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Abstract— This work presents an integrated model-based
framework for control, fault detection and control system
reconfiguration of hybrid process systems with measurement
sampling rate constraints and actuator faults. A family of
output feedback controllers are initially synthesized to stabilize
each fault-free subsystem with the aid of a dynamic inter-
sample model predictor for each mode. The stability properties
for each closed-loop subsystem are then analyzed to obtain
the maximum allowable sampling period together with an
explicit characterization of the fault-free behavior of each mode.
Conditions that guarantee asymptotic stability of the overall
switched system are also derived and used to examine the
interplay between the selection of the sampling period, the
model, the controller and observer design parameters, and the
dwell time for each mode. To detect actuator faults within
a given mode, a time-varying alarm threshold based on the
fault-free behavior is obtained and used, and when faults are
detected, actuator reconfiguration is performed to maintain
closed-loop stability. A key idea of the reconfiguration strategy
is to take into account not only the stability properties of the
current mode, but also the stabilizing ability and availability
of the fall-back actuator configurations for the future modes.
The design and implementation of the developed methodology
are demonstrated using a hybrid chemical reactor example.

I. INTRODUCTION

With the extensive use of automated control systems in
modern chemical plants, a great deal of emphasis is being
placed on process safety and reliability issues because of
the increased likelihood of faults, such as malfunctions of
process equipment and/or control instrumentation, which can
undermine the stability and integrity of the entire system
if not detected and handled appropriately. Not surprisingly,
the problems of fault detection and fault-tolerant control
of dynamic process systems have been the subject of con-
siderable research interest over the past few decades in
both the academic and industrial circles in process control
(e.g., see [1]–[9] and the references therein). A careful
examination of the existing literature on process monitoring,
however, shows that the majority of existing methods have
been developed for purely continuous processes. Yet, many
chemical processes are characterized by strong interactions
between continuous dynamics and discrete events, and are
more appropriately modeled as hybrid systems. Compared
with the efforts on the analysis and control of hybrid systems
(e.g., see [10] for some results and references in this area),
the monitoring and reconfiguration problems have received
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less attention. Examples of important contributions on mon-
itoring of hybrid systems include the design of switched
state estimation schemes for switched linear systems [11]–
[13], and the development of fault diagnosis algorithms using
hybrid automata theory [14], hybrid bond graph models [15],
[16], and statistical data-based methods [17].

Recently, we developed in [18] an integrated approach for
fault detection and monitoring of a class of hybrid process
systems modeled by switched nonlinear systems with control
actuator faults, uncertain continuous dynamics and uncertain
mode transitions. A robust hybrid monitoring scheme that
distinguishes reliably between faults, mode transitions and
uncertainty was developed using tools from unknown input
observer theory and results from Lyapunov stability theory.

Beyond uncertainty and hybrid dynamics, measurement
sampling is another key issue that requires attention in the
design of the monitoring and control systems. In practice,
measurements of the process outputs are typically available
from the sensors at discrete time instants with the transmis-
sion frequency dictated by the inherent limitations on the
data collection and processing capabilities of the sensors or
the communication medium. Due to these limitations, the
design and implementation of the monitoring and control
system are further complicated in that the ability of the
system to accurately monitor the evolution of the process
and implement correct, yet prompt, control actions will be
impaired by discrete measurement sampling, and this might
lead to performance deterioration or even loss of stability.

Motivated by these considerations, we present in this
work a methodology for control, fault detection and control
system reconfiguration for hybrid process systems subject
to measurement sampling constraints and actuator faults. To
compensate for measurement unavailability, a model of each
mode of the hybrid system is embedded within the corre-
sponding output feedback controller to provide estimates of
the output measurements between sampling instants. The
output of the model is then updated and reset using the
actual measurements whenever they become available from
the sensors. An augmented system is then formulated and
its stability properties are studied, which leads to an explicit
characterization, for each mode, of the fault-free behavior
and the maximum allowable sampling period that ensures
the global exponential stability of each sampled-data closed-
loop subsystem. Furthermore, since the stability of every sub-
system doesn’t necessarily imply the stability of the overall
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switched system when there are an infinite number of mode
transitions, additional requirements on the control system
design that are sufficient to guarantee the asymptotic stability
of the entire system are proposed. To detect actuator faults
within the constituent modes, we utilize the characterized
fault-free behavior of each subsystem to derive the actuator
fault detection rules. And based on the stabilizing ability
and availability of the fall-back actuator configurations, the
control system reconfiguration logic is proposed that ensures
the stability of the current mode as well as the future modes.

The rest of the paper is organized as follows. In Section II,
we describe the mathematical model for the class of sys-
tems considered in this work. A family of output feedback
controllers are then designed in Section III, followed by
the analysis of the stability properties of the sampled-data
closed-loop subsystem and the overall switched system. The
fault detection scheme is presented next in Section IV,
together with the switching logic of the fall-back actuator
configurations in the event of faults. Finally, the proposed
theoretical framework is illustrated in Section V using a
hybrid chemical process example.

II. PRELIMINARIES
We consider the class of switched systems represented by

the following state-space description:
ẋ(t) = Ai(t)x(t) +Bi(t)(ui(t)(t) + fi(t)(t)), t ∈ [tinik , t

out
ik
)

y(t) = Cx(t), i(t) ∈ I = {1, 2, · · · , N}, k ∈ N (1)
where x ∈ Rn denotes the vector of continuous-time state
variables, ui ∈ Rm denotes the vector of manipulated input
variables for the i-th mode (or subsystem), fi ∈ Rm denotes
the control actuator fault in the i-th mode, y ∈ Rp denotes
the vector of output variables. Ai, Bi, and C are n × n,
n×m, and p×n matrices, respectively. The switching signal
i(t) : R+ → I is assumed to be a piecewise continuous
(from the right) function of time, which implies that there
are only a finite number of switches during a finite interval of
time, and it represents a discrete-valued state that indexes Ai,
Bi, ui(·) and fi(·), which altogether determine the evolution
of x when the i-th mode is active. It is assumed that x does
not exhibit discontinuous jumps when the mode transitions
take place, which means that x is everywhere continuous.
The notations tinik and tout

ik
are used to represent the k-th time

that the i-th mode is switched in and out, respectively. In
this work, we consider the case where the switching schedule
is fixed (i.e., both the times and the sequence of the mode
transitions are pre-determined) and the dwell time Tik ,
tout
ik

− tinik is an integer multiple of the sampling period hik
for all i ∈ I and k ∈ N, i.e., Tik = Nikhik where Nik ∈ N.
In addition, we assume that the entrance time of each mode
tinik is also the initial sampling instant of that period.
III. CONTROLLER SYNTHESIS AND STABILITY ANALYSIS

IN THE ABSENCE OF FAULTS
In this section, we discuss the synthesis of an output

feedback controller for each fault-free constituent subsystem,
and then we shall characterize the stability properties and
obtain the maximum allowable sampling period for each
sampled-data closed-loop subsystem, and finally the stability
properties of the overall switched system are investigated.

A. Output feedback controller synthesis
In sampled-data systems, measurements of the output are

available only at discrete time instants. One way to handle
this constraint in the context of control of hybrid systems
is to embed a dynamic model of each mode within the
corresponding controller to provide it with an estimate of
the output between sampling instants, and to reset the model
estimate using the output when it becomes available to
correct possible estimation errors. To this end, we consider,
for each mode, a dynamic model of the following form:

˙̄x = Āix̄+ B̄iui, i ∈ I
ȳ(t) = Cx̄(t), t ∈ (tj

ik
, tj+1

ik
); ȳ(t) = y(t), t = tj

ik

(2)

where x̄ ∈ Rn and ȳ ∈ Rp denote the estimates of x and y,
ui denotes the control input, Āi and B̄i are constant matrices
that model Ai and Bi, t

j
ik

denotes the time of the j-th update
during the period that the i-th mode is active for the k-th time
where j ∈ N. At sampling instants, ȳ is reset by the actual
output y; however, unless C has a two-sided inverse or a
left inverse, the model state x̄ cannot be uniquely determined
from ȳ, and thus the evolution of x̄ cannot be corrected by
the update performed on ȳ. To circumvent this problem, we
propose the following procedure that allows constructing a
new model for each mode based on (2):

1) Define ym = C̄x, ȳm = C̄x̄, where ym ∈ Rr denotes
the vector of measurements that are not redundant (we
shall hereafter use “trimmed output” to refer to ym),
ȳm denotes an estimate of ym, C̄ is an r × n matrix
that contains all the linearly independent rows in C (in
the same order), where r , rank(C).

2) Obtain the reduced row echelon form of C using
elementary row operations and then identify all the
non-basic variables of x̄, which are used to form a
new column vector x̄um ∈ Rn−r which we shall refer
to as the estimate of the unmeasured state.

3) Define x̂ = [ȳ′m x̄′um]
′ = [C̄ ′ Ē′]′x̄ = P̂ x̄ where, for

each row of Ē, the entry whose location corresponds
to the index of the associated non-basic variable in x̄
is 1 and all the remaining entries are 0. Note that P̂
is invertible by construction.

Based on this procedure, the new model can be introduced:

˙̂x =

[
˙̄ym
˙̄xum

]
=

[
Â11

i Â12
i

Â21
i Â22

i

][
ȳm
x̄um

]
+

[
B̂11

i

B̂21
i

]
ui

= Âix̂+ B̂iui, i ∈ I
ŷ(t) = ȳm(t) = Ĉx̂(t), t ∈ (tj

ik
, tj+1

ik
)

ŷ(t) = ȳm(t) = ym(t), t = tj
ik
, j, k ∈ N

(3)

with x̂ ∈ Rn and ŷ ∈ Rr denoting respectively the model
state and model output, Âi = P̂ ĀiP̂

−1, B̂i = P̂ B̄i, Ĉ =
[Ir×r Or×n−r]. Notice that updating the model output using
the actual measurements at each sampling instant influences
the evolution of x̂ since the model output is part of the
model state. Based on this inter-sample model predictor, we
consider the following output feedback controller design:

χ̇(t) = Âiχ(t) + B̂iui(t) + Li(ŷ(t)− Ĉχ(t))

η(t) = P̂−1χ(t), ui(t) = Kiη(t)
(4)

where χ ∈ Rn is the observer state which is an estimate of
x̂, η ∈ Rn is the observer output which is an estimate of
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x̄, Ki is the feedback gain, and Li is the observer gain that
should be chosen to ensure that Âi −LiĈ is Hurwitz for all
i which requires that (Âi, Ĉ) be a detectable pair.
B. Stability of the sampled-data closed-loop subsystems

To explicitly characterize the maximum allowable sam-
pling period for each closed-loop subsystem, we first define
the model estimation error as e = ŷ − ym where e ∈ Rr

represents the difference between the model output and the
trimmed output, and the augmented state vector as ξ =
[x′ χ′ x̄′um e′]′ ∈ R3n. Then the augmented system that
governs the evolution of ξ can be formulated as follows:

ξ̇(t) = Λiξ(t), t ∈ (tj
ik
, tj+1

ik
)

ξ(t) = Isξ(t
−), t = tj

ik
, i ∈ I, j, k ∈ N

(5)

where Λi = Ai BiKiP̂
−1 On×n−r On×r

LiC̄ Âi + B̂iKiP̂
−1 − LiĈ On×n−r Li

Â21
i C̄ B̂21

i KiP̂
−1 Â22

i Â21
i

Â11
i C̄ − C̄Ai (B̂11

i − C̄Bi)KiP̂
−1 Â12

i Â11
i


and Is =

 In×n On×n On×n−r On×r

On×n In×n On×n−r On×r

On−r×n On−r×n In−r×n−r On−r×r

Or×n Or×n Or×n−r Or×r

.

It’s worth noting that, in the augmented state ξ, the
process state x, the observer state χ and the estimate of
the unmeasured state x̄um all evolve continuously over time,
while the model estimation error e gets reset to zero at each
sampling instant. Therefore, we can obtain the closed-loop
response of (5) as follows (see [19] for a similar proof):

ξ(t) = eΛi(t−tj
ik

)(Ise
Λihik )j−1ξ(tinik), t ∈ [tj

ik
, tj+1

ik
) (6)

where ξ(tinik) = [x′(tinik) χ
′(tinik) x̄

′
um(t

in
ik) O1×r]

′, hik ,
tj+1
ik

− tj
ik

. It can be seen from (6) that the stability of the
origin of the augmented system is dictated by the matrix
Mi , Ise

Λihik as both eΛi(t−tj
ik

) and ξ(tinik) are bounded,
and thus the necessary and sufficient condition for the origin
to be globally exponentially stable is that all the eigenvalues
of the matrix Mi should lie inside the unit circle, in which
case we can obtain the following bound on the size of the
augmented state ξ (a proof can be found in [19]):

∥ξ(t)∥ ≤ αik∥ξ(tinik)∥e
−β

ik
(t−tin

ik
), t ∈ [tinik , t

out
ik ) (7)

where we use ∥·∥ to denote the Euclidean norm for a vector
or a matrix, αik ≥ 1 and βik > 0 are some constants.
Remark 1. By examining the expression of the matrix Mi,
it can be seen that it is dependent on the sampling period
hik as well as the matrix Λi which in turn depends on the
model matrices, the feedback gain Ki and the observer gain
Li. All these parameters represent degrees of freedom that
can be adjusted to ensure that all the eigenvalues of Mi are
strictly inside the unit circle. Furthermore, for a given set of
design parameters for the model, controller and observer, the
maximum allowable sampling period for a given mode hmax

i

can be determined by evaluating the spectral radius of Mi

as a function of hik . Any choice of the sampling period hik
that satisfies hik ∈ (0, hmax

i ) guarantees stability of the i-th
sampled-data closed-loop subsystem.
Remark 2. In general, different subsystems have different
maximum allowable sampling periods. In practice, to ensure

stability of the origin for each closed-loop subsystem, one
can switch the sampling period when a mode transition takes
place so that the new sampling period is stabilizing for the
active mode, or to use a common sampling period that is
stabilizing for all the modes. However, the latter may result
in unnecessarily frequent sampling for certain modes.

C. Stability of the overall switched system
For switched systems that involve an infinite number of

mode transitions on the infinite time interval, stability of all
the subsystems is not sufficient to guarantee stability of the
overall switched system. Here we use the tool of multiple
Lyapunov functions (MLF) to analyze the stability of the
overall switched system of (5) and derive conditions that
ensure stability. To this end, converse Lyapunov theorems for
discontinuous dynamical systems (see Theorem 9 in [20])
can be used to show that, for each exponentially stable
subsystem of (5), there exists a function Vi : R3n → R+

that satisfies the following inequalities for all ξ(t) ∈ R3n

where t ∈ [tinik , t
out
ik
):

ai∥ξ(t)∥di ≤ Vi(ξ(t)) ≤ bi∥ξ(t)∥di (8a)

Vi(ξ(t)) ≤ ψi

(
Vi(ξ(t

j
ik
))
)
, t ∈ [tj

ik
, tj+1

ik
) (8b)

DVi(ξ(t
j
ik
)) ≤ −cikVi(ξ(t

j
ik
)) (8c)

where ai, bi, cik and di are some positive constants, ψi(·) :
R+ → R+ is a continuous function that satisfies ψi(0) = 0
and limθ→0[ψi(θ)/θ

q] = 0 for some q > 0, and
DVi(ξ(t

j
ik
)) , [Vi(ξ(t

j+1
ik

))− Vi(ξ(t
j
ik
))]/hik

The explicit form of ψi(·) can be obtained by using (8a) for
t ∈ [tj

ik
, tj+1

ik
) as follows:

Vi(ξ(t)) ≤ bi∥ξ(t)∥di ≤ bi

(
∥ξ(tj

ik
)∥∥eΛi(t−tj

ik
)∥
)di

≤ biα̃ik

ai
ai∥ξ(tjik)∥

di ≤ biα̃ik

ai
Vi(ξ(t

j
ik
)) (9)

where α̃ik , eσmax(Λi)hik
di with σmax(·) denoting the largest

singular value of a matrix; and, thus, ψi(θ) = biα̃ikθ/ai,
which shows that ψi(·) is a class K function.

A sufficient condition for the overall switched system to
be globally asymptotically stable (e.g., [21], [22]) is to have:

Vi(ξ(t
out−
ik+1)) < Vi(ξ(t

out−
ik

)), ∀i ∈ I, ∀k ∈ N (10)
which requires that, for any given i ∈ I, Vi(ξ(tout−

ik
)) be

decreasing for k ∈ N. The following theorem provides an
explicit condition that characterizes how the sampling period,
the model, and the controller/observer design parameters,
should be chosen to ensure satisfaction of (10) and global
asymptotic stability of the overall switched system of (5).
Theorem 1. Consider the switched system of (5), where, for
all i ∈ I, the model parameters Âi and B̂i, the feedback
gain Ki and the observer gain Li are chosen such that all
the eigenvalues of the matrix Mi are strictly inside the unit
circle. Then if the following inequality is also satisfied for
all i ∈ I and all k ∈ N:(

Ξ(tinik+1)∥ξ(0)∥e−Φ(tin
ik+1 )

)di

∥∥[χ′(tout−
ik

) x̄′um(t
out−
ik

)]′
∥∥di

<
a2i

b2i α̃ik(1− hik+1cik+1)Nik+1−1
(11)
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where

Ξ(tinik+1) ,
N∏
i=1

κi(t
in
ik+1 )∏

k=1

αik , Φ(t
in
ik+1) ,

N∑
i=1

κi(t
in
ik+1 )∑

k=1

βikTi

where κi(t) denotes the number of times that the i-th
mode has been activated by time t (the modes that have
never been active are not qualified for the above summation
and multiplication calculations), the origin of the overall
switched system of (5) is globally asymptotically stable.
Proof. For the overall switched system of (5) to be globally
asymptotically stable, (10) must always be satisfied. How-
ever, at t = tinik+1 , the value of Vi(ξ(tout−

ik+1)) is not known
but it can be estimated using the current information and
(8b)-(8c). To this end, by rearranging (8c) we can obtain:

Vi(ξ(t
j+1
ik+1)) ≤ (1− hik+1cik+1)Vi(ξ(t

j
ik+1))

which, together with tout
ik+1 − tinik+1 = Nik+1hik+1 , leads to:

Vi(ξ(t
N

ik+1

ik+1 )) ≤ (1− hik+1cik+1)Vi(ξ(t
N

ik+1−1

ik+1 ))

≤ · · · ≤ (1− hik+1cik+1)Nik+1−1Vi(ξ(t
in
ik+1))

Applying (8b) for t ∈ (t
N

ik+1

ik+1 , tout
ik+1) and using the properties

of class K function yields:
Vi(ξ(t

out−
ik+1)) ≤ ψi

(
(1− hik+1cik+1)Nik+1−1Vi(ξ(t

in
ik+1))

)
Thus, to ensure that (10) is always satisfied, we must have:
ψi

(
(1− hik+1cik+1)Nik+1−1Vi(ξ(t

in
ik+1))

)
< Vi(ξ(t

out−
ik

))
(12)

For the right-hand side of (12), since ξ(t) contains x(t)
which is not available, we can use

∥∥[χ′(t) x̄′um(t)]
′
∥∥ ≤

∥ξ(t)∥, together with (8a), to conclude that
ai
∥∥[χ′(tout−

ik
) x̄′um(t

out−
ik

)]′
∥∥di ≤ Vi(ξ(t

out−
ik

))

where both χ and x̄um are known for all times. For the left-
hand side of (12), since the model estimation error e is the
only component in ξ that does not evolve continuously and is
reset to zero at each sampling instant, we have ∥ξ(tinik+1)∥ ≤
∥ξ(tin−

ik+1)∥. Suppose the previous active mode is mode ϵ in
its l-th activation period, then, we can do this calculation in
a chain using (7) until we reach the initial time at t = 0:
∥ξ(tini,k+1)∥ ≤ ∥ξ(tin−i,k+1)∥ = ∥ξ(tout−j,l )∥

≤ αj,l∥ξ(tinj,l)∥e−βj,lTj ≤ αj,l∥ξ(tin−j,l )∥e−βj,lTj

≤ · · · ≤ Ξ(tini,k+1)∥ξ(0)∥e−Φ(tini,k+1) (13)
Since ψi(·) belongs to class K, by using (8a), we have:
ψi

(
(1− hik+1cik+1)Nik+1−1bi(Ξ(t

in
ik+1)∥ξ(0)∥e−Φ(tin

ik+1 ))di
)

≥ ψi

(
(1− hik+1cik+1)Nik+1−1Vi(ξ(t

in
ik+1))

)
Therefore, if
ψi

(
(1− hik+1cik+1)Nik+1−1bi(Ξ(t

in
ik+1)∥ξ(0)∥e−Φ(tin

ik+1 ))di
)

< ai
∥∥[χ′(tout−

ik
) x̄′um(t

out−
ik

)]′
∥∥di (14)

then (12) will always be satisfied which implies the satis-
faction of (10), and thus the overall switched system of (5)
will be globally asymptotically stable. Rearrangement of (14)
using (9) yields (11) which completes the proof.
Remark 3. Since (8c) describes only the constraint on the
values of the Lyapunov function at the sampling instants
when the model estimation error is reset to zero, this in-
equality essentially specifies a decay rate for the other three
components in ξ (i.e., x, χ and x̄um) between the sampling
instants, and thus cik is in general dependent on the model,

the controller and observer design parameters. As for α̃ik , it
can be seen from its definition that it is also dependent on the
aforementioned parameters as well as the sampling period.
Therefore, when switching into a new mode, (11) should be
checked, and, if not satisfied, one or more of the available
degrees of freedom (the sampling period, the model, the
controller and the observer parameters) should be adjusted
to ensure satisfaction of the stability condition. For example,
if the model, the feedback and observer gains are fixed, the
sampling period can be adjusted within the range (0, hmax

i )
to ensure stability. However, if (11) cannot be satisfied for
any of the allowable values of the design parameters, a
modification of the switching schedule by prolonging the
dwell time for the current mode becomes necessary.

IV. OBSERVER-BASED FAULT DETECTION AND
CONTROL SYSTEM RECONFIGURATION

In this section, we describe how the fault-free behavior of
the augmented system obtained in the previous section can
be used as the basis for deriving rules for the detection of
actuator faults within each constituent mode. We also discuss
the reconfiguration of the control system in the event of faults
so that the stability of the process can be preserved.
A. Fault detection within the constituent modes

It can be shown that, when the sampling period of each
mode is less than its maximum allowable value, hmax

i , and
there are no faults, i.e., fi(t) ≡ 0, the observer output η is
expected to satisfy the following bound for t ∈ [tinik , t

out
ik
):

∥η(t)∥ ≤ ∥P̂−1∥∥ξ(t)∥ ≤ ᾱik∥ξ(tinik)∥e
−β

ik
(t−tin

ik
) (15)

where ᾱik , ∥P̂−1∥αik . This bound can be used as the basis
for deriving rules for actuator fault detection. Specifically, for
any given mode i in its k-th time of activation, when there is
no actuator fault, the evolution of η satisfies (15); conversely,
if ∥η(t)∥ > ᾱik∥ξ(tinik)∥e

−β
ik

(t−tin
ik

), then we know that an
actuator fault has occurred in mode i. However, the infor-
mation ∥ξ(tinik)∥ is not accessible due to the unavailability of
x. So, the calculations in (13) are used to estimate ∥ξ(tinik)∥,
and an actuator fault is detected at time td if

∥η(td)∥ > ᾱikΞ(t
in
ik)∥ξ(0)∥e

−Φ(tin
ik

)Tie−β
ik

(td−tin
ik

) (16)
Remark 4. By proper tuning of the controller and observer
design parameters, ᾱik and βik in (16) can be made suffi-
ciently tight to ensure that the actuator fault detection delay
is minimized. It should also be noted that this stability-based
fault detection scheme can be used to detect both incipient
and abrupt actuator faults, simultaneous faults, and faults
that appear in process equipment and measurement sensors,
as long as the stability properties are altered by the faults.
B. Control system reconfiguration

Immediately after an actuator fault is detected, the control
system should be reconfigured to avert performance degrada-
tion or instability. In this work, reconfiguration is performed
by activating a fall-back actuator configuration. It is assumed
that none of the actuator configurations have identical back-
ups, and that all the modes operate with a common sampling
period that is smaller than the maximum allowable sampling
periods (associated with the initial actuator configuration)
for all the modes. However, when the system switches to a
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different mode, the sampling period can be reduced for the
duration of the new mode if (11) is not satisfied.

The control system reconfiguration for hybrid systems
differs from that for continuous systems in the sense that
the activation of a fall-back actuator configuration for con-
tinuous systems defines a different mode, while for hybrid
systems, that defines a “sub-mode” within the active mode.
For example, for mode i at its k-th time of activation, if
an actuator breaks down and a new actuator configuration
is deployed, the input matrix Bi changes and thus a new
“sub-mode” within mode i is created, which has a new
maximum allowable sampling period h̄max

i for the given
model, controller and observer design parameters, and a
new fault detection alarm threshold. To stabilize the current
operating mode using the sampling period hik that has been
chosen at the beginning of this period , h̄max

i must be larger
than hik . Also, if no more faults take place in the future,
the newly activated actuator configuration will continue to
be used in the subsequent operating modes. For each of
these future modes, there will also be a maximum allowable
sampling period associated with this actuator configuration,
which we denote by h̄max

π for π ∈ I − {i}. Then, if for any
of the future modes, h̄max

π ≤ h, stability of that mode will
be lost. This suggests that stability properties of the future
modes should be considered when activating a certain fall-
back actuator configuration within a given mode.

Another complication rests in the fact that the actuator
configuration that is selected may not be available for all
modes. If such an actuator configuration is still functional
when an operating mode that does not have it becomes active,
stability will be compromised. Based on the above analysis,
we summarize the actuator reconfiguration logic as follows:

1) Calculate the maximum allowable sampling periods for
all the possible combinations of operating modes and
their corresponding actuator configurations.

2) When an actuator fault takes place, choose the fall-
back actuator configurations that are available for
all future operating modes and whose corresponding
maximum allowable sampling periods h̄max

i are greater
than h for all the modes that will become active.

Remark 5. For switched systems with only a finite number of
mode transitions, the MLF criterion need not be considered
and so the appropriate operating sampling periods for all the
modes and “sub-modes” can be calculated prior to process
operation. However, if there are an infinite number of mode
switches, the MLF criterion should be considered every time
the system enters a mode (by verifying (11)) or a “sub-mode”
(by verifying a slightly modified version of (11)) and the
sampling period may have to be adjusted if necessary.

V. SIMULATION STUDY: APPLICATION TO A CHEMICAL
REACTOR WITH MULTIPLE OPERATING MODES

To illustrate the implementation of the methodology pro-
posed in this work, we consider a continuous stirred tank
reactor (CSTR) where an irreversible first-order elementary
exothermic reaction of the form A

k0−→ B takes place. The
reactor has three operating modes: for mode 1, the reactor

has one inlet stream providing fresh A at flow rate F1, molar
concentration CA1 and temperature TA1; for mode 2, another
stream containing A at flow rate F2, molar concentration
CA2 and temperature TA2 is added; for mode 3, a third
stream feeding A at flow rate F3, molar concentration CA3

and temperature TA3 is introduced. The mode transitions
are triggered by changes in operating requirements and a
jacket is used to provide or remove heat due to the non-
isothermal nature of the reaction. The mathematical model
for this process takes the following form:

ĊA =

3∑
ι=1

σι(t)
Fι

V
(CAι − CA)− k0 exp

(
−E

RT

)
CA

Ṫ =

3∑
ι=1

σι(t)
Fι

V
(TAι − T )− ∆Hr

ρcp
k0 exp

(
−E

RT

)
CA +

Q

ρcpV

where CA denotes the concentration of A, T denotes the
reactor temperature, ι is the feed stream index, σι(t) can
be either 0 or 1, representing the removal or addition of
a new feed stream, V is the reactor volume, k0, E, ∆Hr

are the pre-exponential constant, the activation energy, and
the enthalpy of the reaction, R is the gas constant, cp
and ρ denote the heat capacity and density of the fluid
in the reactor, Q is the rate of heat input to the reactor.
For different operating modes, the reactor has different
actuator configurations (for simplicity, it is assumed that each
configuration has only one manipulated input): for mode 1,
Q, CA1 and TA1 can be used; for mode 2, CA2 and TA2

are also available; for mode 3, CA3 and TA3 can be used
as well. Using typical values for the process parameters,
the reactor with the manipulated inputs at their respective
nominal values usually has three equilibrium points for each
mode: two locally asymptotically stable and one unstable.
Our control objective is to stabilize the temperature at 375K.
The corresponding unstable equilibrium points for the three
modes are [C1s

A T s]′ = [3.75mol/L 375K]′, [C2s
A T s]′ =

[4.00mol/L375K]′, [C3s
A T s]′ = [4.25mol/L375K]′, respec-

tively. In the simulations, we assume that measurements of
T are available. Defining the displacement variables x =
[x1 x2]

′ = [CA −C1s
A T − T s]′ places the equilibrium point

for the first mode xs1 at the origin, and the equilibrium points
for the second and third modes at xs2 = [0.25mol/L0K]′ and
xs3 = [0.50mol/L0K]′. And then the linearized model of the
reactor is obtained using standard linearization techniques.

TABLE I
MAXIMUM ALLOWABLE SAMPLING PERIODS (HOUR) FOR

OPERATING MODE-ACTUATOR CONFIGURATION COMBINATIONS

Q CA1 TA1 CA2 TA2 CA3 TA3

Mode 1 0.41 0.39 0.41 N/A N/A N/A N/A
Mode 2 0.55 0.71 0.55 0.71 0.55 N/A N/A
Mode 3 1.03 1.22 1.03 1.22 1.03 1.22 1.03

Following the methodology presented in Section III, a
dynamic model is constructed (the explicit form is omitted
here for brevity) and an output feedback controller is de-
signed for each mode based on the linearized system. The
feedback and observer gains are chosen such that the poles
of Âi+ B̂iKiP̂

−1 are placed at (−5, −10) and the poles of
Âi−LiĈ are at (−20, −50). With the model, controller and
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observer design parameters fixed, the maximum allowable
sampling periods for all the combinations of operating modes
and actuator configurations are computed (see Table I). This
table will be used as the basis for selecting the fall-back
actuator configurations in the event of faults.

In the following closed-loop simulations, the actuator con-
figuration Q is initially used and the sampling period is cho-
sen to be 0.4 hr which is smaller than the maximum allowable
sampling periods associated with Q for all the modes (see
Table I). The reactor is initialized in mode 1, and the switch-
ing sequence is given by: mode 1 @25 hr−−−−→ mode 2 @50 hr−−−−→
mode 3. Based on the methodology presented in Section IV-
A, the fault-free behavior of the observer output for each
mode is used as the basis for fault detection. As can be seen
from Fig. 1(a), shortly after the beginning of operation, the
reactor temperature has already been successfully stabilized
at the steady-state value as well as the reactant concentration.
At t = 5 hr, a malfunction is introduced in the cooling
jacket, and the norm of the observer output ∥η∥ breaches
the alarm threshold (see Fig. 1(b)) which demands that a
new actuator configuration be activated to preserve stability.
Since the sampling period for all the modes is fixed at
0.4 hr, we can conclude from Table I that only TA1 can
be used as the fall-back actuator configuration because it is
available for both modes 2 and 3, and its maximum allowable
sampling periods for all the modes are greater than 0.4 hr.
Since the activation of TA1 actuator configuration introduces
a “sub-mode” within mode 1, a new fault detection alarm
threshold is used. At t = 25 hr, a mode transition takes place,
and 0.33 hr after that, a fault is detected and a fall-back
actuator configuration must be activated again. This time,
all the available actuator configurations can be used since
their maximum allowable sampling periods are all greater
than 0.4 hr. TA2 is chosen here which results in a new fault
detection threshold. Two hours later, it becomes faulty since
∥η∥ breaches the fault detection threshold, and the cooling
jacket (we assume that it has been repaired by this time) is
used again until it breaks down at t = 55 hr when the reactor
is already in mode 3. At this time, CA3 is activated and used
as the manipulated input for all future times.
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