of probability distributions can

be broadly categorized into two classes, viz. Csisźar’s φ-

divergence [18] and integral probability metrics [19]. The

first includes well-known distances like Kullback-Leibler

(KL) divergence, Hellinger distance, χ2 divergence etc. while

the latter includes Wasserstein distance, Dudley metric, max-

imum mean discrepancy etc. Total variation distance belongs

to both of these classes.

The choice of a suitable metric depends on application.

In our context of model validation, the objective is to mea-

sure the shape difference between two instantaneous output

PDFs. This is because a good model must emulate similar

concentration of trajectories as observed in the measurement

space. In other words, the respective joint PDFs η (y, t) and

η̂ (y, t), over the time-varying output supports, must match

at times whenever measurements are available. We formally

introduce the Wasserstein distance below.

Let M be a complete, separable metric (Polish) space with

a pth order distance metric dp. For simplicity, we let M to

be R
n and take dp as the Lp norm. Then the Wasserstein

distance of order q, denoted as pWq, between two Borel

probability measures µ1 and µ2 on R
n is defined as

pW
q
q (µ1, µ2) := inf

µ∈M(µ1,µ2)

∫

R2n

‖x − y‖q
p dµ

(
x, y

)
(13)

where M (µ1, µ2) is the set of all probability measures on

R
2n with first marginal µ1 and second marginal µ2. It’s

well known [20] that on the set of Borel measures on R
n

having finite second moments, pWq defines a metric. The
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advantages of transport-theoretic Wasserstein distance over

information-theoretic KL divergence, for validation purpose,

is summarized in Table I.

B. Computing Quadratic Wasserstein Distance: LP Formu-

lation

Computing Wasserstein distance from (13) calls for solv-

ing Monge-Kantorovich optimal transportation plan [20].

In this formulation, the difference in shape between two

statistical distributions is quantified by the minimum amount

of work required to convert a shape to the other. The ensuing

optimization, known as Hitchcock-Koopmans problem [21]–

[23], can be cast as a linear program (LP), as described next.

Consider a complete, weighted, directed bipartite graph

Km,n (U ∪ V,E) with # (U) = m and # (V ) = n. If ui ∈
U, i = 1, . . . ,m, and vj ∈ V, j = 1, . . . , n, then the edge

weight cij :=‖ ui − vj ‖2
ℓ2

denotes the cost of transporting

unit mass from vertex ui to vj . Then, according to (13),

computing 2W
2
2 translates to

minimize

m∑

i=1

n∑

j=1

cij ϕij (14)

subject to the constraints

n∑

j=1

ϕij = αi, ∀ ui ∈ U, (C1)

m∑

i=1

ϕij = βj , ∀ vj ∈ V, (C2)

ϕij > 0, ∀ (ui, vj) ∈ U × V. (C3)

The objective of the LP is to come up with an optimal mass

transportation policy ϕij := ϕ (ui → vj) associated with

cost cij . Clearly, in addition to constraints (C1)–(C3), (14)

must respect the necessary feasibility condition

m∑

i=1

αi =

n∑

j=1

βj (C0)

denoting the conservation of mass. In our context of mea-

suring the shape difference between two PDFs η (y, t) and

η̂ (y, t), we treat their joint probability mass function (PMF)

vectors αi and βj to be the marginals of some unknown joint

PMF ϕij supported over the product space U × V . Since

determining joint with given marginals is not unique, (14)

strives to find that particular joint PMF which minimizes

the total cost for transporting the probability mass while

respecting the normality condition.

C. Computational Complexity

For m = n, the LP formulation (14), (C1)–(C3) requires

solving for n2 unknowns subject to
(
n2 + 2n

)
constraints.

Since the LP has only linear dependence on dimensions

d and for a fixed dimension, it can be solved [24] in

O
(
n2.5 log n

)
operations, the total runtime complexity for

(14) is O
(
d n2.5 log n

)
.

IV. PROBABILISTICALLY ROBUST VALIDATION

CERTIFICATES

Often in practice, the exact initial density is not known

to facilitate our model validation framework; instead a class

of densities may be known. For example, it may be known

that the initial density is symmetric unimodal but it’s exact

shape (e.g. normal, semi-circular etc.) may not be known.

Even when the distribution-type is known (e.g. normal), it’s

often difficult to pinpoint the parameter values describing the

initial density function. To account such scenarios, consider

a random variable ∆ : Ω → E, that induces a probability

triplet (Ω,F , P) on the space of initial densities. Here

E ⊂ Ω and # (E) = 1. The random variable ∆ can be

thought of as a categorical random variable which picks up

an initial density from the collection of admissible initial

densities Ω := {ξ
(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . .} according to the law

of ∆. For example, if we know ξ0 ∼ N
(
µ, σ2

)
with a

given joint distribution over the µ σ2 space, then in our

model validation framework, one sample from this space

will return one distance measure between the instantaneous

output PDFs. How many such
(
µ, σ2

)
samples are necessary

to guarantee the robustness of the model validation oracle?

The Chernoff bound provides such an estimate for finite

sample complexity.

At time step k, let the validation probability be p (γk) :=
P (2W2 (ηk (y) , η̂k (y)) 6 γk). Here γk ∈ R

+ is the pre-

scribed instantaneous tolerance level. If the model validation

is performed by drawing N samples from Ω, then the

empirical validation probability is p̂N (γk) :=
1

N

N∑

i=1

χ
V

(i)
k

where V
(i)
k := {η̂

(i)
k (y) : 2W2

(
η
(i)
k (y) , η̂

(i)
k (y)

)
6 γk}.

Consider ǫ, δ ∈ (0, 1) as the desired accuracy and confidence,

respectively.

Lemma 1: (Chernoff bound) [25] For any ǫ, δ ∈ (0, 1),

if N > Nch :=
1

2ǫ2
log

2

δ
, then P (|p (γk) − p̂N (γk) |< ǫ) >

1 − δ.

The above lemma allows us to construct probabilistically

robust validation certificate (PRVC) p̂N (γk) through the

algorithm below. The PRVC vector, with ǫ accuracy, returns

the probability that the model is valid at time k, in the

sense that the instantaneous output PDFs are no distant

than the required tolerance level γk. Lemma 1 lets the

user control the accuracy ǫ and the confidence δ, with

which the preceding statement can be made. In practice,

{γk}
T
k=1 is often specified as percentage tolerance. Since

2W2

(
η
(i)
k (y) , η̂

(i)
k (y)

)
∈ [0, diam (Dk)], where Dk :=

Dexperiment

k × Dmodel
k , is the product of the experimental and

model output space at time step k, a normalized Wasserstein

distance
2W2

diam (Dk)
can be employed for comparison pur-

poses. Thus the framework enables us to compute a provably

correct validation certificate on the face of uncertainty with

finite sample complexity.
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Algorithm 1 Construct PRVC

Require: ǫ, δ ∈ (0, 1), T , ν, law of ∆, experimental data {ηk (y)}T
k=1,

model, tolerance vector {γk}
T

k=1
1: N ← Nch (ǫ, δ) ⊲ Using lemma 1

2: Draw random functions ξ
(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . . , ξ

(N)
0 (x̃) according to

the law of ∆
3: for k = 1 to T do ⊲ Index for time step
4: for i = 1 to N do ⊲ Index for initial density

5: for j = 1 to ν do ⊲ Samples drawn from ξ
(i)
0 (x̃)

6: Propagate states using dynamics
7: Propagate measurements
8: end for

9: Propagate state PDF ⊲ Use (4), (9), (7) or (12)
10: Compute instantaneous output PDF

11: Compute 2W2

(
η
(i)
k

(y) , η̂
(i)
k

(y)
)

⊲ Distributional

comparison by solving LP (14) subject to (C0)–(C3)
12: sum ← 0 ⊲ Initialize

13: if 2W2

(
η
(i)
k

(y) , η̂
(i)
k

(y)
)

6 γk then

14: sum ← sum + 1
15: else

16: do nothing
17: end if

18: end for

19: p̂N (γk)←
sum

N
⊲ Construct PRVC vector

20: end for

V. NUMERICAL EXAMPLE

Consider a nonlinear system originally governed by

ẋ1 = −x2, ẋ2 = sinx1, (15)

with outputs y1 = x1, y2 = x2. However, this true dynamics

is not known to the modeler; only the y1 and y2 data are

observed over time and recorded as the joint histogram over

the y1y2 space. Suppose the following is proposed as a

candidate model.

ẋ1 = −x2, ẋ2 = x1, (16)

with outputs same as the states. Given this proposed model,

our job is to assess the goodness of it against the measured

histogram over the output space. We emphasize here that

in this example, the purpose of (15) is only to create the

synthetic data and to demonstrate the proof-of-concept. In a

realistic model validation, the data arrives from experimental

measurements, not from another model. To illustrate the

formulation, we consider another proposed model to be

validated, given by

ẋ1 = −x2, ẋ2 = x1 −
x3

1

3!
+

x5
1

5!
, (17)

with outputs same as states. The phase portraits for (15), (16)

and (17) are shown in Fig. 2 and we intuitively expect (17)

to be closer to (15) than (16). Fig. V and V indeed confirm

these intuitions. The initial joint PDF ξ0 (x1, x2) is taken to

be uniform over [−1, 3]
2
.

Fig. V and V show the discrepancy in the mean vectors

between the measured and model-predicted output PDFs for

(15) and (16), and for (15) and (17), respectively. Similar

plots are shown in Fig. V and V, for the discrepancy in

measured and model-predicted covariance matrices. These

plots reveal that moment-based parametric analysis may not

capture the non-parametric shape discrepancy between the

PDFs. All moments are computed from the scattered data

evolving under nonlinear dynamics, using quasi-Monte Carlo

(QMC) integration [26]. Given a tolerance vector {γk}
T
k=1,

one can immediately obtain the PRVC following algorithm

1. Such a sample computation is omitted for brevity.

VI. CONCLUSIONS

A probabilistic notion of model validation is introduced

in this paper that can account deterministic and stochastic

nonlinear systems on the face of uncertainties. The theoret-

ical underpinnings and implementation details are outlined

along with a simple example. An algorithm is provided to

construct a probabilistically robust validation certificate. The

authors plan to apply the framework to the validation of

large-scale physics-based models against experimental data

and controller V&V.
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