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Abstract— This paper investigate the mathematical proper-
ties of generalized policy iteration (GPI) applied to a class of
continuous-time linear systems with unknown internal dynam-
ics. GPI is a class of dynamic programming (DP) method to
solve an optimal control problem by using two consecutive
steps—policy evaluation and policy improvement. We first
provide several formula equivalent to GPI, and as a result,
reveal its relations to linear quadratic optimal control problems
and the fact that the computational complexity due to back-
up operations in policy evaluation steps can be lessened by
increasing the time horizon of GPI. A variety of local stability
and convergence criteria is also provided with the connection to
the convergence speed. Finally, several numerical simulations
are performed to verify the results.

I. INTRODUCTION

In the field of computational intelligence, generalized

policy iteration (GPI), together with policy iteration (PI) and

value iteration (VI), are well-known dynamic programming

(DP) algorithms, with extensive practical applications [1]–

[3], for computing optimal policies for a finite Markov

decision process (MDP) iteratively [1]. These algorithms

are closely related to reinforcement learning (RL) [1], and

consist of two consecutive interactive steps, the one called

policy evaluation making the value function approximately

consistent with the current policy, and the other called policy

improvement making the policy greedy in terms of the

consistent value function [1]–[3].

The key difference among these algorithms lies in the

policy evaluation step—PI evaluates the exact value function

with respect to the current policy, which requires the infinite

number of iterations; VI executes only one-step recursion in

policy evaluation, which decreases the computational burden

commonly arising in PI, but introduces approximation error

of the evaluated value function in return [1]–[3]. Meanwhile,

GPI lies between PI and VI—it takes a number k of iterations

(1 ≤ k ≤ ∞) in policy evaluation to evaluate an approximate

value function, making a tradeoff between the accuracy and

computational complexity depending on how large k is. Here,

we refer to k as the iteration horizon of GPI. Depending

this iteration horizon k, PI (k = ∞) and VI (k = 1) can be

considered the special case of GPI algorithm.
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Based on the results in MDP framework, extensive re-

searches have been carried out on extending those DP

algorithms to the dynamic systems in discrete-time (DT)

domain [3]–[6] at first, and later, in continuous-time (CT)

framework [7]–[13] (see [4] and [6] for a survey). Among

these extensions to DT and CT dynamic systems [3]–[13]

(to the best authors’ knowledge), there is only one GPI

technique, given by Vrabie et al. [11], which belongs to a

class of algorithms named as interval (or integral) RL. These

I-RL iteratively performs policy evaluation and improvement

steps by observing the cost during the finite time horizon T ,

to solve a class of optimal control problems regarding CT

dynamic systems with unknown internal dynamics [6], [11].

According to the spirit of the algorithms in a finite MDP

above, these I-RL methods can be classified into PI [6], [10],

VI [6], [9], and GPI [11], where we call these algorithms in

this paper integral PI (I-PI), integral VI (I-VI), and integral

GPI (I-GPI), respectively.

In addition to the applicability to CT dynamic systems

with unknown internal dynamics, the advantage of these I-

RLs over the others is that the stability and convergence

properties are well-analyzed [6], [10], [11], [13]. In case of

linear quadratic regulation (LQR), it was proven in [10] that

I-PI is equivalent to the Kleinman’s Newton formula which

guarantees the global stability and convergence to the optimal

solution, with local 2nd-order convergence [14]. In case of

I-VI for LQR, the local stability and convergence conditions

were investigated by Lee et al. [13], with a generalized

framework. For I-GPI, it was proven in [11] that under the

admissible policy assumption, the value function approxi-

mated by k-number of iterations in the policy evaluation

step converges to the exact one as k → ∞. However, to

the best authors’ knowledge, the stability, monotonicity, and

convergence of I-GPI as well as its relations to the target

optimal control problems were not explored even for LQR

case. Moreover, over the all I-RL algorithms, there exists no

analysis about how the iteration horizon k and time horizon

T affect the accuracy and computational complexity of the

policy evaluations.

This paper deeply focuses on the I-GPI algorithms applied

to LQR problems and provides various mathematical results.

First, the relationships between the iteration and time horizon

k and T are investigated with the connection to the conver-

gence, accuracy, and computational complexity of the policy

evaluation steps of I-GPI. Second, various local stability,

monotonicity, and convergence criteria are suggested for I-

GPI; Third, several useful equivalent formula of the I-GPI

are provided with their strong connections to LQR. Finally,

numerical simulations are performed to verify these results.
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Notations: In the sequel, M
m×n denotes the set of all m×n

matrices; M
n×n
P (resp. M

n×n
PS ) is the set of all n×n positive

definite (resp. semidefinite) matrices. For any matrix M ∈
M

m×n and vector x ∈R
n, M ′ is the transpose of M; ‖M ‖ and

‖x‖ denote the spectral norm (a maximum singular value)

of M and the Euclidean norm (x′x)1/2 of x, respectively.

II. RELATED TOPICS ON LQR

In this section, we focus on the topics on LQR, which is

closely related to the GPI algorithm—the one concerning

the value function Vu(xt , t) with a stabilizing policy u, and

the other concerning Bellman’s optimality principle with

the DP operator. In the first place, we state the following

lemma, which will be extensively employed throughout the

paper:

Lemma 1: For any matrices X ∈M
n×n and Y ∈M

n×n, the

following integral formula holds for all T > 0:

eX ′TYeXT −Y =
∫ T

0
eX ′τ(X ′Y +Y X)eXτ dτ.

In addition, if X is assumed Hurwitz, then This can be

simplified as

−Y =
∫ ∞

0
eX ′τ(X ′Y +Y X)eXτ dτ (1)

by letting T →∞. Together with Lemma 1, this equation will

be used to explain the connection of LQR and GPI algorithm.

A. Value Function with a Stabilizing Policy

Now, consider the following CT linear system (t ≥ 0):

ẋt = Axt +But , (2)

for a state xt ∈ R
n, a control input ut ∈ R

m, and the matrices

A ∈M
n×n and B ∈M

n×m, with the infinite-horizon quadratic

value function

Vu(xt , t) =
∫ ∞

t
x′τ Sxτ +u′τ Ruτ dτ (3)

where S ∈M
n×n
PS and R ∈M

m×m
P . Here, throughout the paper,

u(t), ut , and simply u will be used interchangeably for the

input of the system (2) and the triple (A,B,S1/2) is assumed

to be stabilizable and detectable.

Let u = −Kx be any policy for the system (2) and AK its

corresponding closed loop matrix A−BK. Defining QK for

a policy K as QK := S + K′RK for simplicity, then, we can

represent Vu(xt , t) in terms of QK as

Vu(xt , t) = x ′
t

(

∫ ∞

t
eA′

K(τ−t)QK eAK(τ−t) dτ

)

xt = x ′
tPKxt (4)

where PK is defined as PK :=
∫ ∞

0
eA′

Kτ QK eAK τ dτ. (5)

If u =−Kx is a stabilizing policy, then, the value function (3)

is finite [14], making the problem feasible. Now, by applying

(1) to PK with X = AK , (5) can be rewritten as
∫ ∞

0
eA′

K τ RicK(PK)eAKτ dτ = 0 (6)

for a stabilizing u = −Kx, where RicK(PK) is defined as

RicK(PK) := A′
KPK +PKAK +QK . Note that (6) always holds

for all stabilizing K and PK . This implies the pair (K,PK)
always satisfies the Lyapunov equation RicK(PK) = 0. Such

PK always exists uniquely for any given stabilizing K and

QK ∈ Mn×n
P [15]. Therefore, for any stabilizing K, one can

always find the corresponding value function Vu(x) = xT PKx

by solving the Lyapunov equation RicK(PK) = 0.

B. DP Operator & Optimality Principle

Regarding the system dynamics (2), we define the dynamic

programming operator TK : X → X on the space X of the

continuous functionals V (x) : R
n → R at fixed time t ≥ 0 as

TKV (x) :=

∫ t+T

t
x′τ QK xτ dτ +V (xt+T ). (7)

where the trajectories of xt are generated by the system

(2) with a given control u = −Kx. We also define (TK)2

as (TK)2V (x) := TK [TKV (x)], and so does (TK)k at

fixed time t ≥ 0 for any k ∈ N. This operator simplifies

the mathematical statements related with the optimality

principle and I-GPI algorithm. Moreover, it also possesses

the following useful mathematical properties:

Lemma 2: Consider the system dynamics (2) with u =
−Kx and a continuous functional of the form V (x) = xT Px.

Then, we have

TKV (x) =x′t

(

P+
∫ T

0
eA′

K τ RicK(P)eAKτ dτ

)

xt , (8)

d

dt
TKV (x) =x′t

(

eA′
K T RicK(P)eAKT −RicK(P)

)

xt

+ x′t(A
′
KP+PAK)xt . (9)

Proof: First, consider the following expansion of (7):

TKV (x) = x′t

(

∫ T

0
eA′

K τ QKeAK τ dτ + eA′
KT PeAK T

)

xt

Now, applying Lemma 1 to eA′
K T PeAK T yields (8), the proof

of the first part. Next, the differentiation of (7) leads to

d

dt
TKV (x) = x′t+T QKxt+T − x′tQKxt + x′t+T (A′

KP+PAK)xt+T

= x′t+T RicK(P)xt+T − x′tRicK(P)xt + x′t(A
′
KP+PAK)xt .

Therefore, the substitution of xt+T = eAK T xt into the equation

completes the proof of (9).

Using the operator TK , the exact value function Vu(x) =
x′PKx for a stabilizing u = −Kx can be expressed as

Vu(xt) =

∫ t+T

t
x′τ QK xτ dτ +

∫ ∞

t+T
x′τ QK xτ dτ

= TKVu(x). (10)

Similar expression is also possible for the equation of the

Bellman’s optimality principle [16]:

Vu∗(xt) = min
K

TKVu∗(x) (11)
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Algorithm 1: Generalized Policy Iteration

1: i ← 0

2: Initialize P0 ∈ M
n×n
PS and let K0 ← R−1B ′P0.

3: do {
4: Policy Evaluation:

For a policy Ki, find Pi+1 which is an approximate of PKi

satisfying RicKi
(PKi

) = 0.

5: Policy Improvement: Ki+1 ← R−1B ′Pi+1

6: i ← i+1
7: Apply an exploration signal to excite the state x.
8: } until ‖Pi −Pi−1‖ < ε

where u∗ and Vu∗(xt) are the optimal policy u∗ =−K∗x with

the optimal gain K∗ ∈M
m×n for LQR, and its corresponding

optimal value function Vu∗(x) = x′PK∗x with the optimal

index PK∗ , respectively. These two equations (10)–(11) are

closely related to and actually the basis of the I-GPI.

From (11), one can obtain the optimal gain K∗ as K∗ =
R−1B′PK∗ by the conventional optimal control arguments.

Substituting this into the Lyapunov equation RicK∗(PK∗) = 0

yields the algebraic Riccati equation (ARE) Ric(PK∗) = 0,

where the Riccati operator Ric(P) is defined as Ric(P) :=
A′P+PA−PBR−1B′P+S. Here, RicK(P) and Ric(P) satisfies

Ric(P) = RicK(P)|K=R−1B′P . (12)

III. GENERALIZED POLICY ITERATION

The usual GPI is shown in Algorithm 1 which consists of

two successive steps—policy evaluation and policy improve-

ment. These two steps are highly related to the equations

RicK(PK) = 0 and (12), respectively. In policy evaluation step

(line 4), it tries to minimize the norm ‖RicKi
(Pi+1)‖ and as

a result, gives an approximate solution Pi+1 of PKi
satisfying

RicKi
(PKi

) = 0. In policy improvement step (line 5), it updates

Ki+1 based on Pi+1 to improve the policy Ki+1 over Ki, that is,

to achieve, for example, ‖RicKi+1
(Pi+1)‖ < ‖RicKi

(Pi)‖. This

achievement indeed implies the improvement of the policy

since the pair (Pi,Ki) always satisfies Ric(Pi) = RicKi
(Pi) by

(12) and Ric(Pi) = 0 holds whenever Pi = PK∗ . In line 7,

some exploration signal is injected to the system (2) through

u to hold the excitation condition which is necessary for the

computation of Pi [5], [6], [9]–[13].

A. Integral GPI with DP Operator

The I-GPI is a class of the GPI methods, given in [11],

to solve a given optimal control problem without knowing

the system internal dynamics. This paper only focuses on the

application to LQR and as a result, gives some mathematical

properties including stability, monotonicity, and convergence.

The basic operation of this algorithm is the one-step recur-

sion at time t ≥ 0, represented by

Vi| j+1(xt) = TKi
Vi| j(x) (13)

where i ∈ N is the iteration number, j ∈ N is the recursion

index at i-th iteration, and Vi| j(x) is a functional defined

as Vi| j(x) := x′Pi| jx for a matrix Pi| j ∈ M
n×n indexed by

(i, j). This one-step recursion (13) actually comes from the

approximation of optimality principle (11), where Vu∗(x) on

the right hand side of (11) is replaced by Vi| j, assumed to

be the most accurate approximate of Vu∗ at (i, j)-th iteration.

Now, the policy evaluation and improvement step of I-GPI

applied to LQR can be derived from (13) as follows:

—- Algorithm 2: Integral GPI ————————————

Policy Evaluation: Vi+1(xt) = (TKi
)kVi(x) (14)

Policy Improvement: Ki+1 = R−1B′Pi+1 (15)

————————————————————————–

where Vi(x) is defined as Vi(x) := x′Pix for a indexed matrix

Pi ∈ M
n×n at i-th iteration. Here, the iteration horizon k

represents the number of recursions (13) executed at each

policy evaluation step. In [11], the authors mentioned that the

policy evaluation (14) is a fixed point iteration, and proved

the convergence to the exact value function Vu∗ as k → ∞,

provided that the policy Ki is admissible. If k = 1, this I-GPI

is actually the same as I-VI method [9], and as k → ∞, I-

GPI algorithm becomes the well-known I-PI [6], whenever

(14) converges to a fixed point. This I-PI guarantees global

stability and convergence [6] and is shown below:

—- Algorithm 3: Integral PI ————————————

Policy Evaluation: Vi+1(xt) = TKi
Vi+1(x) (16)

Policy Improvement: Ki+1 = R−1B′Pi+1 (17)

————————————————————————–

In this I-PI, policy evaluation step (16) exactly evaluates the

value function Vi+1(xt) for the current policy Ki, which is

same to the exact formula (10). In case of I-GPI with finite k,

Vi+1(xt) can be an approximate of VKi
(xt). Note that the error

|Vi+1(xt)−VKi
(xt)| can be made arbitrarily small by adjusting

k if Vi(xt) converges to VKi
(xt) as k → ∞. However, the large

k introduces heavy computational burdens and hence, make

the algorithm hard to implement in practice.

B. Policy Evaluation Step of I-GPI

We now mathematically explore policy evaluation step of

I-GPI, and as a result, provide useful equivalent formula

and convergence property, with the connection to the update

horizon γ > 0 defined as a product of the iteration horizon

k and time horizon T , that is, γ := kT . By using (13), the

policy evaluation (14) of I-GPI can be represented as

Policy Evaluation: Vi|k(xt) = (TKi
)kVi|0(x) (18)

where Vi|k(xt) := Vi+1(xt) and Vi|0(xt) := Vi(xt). For nota-

tional convenience, we define Ai as the matrix of i-th closed-

loop system Ai := AKi
and Mi| j as

Mi| j :=
∫ T

0
eA′

iτ RicKi
(Pi| j)e

Aiτ dτ.

Consider the general k-th order recursive mapping

Vi| j+k(xt) = (TKi
)kVi| j(x). (19)

If some properties regarding (19) are proven, then, they also

holds for Vi|k(xt) and Vi|0(x) satisfying (18) as a special case.
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Here is the main theorem concerning k-th order recursive

mapping (19) and its convergence:

Theorem 1: Consider the mapping (19) with the system

(2). Then, for any k ∈ N, j ∈ Z+, and T > 0, the mapping

Vi| j+k(x) = (TK)kVi| j(x) is equivalent to the followings:

1) RicKi
(Pi| j+k) = eA′

i(kT )RicKi
(Pi| j)e

Ai(kT ) (20)

2) Pi| j+k = Pi| j +
∫ kT

0
eA′

iτ RicKi
(Pi| j)e

Aiτ dτ (21)

3) Pi| j+k = Pi| j −
(

Ric′Ki,Pi| j

)−1
×

[

RicKi
(Pi| j)− eA′

i(kT )RicKi
(Pi| j)e

Ai(kT )

]

(22)

where Ric′Ki,Pi| j
denotes the Frechet derivative of RicKi

(Pi| j)

taken with respect to Pi| j. Moreover, if Ai is Hurwitz, then,

Vi| j+k(xt) converges to the exact value function Vui
(xt) as

γ (= kT ) → ∞.

Proof: First, consider the one-step mapping Vi| j+1(x) =
TKVi| j(x). Then, by (8) in Lemma 2, we have

Pi| j+1 = Pi| j +
∫ T

0
eA′

iτ RicKi
(Pi| j)e

Aiτ dτ.

That is, Pi| j+1 = Pi| j + Mi| j in short. Now, by using this

matrix equation, RicKi
(Pi| j+1) can be expressed in terms of

RicKi
(Pi| j) as follows:

RicKi
(Pi| j+1) = A′

iPi| j+1 +Pi| j+1Ai +K′
i RKi +Q

= RicKi
(Pi| j)+A′

iMi| j +Mi| jAi. (23)

where A′
iMi| j + Mi| jAi can be rewritten as A′

iMi| j + Mi| jAi =

eA′
iT RicKi

(Pi| j)e
AiT − RicKi

(Pi| j). Here, we used Ai eAiτ =

eAiτ Ai and Lemma 1. Substituting this into (23), we have

RicKi
(Pi| j+1) = eA′

iT RicKi
(Pi| j)e

AiT , (24)

which is equivalent to the one-step mapping Vi| j+1(x) =
TKi

Vi| j(x). Therefore, (20) can be easily derived by recur-

sively applying this relation as

RicKi
(Pi| j+k) = eA′

iT RicKi
(Pi| j+k−1)e

AiT

= · · · = (eA′
iT )kRicKi

(Pi| j)(e
AiT )k.

Next, we prove the equivalence between (21) and the

mapping Vi| j+k(x) = (TK)kVi| j(x). By employing Pi| j+1 =
Pi| j +Mi| j to Pi| j+k repetitively, one has

Pi| j+k = Pi| j+k−1 +Mi| j+k−1 = Pi| j+k−2 +Mi| j+k−2 +Mi| j+k−1

= · · · = Pi| j +
k−1

∑
l=0

Mi| j+l .

Here, by (24), Mi| j+l is

Mi| j+l =
∫ T

0
eA′

iτ · eA′
iT RicKi

(Pi| j+l−1)e
AiT · eAiτ dτ

=
∫ 2T

T
eA′

iτ RicKi
(Pi| j+l−1)e

Aiτ dτ

= · · · =
∫ (l+1)T

lT
eA′

iτ RicKi
(Pi| j)e

Aiτ dτ.

Therefore, one has

k−1

∑
l=0

Mi| j+l =
∫ kT

0
eA′

iτ RicKi
(Pi| j)e

Aiτ dτ,

which implies the equivalence between (21) and Vi| j+k(x) =

(TK)kVi| j(x). For the proof of (22), take the time derivative

of the one-step mapping Vi| j+1(x) = TKi
Vi| j(x) and employ

(9) in Lemma 2. Then, one obtains

A′
iPi| j+1 +Pi| j+1Ai = eA′

iT RicKi
(Pi| j)e

AiT −RicKi
(Pi| j)

+A′
iPi| j +Pi| jAi (25)

which holds for all j ∈N∪{0}. By iteratively applying (24)–

(25) to A′
iPi| j+k +Pi| j+kAi, one obtains

A′
iPi| j+k +Pi| j+kAi

= eA′
iT RicKi

(Pi| j+k−1)e
AiT −RicKi

(Pi| j+k−1)

+A′
iPi| j+k−1 +Pi| j+k−1Ai

= (eA′
iT )2RicKi

(Pi| j+k−2)(e
AiT )2 −RicKi

(Pi| j+k−2)

+A′
iPi| j+k−2 +Pi| j+k−2Ai

...

= (eA′
iT )kRicKi

(Pi| j)(e
AiT )k −RicKi

(Pi| j)+A′
iPi| j +Pi| jAi

(26)

which is exactly same to the k-order recursive mapping (19)

since we only employed (24)–(25) equivalent to the one step

mapping Vi| j+1(x) = TKi
Vi| j(x). Finally, rewriting (26) as

A′
i(Pi| j+k −Pi| j)+(Pi| j+k −Pi| j)Ai

= eA′
ikT RicKi

(Pi| j)e
AikT −RicKi

(Pi| j) (27)

yields (22) which is just another expression of (27) [9].

Now, consider the convergence of the mapping (19). Note

that if the term eA′
ikT RicKi

(Pi| j)e
AikT converges to zero, then,

(25) goes to the iteration

Pi| j+k = Pi| j −
(

Ric′Ki,Pi| j

)−1
RicKi

(Pi| j), (28)

which is exactly the Kleinman’s Newton method [10], [14].

This eA′
ikT RicKi

(Pi| j)e
AikT → 0 happens exactly when kT

(= γ) goes to infinity and Ai is Hurwitz. Therefore, whenever

γ → ∞, (25) becomes (28) which is equivalent to the PI [10].

Since policy evaluation of PI exactly calculates the value

function Vui
(x) = x′PKi

x, the function Vi| j+k(x) = x′Pi| j+kx

goes to Vui
(x) as γ → ∞, which completes the proof.

Note that the update term in (21) is the same as the

term in (6) except the update horizon γ (= kT ) is finite and

PKi
is replaced with Pi. Obviously, this update term turns

out to be zero when Pi equals to the exact value function

PKi
. By increasing γ , one can increase the update horizon

of the integral. Furthermore, the increase of the update

horizon γ can actually reduce the error ‖Pi| j+k −PKi
‖ when

Ai is Hurwitz. Note that by the convergence argument,

with Hurwiz matrix Ai, ∀ε > 0, ∃γ ∗ ∈ N such that

∀γ ≥ γ ∗, ‖Pi| j+k − PKi
‖ < ε holds. This can be also seen

from (20) where sufficiently large γ makes the term
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eAikT and thus RicKi
(Pi| j+k) arbitrarily small when Ai is

Hurwitz. The Hurwitzness of Ai is certainly required for

both the existence of PKi
and the convergence of Pi| j+k to PKi

.

Remark 1: According to (20)–(22), all of the mappings

Vi| j+k(x) = (TKi
)kVi| j(x) with the same update horizon γ ∈R

are actually all equivalent and have the same convergence

speed, implying that the computational complexity due to

the large iteration horizon k can be lessened by increasing

the time horizon T for the same convergence speed.

Corollary 1: Consider the policy evaluation step (18)—

Vi|k(xt) = (TKi
)kVi|0(x). Then, it satisfies (20)–(22) with j =

0. Moreover, if Ai is Hurwitz, then, Vi|k(xt) converges to the

exact value function Vui
(xt) as γ → ∞.

Remark 2: In [11], the convergence of Vi|k(xt) to Vui
(xt)

was proven with respect to k ∈ N. On the other hand, Corol-

lary 1 shows that the convergence result can be extended

with respect to the update horizon γ ∈ R.

C. Stability & Convergence of I-GPI Algorithm

Based on the results from Section III-B, we derive the local

stability and convergence of the I-GPI algorithm (14)–(15).

First, for notational convenience, define Φ(i,k) and M(i,k) as

Φ(i,k) :=
∫ kT

0
‖eAi τ‖2 dτ, (29)

M(i,k) :=
∫ kT

0
eA′

iτ Ric(Pi)e
Aiτ dτ. (30)

In the policy improvement step (15), Ki is determined by

Ki = R−1B ′Pi. Therefore, by incorporating this into the

results in Section III-B, one obtains the following equivalent

formulas:

Proposition 1: Consider the I-GPI algorithm (14)–(15).

Then, it is equivalent to the following iterative forms:

1) Ric(Pi+1) = eA′
i(kT )Ric(Pi)e

Ai(kT ) −M(i,k)BR−1B′M(i,k)

(31)

2) Pi+1 = Pi +
∫ kT

0
eA′

iτ Ric(Pi)e
Aiτ dτ (32)

3) Pi+1 = Pi −
(

RicPi

)−1

[

Ric(Pi)− eA′
i(kT )Ric(Pi)e

Ai(kT )

]

.

(33)

Proof: The equivalence to (32) and (33) can be easily

derived by substituting Ki = R−1B ′Pi into (21) and (22),

respectively. For the proof of (31), consider Ric(Pi+1) with

its expansion:

Ric(Pi+1) =Ric(Pi)+A′
iM(i,k) +M(i,k)Ai

−M(i,k)BR−1B′M(i,k) (34)

where A′
iM(i,k) + M(i,k)Ai can be represented as A′

iM(i,k) +

M(i,k)Ai = eA′
i(kT )Ric(Pi)e

Ai(kT ) − Ric(Pi) by Lemma 1 and

Aie
AiT = eAiT Ai. By substituting this into (34), we have (31),

which completes the proof.

In comparison to (20), the term −MiBR−1B′Mi appears in

the equation (31) which is caused by the policy improvement

(15). The equation (31) plays a central role in the proof of

convergence, and so do the two lemmas presented below:

Lemma 3: For any (i,k) ∈ Z
2
+, Φ(i,k) and M(i,k), defined

by (29) and (30) respectively, satisfy the following inequality:

‖M(i,k)‖ ≤ Φ(i,k)‖Ric(Pi)‖. (35)

Proof: This can be directly proven by applying the

property of matrix norm to ‖M(i,k)‖.

Lemma 4: Let Pi+1 obtained by I-GPI (14)–(15) algorithm

converges to P∗. Then, P∗ = PK∗ holds. That is, P∗ is the LQ

optimal solution satisfying Ric(P∗) = 0.

Proof: Assume Pi → P∗. Then, taking the limit of (32)

yields 0 = lim
Pi→P∗

(Pi+1−Pi)= lim
Pi→P∗

∫ kT

0
eA′

iτ Ric(Pi)e
Aiτ dτ,

which implies Ric(P∗) = 0. Since (A,B,Q1/2) is stabilizable

and detectable, Ric(P∗) = 0 has a unique solution. Therefore,

P∗ = PK∗ holds.

Now, we state the local stability and convergence of I-

GPI. For a precise statement, we define linear and quadratic

convergence as follows:

Definition 1: A sequence of matrix
{

Pi

}

is said to con-

verge to the solution PK∗ , linearly (resp. quadratically) in

a set Ω ⊂ Ω if it locally converges to PK∗ in Ω, and have

the property ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖ (resp. ‖Ric(Pi+1)‖ <
‖Ric(Pi)‖

2) whenever Pi ∈ Ω. We also say that
{

Pi

}

linearly

(resp. quadratically) converges to PK∗ if Ω = Ω.

Theorem 2: Consider the I-GPI algorithm (14)–(15) with

the system (2) and define the bounds Ci, Di, and Ei as Ci :=
(2

∥

∥BR−1B ′
∥

∥‖Yi‖Φ(i,k))
−1,

Di :=
1−‖eAi(kT )‖2

‖BR−1B ′‖Φ2
(i,k)

, Ei :=
‖eAi(kT )‖2

1−‖BR−1B ′‖Φ2
(i,k)

,

respectively. Suppose ΩDi
and ΩEi

be the sets defined as

ΩD i
:= {P ∈ M

n×n : ‖Ric(P)‖ < Di},

ΩEi
:= {P ∈ M

n×n : Ei < ‖Ric(P)‖ < 1},

respectively. Then, for all i ∈ N∪{0},

1. (stability) if Ai Hurwitz, so is Ai+1 when ‖Ric(Pi)‖ ≤Ci;

2. (1st-order monotonicity) if Pi ∈ ΩD i
at i-th iteration,

then, Pi+1 satisfies ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖;

3. (2nd-order monotonicity) if
∥

∥BR−1B ′
∥

∥Φ2
(i,k) 6= 1 and

Ei < ‖Ric(Pi)‖ is satisfied at i-th iteration, then, Pi+1

satisfies ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖
2
;
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Fig. 1. The evolutions of critic parameters Pi with T = 40[ms] for various ki’s–(a) P11, (b) P12, and (c) P22.

4. (linear convergence & quadratic decreasing) if Pi ∈ΩD i

for all i ∈ N∪ {0}, then, Pi linearly converges to PK∗ ;

moreover, if Di is larger than 1 (1 < Di), then, ΩEi
6= ∅

and ΩEi
⊂ ΩD i

holds; in this case, Pi converges to PK∗ ,

quadratically in ΩEi
.

5. (quadratic convergence of policy iteration) if
{

Pi

}

is

generated by policy iteration (16)–(17), then it quadrati-

cally converges to PK∗ whenever P0 ∈Ω0 (Ω0 = ΩEi
|Ei=0)

and A0 is Hurwitz.

Proof: For the proof of the stability part, follow the

same procedure given in [13], with M(i,k) defined in (30)

(see the proof of Theorem 1 [13]). For the proof of the

monotonicity, take the matrix norm ‖ ·‖ of (31) and employ

Lemma 3 and the properties of the norm as follows:

‖Ric(Pi+1)‖ ≤ ‖eAi(kT )‖2 · ‖Ric(Pi)‖+‖Mi‖
2 · ‖BR−1B′‖

≤ ‖eAi(kT )‖2‖Ric(Pi)‖+Φ2
k‖BR−1B′‖‖Ric(Pi)‖

2
.

(36)

By applying ‖Ric(Pi)‖ < Di to (36), one proves the 1st-

order monotonicity ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖. Next, assume

‖Ric(Pi)‖ < Ei and rearrange (36) as

‖Ric(Pi+1)‖ ≤

(

‖eAi(kT )‖2

‖Ric(Pi)‖
+Φ2

k‖BR−1B′‖

)

‖Ric(Pi)‖
2.

Then, by inverting ‖Ric(Pi)‖ < Ei and applying it to the

above inequality ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖
2 can be proven,

the 2nd-order monotonicity.

In the sequel, we will focus on the convergence of Pi. if

‖Ric(Pi)‖ < Di holds for all i ∈ N∪{0}, then by 1st-order

monotonicity ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖ and lower bounded-

ness of ‖Ric(Pi)‖ by zero,
{

‖Ric(Pi)‖
}

converges, and so

does {Ric(Pi)} with this topology. Therefore, by Lemma

4, we conclude that Pi linearly converges to PK∗ whenever

Pi ∈ ΩD i
for all i ∈ N∪{0}.

For the proof of quadratic decreasing, suppose Di > 1 and

rearrange the inequality. Then, one obtains 1−
∥

∥BR−1B′
∥

∥ ·
Φ2

(i,k) > 0 and Ei < 1. Therefore, ΩEi
6= ∅ is valid, and thus,

by 2nd-order monotonicity, ‖Ric(Pi+1)‖ < ‖Ric(Pi)‖
2 holds

whenever Pi ∈ ΩEi
. In this case, ΩEi

⊂ ΩDi
is obvious by

Ei < 1 < Di. Note that Pi → PK∗ if Pi ∈ ΩD i
∀i ∈ N∪{0}

by linear convergence argument. Then, it is obvious that Pi

converges to PK∗ , quadratically in ΩEi
(⊂ ΩDi

).

Now, note that if Ai is Hurwitz and γ → ∞, Ei goes to zero

and I-GPI (14)–(15) becomes the I-PI (16)–(17). Since I-PI

yields Hurwitz Ai when A0 is Hurwitz, one can assume Ai

is Hurwitz without loss of generality. Now, considering the

metric the metric d(ΩEi
,ΩE j

) = |Ei −E j| on {ΩE : 0 ≤ E <
1}, one can see limγ→∞ ΩEi

= Ω0. Therefore, by quadratic

decreasing, {Pi} generated by (16)–(17) quadratically con-

verges to PK∗ whenever P0 ∈ Ω0, which completes the proof.

Remark 3: Although the monotonicity and convergence

were proven independently of the stability of Ai, it is

actually related to the existence of P ∈ M
n×n such that

0 < ‖Ric(P)‖ < Di (P ∈ ΩD i
) holds. Note that to satisfy

0 < Di for any k ∈ N and any T > 0, Ai should be at least

Hurwitz, which is the connection between Ci and Di.

Remark 4: As is well-known in the literature [14], I-PI

(16)–(17) guarantees quadratic convergence in the vicinity

of Ric(PK∗) = 0. In this article, a concrete set Ω0 around PK∗

is provided in which the I-PI (16)–(17) achieves quadratic

convergence.

IV. NUMERICAL RESULTS

To verify the claims raised in Section III, the I-GPI (14)–

(15) is simulated with the following step-down converter

model for various k ∈ N:

A =
[

0 −1/L

1/C −1/RoC

]

, B =
[

Vg/L

0
.
]

where the parameters were set to L = 200 [µH], C =
200 [µF], Ro = 25 [Ω], and Vg = 24 [V], and the performance

index (3) with S = diag{5,1} and R = 300 is considered.

With these settings, PK∗ associated with the optimal value

function Vu∗(x) can be evaluated as

PK∗ =
[

0.3418 0.0606
0.0606 0.5431

]

×10−3. (37)

Furthermore, for the implementation of I-GPI (14)–(15),

the batch least squares, already used in [6], [9]–[13], is

adopted for the calculation of Pi+1 in policy evaluation where
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TABLE I

THE EVALUATIONS OF Ci , Di , AND Ei THROUGH SIMULATIONS

Ci Di Ei

γ
minCi C∗ minDi D∗ minEi E∗

1 0.94 0.94 0.06 0.16 1.07 1.07
2 0.51 0.23 0.20 0.51 1.27 1.27
5 0.67 0.67 2.54 2.54 0.69 0.73

10 1.34 1.34 21.27 21.27 0.19 0.20
20 2.68 2.68 104.39 104.4 0.01 0.02
∞ 13.40 13.40 2651.1 2651.1 0.00 0.00

5 number of data samples (xt ,ut ) are collected a iteration.

After each policy improvement, an exploration signal w(t) =
10−2 sin2π f with f = 50 [kHz] is applied during one period

T through u to prevent xt from being stationary.

Fig. 1 illustrates the trajectories of the convergent parame-

ters P11, P12, and P22 for various k ∈N with the time horizon

T = 40 [ms] and initial policy u0 ≡ 0. As can be seen from

the figures, the convergence speeds of Pi are lowest when

k = 1 (I-VI case). As k ∈ N is increased, the convergence to

PK∗ tends to be achieved more rapidly than the case k = 1, but

introduces much higher overshoots at i = 1 especially when

k ≥ 10. Note that the largest overshoots appear when k = ∞
(I-PI case), and in this case, the convergence speeds do not

seem to be significantly improved in comparison to the other

case (k < ∞). Therefore, the choice of suitable k can be a

main issue which achieves an appropriate trade-off between

the convergence speeds and the degree of the overshoots.

Fig. 2 describes the evolutions of Pi when u0 ≡ 0, k = 1,

and T = 40×5 [ms]. Comparing Fig. 2 with the case k = 5

and T = 40 [ms] in Fig. 1 in iteration domain, one can see

that both Pi’s evaluated by (14) with the same update horizon

γ = 1×5×40 = 200 [ms] are exactly same to each other. This

verifies the claims from Theorem 1 and Proposition 1—I-GPI

algorithms (14)–(15) with the same update horizon γ are all

equivalent.

To investigate how much the bounds Ci, Di, and Ei are

conservative, additional simulations are carried out for the

different γ . Since Theorem 2 provides the local stability and

convergence in the vicinity of Ric(PK∗) = 0, we employ K0 =
R−1B′P0 as the initial policy u0, where P0 is the solution of

ARE with A replaced by the nominal matrix Anom. Here, Anom

is composed of Lnom = 250 [uH], Cnom = 285.72 [uF], and

Ro, nom = 13.46 [Ω]. Table I shows some bounds for different

γ , where minimum is taken over the whole iterations, and

C∗, D∗, and E∗ denote the values of Ci, Di, and Ei after Pi

converges. Through the result, one can see that Ei converges

to 0 as γ →∞, enlarging the region of quadratic convergence.

Also note that the larger γ , the larger areas of stability and

convergence bounds Ω̄Di
can be achieved.

V. CONCLUDING REMARKS

In summary, we have provided the various equivalent

formula of GPI with respect to the update horizon γ (= kT ),

which revealed the relationships between the time horizon

T and the computational complexity due to k. The criteria

regarding local stability and convergence were also provided

for I-GPI. However, I-PI, the special case of I-GPI, actually

guarantees the global stability and convergence [10], which

implies there would be less conservative bounds than those

in Theorem 2. Therefore, the future works would be to find

such bounds or global stability conditions of I-GPI, make

research on the relations of discount factor and learning rate

[13] to I-GPI, and extend the results to the general nonlinear

systems.
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