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Abstract— In this paper, we study consensus problem for
hierarchical multi-agent dynamical systems with low rank
interconnection by eigenvector-based connection. The system
considered is more general than the existing one in a sense that
the number of agents in each subsystem and the connection
structure of each subsystem are allowed to be different from
each other. We provide analytical expressions of the eigenvalue
sets of the hierarchical interconnection matrices and systematic
synthesis procedures for achieving the output consensus with
Lyapunov stability. The results are applicable to more general
class of hierarchical interconnection structures than previous
work, and numerical examples with simulations confirm the
effectiveness of the proposed design method.

I. INTRODUCTION

As a natural consequence of rapid developments in sensing
systems, computing technologies and communication net-
works, large-scale systems have become one of the main
focuses in different research areas including control engineer-
ing. In particular, control problems of large-scale systems
such as consensus and cooperative control problems have
been received great interests in recent years. See, for exam-
ple, [1], [6], [7] and the references therein. It is recognized
that, as the scale of the system becomes large and the
structure of the system becomes complex, the development
of decentralized control scheme by which the large-scale
system could reach a desired global behavior also becomes
complicated and difficult in practice. On the other hand,
the interaction in a large-scale system usually consists of
several interactions in some subsystems and weak interac-
tions among these subsystems. This is known as hierarchical
structure and has been used as one effective way to analyze
large-scale dynamical systems in recent work.

A hierarchical cyclic pursuit scheme was introduced for
the consensus problem of multi-agent systems in [10]. It is
shown that, comparing to either the traditional cyclic pursuit
or an alternate scheme with same number of communication
links, the proposed hierarchical scheme increases the rate
of convergence of a group of agents to a common point.
Motivated by this work but to further investigate the ef-
fect of the interactions among subsystems, the concept of
low rank interconnection was introduced in [9]. The rank
of interconnection matrix which represents the strength of
interconnection among subsystems is assumed to be one or
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two. For these two cases, [9] shows that low rank property
leads to more rapid consensus than the case of full rank
interconnection as done in [10]. Eigenvalue distribution for
low rank interconnection matrix is used to explain the result
in [9].

Most recently, [11] showed that the previous result is
not only led by the low rank property but also some prop-
erty related to the eigenvector, which is defined as eigen-
connection matrix. As a result, they are able to provide
almost explicit formulas for eigenvalue distribution of certain
class of hierarchical interconnections. Therefore, it is inter-
esting and important to pay attention to eigenvector-based
characterization for hierarchical multi-agent systems, which
is a new research line in this field.

However, the hierarchical structure considered in [11] is
quite special in a sense that the number of agents in each
subsystem is the same, and the interconnection structure
in each subsystem is the same as well. This assumption
is restrictive from practical point of view, and thus limits
the application of the proposed method. Moreover, the work
in [11] focuses only on the stabilization problem, and the
consensus problem has not been considered. In particular, to
stabilize the system, based on the results of systems with
generalized frequency variables [4], it is sufficient to locate
the eigenvalues of the interconnection within the well defined
stability region. This does not guarantee that the agents in
the system could reach consensus though.

The purposes of this paper are twofold. The main purpose
of this paper is to extend the hierarchical structure considered
in [11] to general case in a sense that the number of
agents in each subsystem is allowed to be different, and
the interconnection structure in each subsystem could be
also different. The concept of eigen-connection is extended
to this case and it is seen that the eigenvectors of local
interconnection matrices play an important role in the def-
inition. We can derive analytical expressions of eigenvalue
sets of the hierarchical interconnection matrices with rank
one and two eigen-connections, which consist of that of
local interconnection matrices and of the matrix determined
by the intersubsystem connection matrix and the interlayer
connection matrix. The second aimpoint is to study the
consensus problem rather than just stabilization. In particular,
we provide the essential property to explain how to reach
hierarchical consensus by eigenvector-based connection.

After the problem formulation for hierarchical network
synthesis for output consensus in Section II, we provide an-
alytical expressions of the eigenvalue sets of the hierarchical
interconnection matrices and systematic synthesis procedures
for achieving the output consensus with Lyapunov stability
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Fig. 1. Multi-agent dynamical system.

in Sections III and IV for the rank 1 and rank 2 cases,
respectively. The results are applicable to more general class
of hierarchical interconnection structures than previous work
including [11]. Actually, we provide numerical examples
with simulations to illustrate the effectiveness of the pro-
posed design method. All the proofs of the Theorems in this
paper are omitted. See reference [2] for details.

II. PROBLEM FORMULATION

A. Output Consensus Problem
Consider a class of multi-agent dynamical systems with

N agents depicted in Fig. 1, where the SISO proper transfer
function h(s) represents the common dynamics of each
agent. The interconnection of N agents is described by

u = Ay ; A ∈ RN×N , (1)

where u := [u1, . . . , uN ]⊤,y := [y1, . . . , yN ]⊤ ∈ RN . We
refer to A as interconnection matrix in this paper.

The goal of consensus problem investigated in this paper
is to design an interconnection matrix A satisfying the
following two requirements:

1) Lyapunov Stability: 1 All the poles of the feedback
system depicted in Fig. 1 except single pole at the
origin lie in the open left half complex plane C−.

2) Output Consensus: For all initial conditions, the
output achieves consensus in the following sense:

lim
t→∞

∥yi(t)− yj(t)∥ = 0, ∀i, j. (2)

Suppose the dynamics of the ith agent is represented by
a minimal state-space realization

ẋi = Ahxi + bhui, yi = chxi, i = 1, . . . , N, (3)

where Ah ∈ Rm×m and bh, c
⊤
h ∈ Rm. In other words, the

SISO transfer function h(s) is given by h(s) = ch(sIm −
Ah)bh. The total feedback system then can be expressed as

ẋ = Ax ; A = IN ⊗Ah +A⊗ (bhch), (4)

where x := [x1, . . . , xN ]⊤. The requirement of the Lya-
punov stability above is equivalent to the condition that all
the eigenvalues of A except simple eigenvalue at the origin
are contained in C−. Furthermore, as shown in [8], if A has
a simple eigenvalue 0 associated with the right eigenvector
1N , or A1N = 0 holds, the output consensus is achieved in
the sense of (2).

It is difficult to design A directly such that the eigenvalue
distribution of A meets the two requirements, especially

1For notational simplicity, any pure complex pole is not allowed in our
definition.

Fig. 2. Concept of hierarchical structure.
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when N is very large. Fortunately, the feedback system
belongs to a class of LTI systems with generalized frequency
variables [3], [4], and hence the assignment of eigenvalues of
A can be reduced to doing that of A (not A) in the associated
stability region determined by h(s) as seen in Fig. 4.

B. Hierarchical Output Consensus Problem

As mentioned in the Introduction section, we consider a
hierarchical interconnection structure. We divide N agents
into M groups which are called subsystems in this paper. The
concept of hierarchical interconnection is illustrated in Fig. 2.
A two-layer hierarchical structure is realized in the sense that
the agents in each subsystem exchange information using
the local structure in the lower layer and the subsystems do
aggregated information in the upper layer. 2

Consider M subsystems. The kth subsystem contains nk

agents, where nk (k = 1, . . . ,M ) are positive integers
satisfying N =

∑M
k=1 nk. We define the interconnection

matrix representing the local connection in the kth subsystem
as Ak ∈ Rnk×nk , the intersubsystem connection as K ∈
RM×M . The relationship between the I/O of agents and those
of subsystems is defined by

uk = Aky
k + VkUk,

Yk = W⊤
k yk,

(5)

where uk :=
[
uk
1 , . . . , u

k
nk

]⊤
,yk :=

[
yk1 , . . . , y

k
nk

]⊤ ∈ Rnk

are the input and output of the agents in the kth subsystem,
respectively, Uk, Yk ∈ Rr are the input and output of
the kth subsystem, respectively, and Wk, Vk ∈ Rnk×r are
the matrices representing aggregation and distribution of
information, respectively. The block diagram is depicted in
Fig. 3. The I/O dimension r of subsystem represents the level
of information aggregation and satisfies r ≤ mink{nk}.

2We can naturally extend the concept of hierarchical structure to the
case of three or more layers, although we focus on two layer structure for
simplicity of discussion in this paper.
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Consider the interconnection between subsystems de-
scribed by

U = (K ⊗ Ir)Y , (6)

where U := [U⊤
1 , . . . , U⊤

M ]⊤,Y := [Y ⊤
1 , . . . , Y ⊤

M ]⊤ ∈ RrM

and K ∈ RM×M . Then the interconnection matrix of a two-
layer hierarchical interconnection structure is given by

A = diag {Ak}+K ⊙ Γ ∈ MM×M
∆ , (7)

where ⊙ denotes the Khatri-Rao product of two matrices (see
Appendix I for the definition). The partition ∆ to represent
MM×M

∆ satisfies ρ(∆) = N , and δi = ni. The Khatri-
Rao product is a generalization of the Kronecker product,
which has been used to represent hierarchical multi-agent
systems with common subsystem structures as seen in [9]–
[11]. The Khatri-Rao product is really required to treat the
more general case where the numbers and graph structures of
subsystems are different each other. Γ ∈ MM×M

∆ is defined
by

Γ = [Γkl] ; Γkl := VkW
⊤
l (k, l = 1, . . . ,M), (8)

and it determines what kind of information is exchanged
among the subsystems and which agents receive the effect
of the upper-layer interaction. We refer to Γ as an interlayer
connection matrix in the rest of this paper. Obviously, Γ
plays an important role in the hierarchical interconnection
structure. For example, the low rank property of Γkl, or small
number of r = rank Γkl is quite effective for achieving the
rapid consensus as reported in [9]. Hence, we focus on the
rank 1 and rank 2 cases in Sections III and IV, respectively.

C. Hierarchical Network Synthesis for Output Consensus

Our main concern in this paper for hierarchical network
synthesis to achieve the output consensus is to propose a
systematic way for the following problem:

For given h(s) and Ak (k = 1, . . . ,M ), the problem is to
find matrices K and Γkl = VkW

⊤
l (k, l = 1, . . . ,M ) with

low rank so that A is Lyapunov stable and A1N = 0 holds.
The key idea is focusing on eigenvector of Ak for the

selection of Γkl, which makes us to derive an analytic
expression of eigenvalue distribution of A and to assure the
output consensus condition or A1N = 0. To this end, we
assume the followings throughout this paper:

• h(s) has a simple pole at the origin of the complex
plane and all other poles are located in C−.

• −Ak (k = 1, . . . ,M ) are all graph Laplacian, and hence
−Ak1nk

= 0 hold for ∀ k = 1, . . . ,M .
Since A in (4) should have a simple eigenvalue at 0, all the

poles of h(s) are included in the set of all closed-loop poles.
In other words, the first assumption is a necessary condition
for achieving the output consensus with Lyapunov stability,
and hence it is not restrictive. The second assumption assures
the output consensus inside each subsystem, and hence it is
reasonable when we consider the hierarchical structure. How-
ever, it should be emphasized that the second assumption
does not guarantees the Lyapunov stability even if we have
no interlayer connection, or K = 0. The reason is that the
stability region for LTI systems with generalized frequency

variables is not C− as seen in Fig. 4. It is characterized as
the complement of Ω+ in C, or Ωc

+ = C \ Ω+, where

Ω+ := ϕ(C+) = {λ ∈ C | ∃s ∈ C+, ϕ(s) = λ}

with ϕ(s) := 1/h(s) and C+ = {s ∈ C | Re (s) ≥ 0} [4].

III. DESIGN OF RANK ONE INTERCONNECTION

A. Eigenvalue distribution

In this section, we consider the case where r = 1, i.e., Vk

and Wk in (5) are represented by

Vk = vk ∈ Rnk , Wk = wk ∈ Rnk . (9)

Then, the input and output of the kth subsystem are in-
terpreted as the proportional distribution with the weight
vector vk and the weighted sum with the weight vector wk,
respectively. It is clear that Γ satisfies

rank Γkl = rank vkw
⊤
l = 1, ∀k, l, (10)

which means the number of independent exchanged infor-
mation in upper layer is just one.

We now extend the concept of the eigen-connection intro-
duced in [11] for Ak = A0, ∀k to more general cases with
having different Ak to capture many practical situations.

Definition 1: For k = 1, . . . ,M , let Ak be nk × nk

matrix and λk1 be one of eigenvalues of Ak. An interlayer
connection matrix defined by (8) is called a left (resp.,
right) eigen-connection matrix of {Ak} associated with the
eigenvalue {λk1}, if wk (resp., vk) in (9) is a left (resp.,
right) eigenvector of Ak associated with eigenvalue λk1.

The following theorem shows that the eigenvalue set of
the interconnection matrix of the left eigen-connected system
consists of that of interconnection matrices in lower layer and
that of the matrix determined by the interconnection matrix
in upper layer and the interlayer connection matrix.

Theorem 2: For each k = 1, . . . ,M , let Ak be an nk×nk

matrix which has at least one simple eigenvalue λk1 and
let vk, wk ∈ Rnk . If Γ is a left or right eigen-connection
matrix of {Ak} associated with {λk1}, then, for any matrix
K ∈ RM×M , the set of all the eigenvalues of A defined by
(7) is given by

σ(A) =
M∪
k=1

(
σ(Ak) \ {λk1}

)
∪ σ

(
DK + Λ

)
(11)

or

σ(A) =
M∪
k=1

(
σ(Ak) \ {λk1}

)
∪ σ

(
KD + Λ

)
, (12)

respectively,where D = diag
{
v⊤k wk

}
and Λ = diag {λk1}.

See the reference [2].

Theorem 2 is an extension of Theorem 2 in [11].

Remark 3: Even when Ak,K and Γ are complex matri-
ces, Theorem 2 still hold if the transpose is replaced by the
complex conjugate.
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Fig. 4. Eigenvalue distribution of A1

(‘×’), A2 (‘⃝’) and A (‘□’) (Case1).
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Fig. 5. Output of each subsystem without intercon-
nection (Case 1).
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Fig. 6. Outputs of the agents connected by eigen-
connection (Case 1).

Theorem 2 tells us that an interlayer eigen-connection
matrix of rank one affects only eigenvalues of the local
interconnection matrix Ak used for the eigen-connection. If
we have unstable subsystems, there are two approaches to
make the whole system stable. One is to adjust the local inter-
connection from which unstable eigenvalues are derived. The
other is to connect subsystems using the eigen-connection
associated with unstable eigenvalues and to design K, vk and
wk so as to shift unstable eigenvalues into the stability region.

B. Design procedure with numerical examples
We here show a design procedure of a hierarchical in-

terconnection structure for dynamical multi-agent systems
based on the rank 1 eigen-connection investigated in the pre-
vious subsection through numerical examples. The dynamics
of each agent is given by

h(s) =
b

s(s+ a)
e−τs ; a = π, b =

π2

2
, (13)

where τ represents the time delay for exchanging informa-
tion. The number of agents is N = 7.

The 7 agents are divided into 2 subsystems which consist
of 4 and 3 agents, respectively. Assume the local intercon-
nection matrices A1 and A2 are given by

A1 =

−2.8 1.8 0 1
0 −0.5 0.5 0
0.1 0 −0.6 0.5
0.5 0 0 −0.5

 , A2 =

[−1.5 1.5 0
0.5 −1 0.5
0.5 0 −0.5

]
.

(14)

The eigenvalues of A1 and A2 are given by

σ(A1) =

{
0,−7±

√
14 j

10
,−3

}
, σ(A2) = {0,−1,−2}.

Case 1) τ = 0
The region Ωc

+ and the eigenvalues of A1 and A2 are
shown in Fig. 4 as ‘×’ and ‘⃝’, respectively. Both matrices
have an eigenvalue 0 associated with a right eigenvector 14

and 13, respectively. Since other eigenvalues lie in Ωc
+, each

subsystem achieves consensus. However, all the agents in the
whole system do not reach consensus as shown in Fig. 5.

To achieve consensus of all the agents, we need to design
the eigen-connection between two subsystems. The eigen-
value which we have to change is one of two 0s, and preserve
the right eigenvectors of them, that is, 14 and 13. Let Γ in (7)
be right eigen-connection matrix of {A1, A2} associated with
eigenvalues {0, 0}, that is, v1 = 14, v2 = 13. Furthermore,

we need to set 17 as the right eigenvector of A associated
with 0 eigenvalue which has not been changed, i.e., A17 = 0.
This can be achieved if and only if matrix KD +Λ in (12)
has an eigenvalue 0 associated with the right eigenvector
12. Choose w1 and w2 such that D is an identity matrix to
facilitate the design of K. Hence, we may set w1 and w2 as
w1 = (1/4)14, w2 = (1/3)13.

This means that the aggregated information is an arith-
metic average of outputs of all the agents in each subsystem.
Then, we get KD+Λ = K and K must have an eigenvalue
0 associated with the right eigenvector 12 and the other
eigenvalue in Ωc

+. In this example, we employ

K =
[−3/4 3/4
3/4 −3/4

]
,

which satisfies σ(K) = {0,−3/2}. The eigenvalues of the
whole interconnection matrix A are plotted in Fig. 4 as ‘□’,
and thus the consensus is achieved as shown in Fig. 6.
Case 2) τ = 0.25

The region Ωc
+ for the delay case and the eigenvalues

of A1 and A2 are illustrated as in Fig. 7 as ‘×’ and ‘⃝’,
respectively. Since one eigenvalue of A1, λ1 = −3, lies
outside of Ωc

+, subsystem 1 is unstable as seen in Fig. 8. Note
that we can only move at most one eigenvalue per subsystem
with rank one eigen-connection. It is therefore impossible
to achieve consensus and stabilization simultaneously in the
Case 2 [2]. There is another problem that we cannot always
choose wk from the eigenvectors of Ak. Furthermore, the
corresponding eigenvector wk must be a real vector for
practical reason, but it may be a complex vector. We will
introduce the rank two eigen-connection in the next section
to overcome these problems.

IV. DESIGN OF RANK TWO INTERCONNECTION

A. Eigenvalue distribution

In this section, we consider r = 2 case. Both Vk and Wk

in (5) are then nk × 2 matrices. Let

Vk = [vk1 vk2] ∈ Rnk×2, Wk = [wk1 wk2] ∈ Rnk×2. (15)

If (vk1, vk2) and (wk1, wk2) are the pairs of linearly inde-
pendent vectors, Γ satisfies

rank Γkl = rank
[
vk1 vk2

] [w⊤
l1

w⊤
l2

]
= 2, ∀k, l, (16)

which means the number of information exchanged indepen-
dently in upper layer is two.
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We now define the rank two eigen-connection in the
similar manner as Definition 1. This is an extension of the
rank two eigen-connection defined in [11].

Definition 4: For k = 1, . . . ,M , let Ak be nk×nk matrix
and λk1, λk2 be two eigenvalues of Ak. An interlayer con-
nection matrix Γ defined by (8) is a left (resp., right) eigen-
connection matrix of {Ak} associated with the eigenvalues
{λk1}, {λk2}, if wk1 and wk2 (resp., vk1 and vk2) belong to
the linear subspace spanned by the left (resp., right) eigen-
vectors of Ak associated with the eigenvalues λk1 and λk2.

We state the main result for the hierarchical interconnection
with rank two eigen-connection in the following theorem.

Theorem 5: For each k = 1, . . . ,M , let Ak be an nk×nk

matrix which has at least two simple eigenvalues λk1 and
λk2 and let vk1, vk2, wk1 and wk2 be nk-dimensional column
vectors. If Γ given by (15) is a right eigen-connection matrix
of {Ak} associated with {λk1}, {λk2}, then, for any M×M
matrix K, the set of all the eigenvalues of A defined by (7)
is given by

σ(A) =

M∪
k=1

(
σ(Ak) \ {λk1, λk2}

)
∪ σ

(
S(K ⊗ I2)Φ + Λ

)
.

(17)
Here, Φ = diag {Φk} , S = diag {Sk} and Λ = diag {Λk},
where Φk and Λk are 2× 2 matrices satisfying

Φk =

[
w⊤

k1

w⊤
k2

] [
γk1 γk2

]
, Λk =

[
λk1 0
0 λk2

]
.

γk1 and γk2 are the right eigenvectors of Ak associated with
λk1 and λk2, respectively, and Sk is a 2×2 matrix satisfying[

vk1 vk2
]
=

[
γk1 γk2

]
Sk.

As in the rank one case, we can show that Theorem 5 is
an extension of Theorem 6 in [11], and we can obtain an
analogous result for left eigen-connection matrices [2].

B. Design procedure with numerical example
We here show a design procedure of a hierarchical in-

terconnection structure based on rank two eigen-connection
through a numerical example.

Consider the case where the dynamics of each agent is
given by (13) and N = 7. The 7 agents are divided into 2
subsystems which consists of 4 and 3 agents, respectively.
Assume that local interconnection structure A1 and A2 is
given by (14). To achieve consensus and stabilization simul-
taneously, we need to design the rank two eigen-connection
between two subsystems. We have to change the unstable
eigenvalue of A1, λ1 = −3 and one of two 0 eigenvalues,
and preserve the right eigenvectors of 0s. Let Γ in (7) be rank
two right eigen-connection matrix of {A1, A2} associated
with eigenvalues {0, 0} and {λ1, λ2}, where λ2 = −1 is
the eigenvalue of A2 used for eigen-connection. The right
eigenvectors of A1 and A2 associated with eigenvalues 0
are given by γ11 = 14, γ21 = 13, respectively. Let right
eigenvectors associated with λ1 and λ2 be

γ12 =
[
1 0 0 −1/5

]⊤
, γ22 =

[
1 1/3 1

]⊤
,

respectively. To our end, we need to set 17 as the right
eigenvector associated with 0 eigenvalue which has not
been changed and to let the other eigenvalues lie in the
stability region Ωc

+. This is the case if and only if matrix
S(K ⊗ I2)Φ + Λ in (17) has an eigenvalue 0 associated
with the right eigenvector c = [1, 0, 1, 0]⊤ and the other
three eigenvalues in Ωc

+. This comes from the fact that the
right eigenvector of A associated with 0 eigenvalue is given
by diag

{[
γk1 γk2

]}
c. We choose Vk to make S be an

identity matrix to facilitate the design of K. Hence, we may
set Vk, k = 1, 2 as

V1 = [γ11 γ12] =

[
1 1 1 1
1 0 0 −1/5

]⊤

,

V2 = [γ21 γ22] =

[
1 1 1
1 1/3 1

]⊤

.

Furthermore, Wk, k = 1, 2 is chosen to make Φ be an
diagonal matrix. To this end, set

W1 =

(
α [1/5 −1/5 0 1]
β [1 −1/2 −1/2 0]

)⊤

,

W2 =

(
γ [1/2 0 1/2]
δ [1/2 0 −1/2]

)⊤

.

We then get Φ = diag {α, β, γ, δ}. One may think that it is
difficult to design Wk in this manner. However, by letting
the lth column of Wk be chosen from linear subspace of
left eigenvectors of Ak associated with eigenvalues except
λkl, we can see that Φ is diagonal since left eigenvectors are
orthogonal to right eigenvectors except corresponding one.
Letting K =

[
a b
c d

]
gives

S(K ⊗ I2)Φ + Λ =

αa 0 γb 0
0 βa− 3 0 δb
αc 0 γd 0
0 βc 0 δd− 1

 .

The eigenvalue distribution of this matrix is decomposed
to those of two matrices K1 =

[
αa γb
αc γd

]
and K2 =[

βa − 3 δb
βc δd − 1

]
. To achieve consensus, K1 needs an eigen-

value 0 associated with right eigenvector 12, the other
eigenvalue of K1 and both eigenvalues of K2 have to lie
in Ωc

+ while to achieve stabilization. Set b = −a, c = −d
to guarantee the first condition. Then the eigenvalues of K1

are 0 and a+ d. We see from the second condition that

−2
√
2 < a+ d < 0 (18)

holds. The eigen equation of K2 is given by

s2 − (βa+ δd− 4)s+ 3− βa− 3δd = 0. (19)

We now choose β, a, δ and d such that all the roots of (19)
lie in Ωc

+. For example, distributing the roots at −0.8 and
−1.5 gives{

βa+ δd− 4 = −2.3

3− βa− 3δd = 1.2
⇔

{
βa+ δd = 1.7

βa+ 3δd = 1.8
,

which yields βa = 1.65 and δd = 0.05. Then let a = d = −1
such that (18) is satisfied. Finally we can get β = −1.65, δ =
−0.05. All the eigenvalues of the whole interconnection
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Fig. 7. Eigenvalue distribution of A1

(‘×’), A2 (‘⃝’) and A (‘□’) (rank 2).
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Fig. 8. Output of each subsystem without intercon-
nection (Case 2).
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Fig. 9. Outputs of the agents connected by rank
two eigen-connection.

matrix A, which is plotted in Fig. 7 as ‘□’, lie in Ωc
+

except one 0 eigenvalue. As a result the system achieves
stabilization and consensus simultaneously as shown in Fig.
9, since A17 = 0 holds.

V. CONCLUSION

In this paper, we have investigated two-layer hierarchi-
cal multi-agent dynamical systems with rank one and two
interlayer connection and provided a solution to hierarchi-
cal consensus problem by eigenvector-based connection. In
particular, the concept of eigen-connection was extended to
the case where the number of agents in each subsystem
and the connection structure of each subsystem are different
from each other. We provided analytical expressions of the
eigenvalue sets of the hierarchical interconnection matrices
and systematic synthesis procedures for achieving the output
consensus with Lyapunov stability, and numerical examples
with simulations confirmed the effectiveness of the proposed
design method.
Acknowledgement: This work was supported in part by
Japan Science and Technology Agency and by Grant-in-Aid
for Scientific Research (A) of the Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan, No. 21246067.

REFERENCES

[1] J.A. Fax and R.M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. on Automatic Control, vol. 49, no.
9, pp. 1465-1476, 2004.

[2] N. Fujimori, L. Liu, S. Hara, and D. Tsubakino, “Hierarchical Network
Synthesis for Output Consensus by Eigenvector-based Interlayer Con-
nections,” Technical Report METR2011-29, The University of Tokyo
(available at http://www.keisu.t.u-tokyo.ac.jp/research/techrep/). 2011.

[3] S. Hara, T. Hayakawa, and H. Sugata, “Stability analysis of linear
systems with generalized frequency variables and its applications to
formation control,” in Proc. of the 46th IEEE CDC,, pp. 1459–1466,
2007.

[4] S. Hara, T. Hayakawa, and H. Sugata, “LTI systems with generalized
frequency variables: A unified framework for homogeneous multiagent
dynamical systems,” SICE J. of Control, Measurement, and System
Integration, vol. 2, no. 5, pp. 299-206, 2009.

[5] C. G. Khatri and C. Radhakrishna Rao, “Solutions to Some Functional
Equations and Their Applications to Characterization of Probability
Distributions,” Sankhya: The Indian Journal of Statistics, Series A Vol.
30, No. 2, pp. 167-180, 1968.

[6] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooper-
ation in networked multi-agent systems,” Proc. of the IEEE, vol. 95, no.
1, pp. 215-233, 2007.

[7] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control Systems Magazine, vol.
27, no. 2, pp. 71-82, 2007.

[8] W. Ren, R.W. Beard, and T.W. McLain, “Coordination variables and
consensus building in multiple vehicle systems,” in Cooperative Control:
Lecture Notes in Control and Information Sciences, N.E. Leonard, and
A.S. Morse, Eds. Berlin, Springer-Verlag, vol. 309, pp. 171-188, 2005.

[9] H. Shimizu and S. Hara, “Cyclic pursuit behavior for hierarchical multi-
agent systems with low-rank interconnection,” Proc. of SICE Annual
Conference, pp. 3131-3136, 2008.

[10] S. Smith, M. Broucke, and B. Francis, “A hierarchical cyclic pursuit
scheme for vehicle networks,” Automatica, vol. 41, pp. 1045-1053, 2005.

[11] D. Tsubakino and S. Hara, “Eigenvector-based characterization for hi-
erarchical multi-agent dynamical systems with low rank interconnection,”
IEEE Int. Conf. on Control Applications, pp. 2023-2028, 2010.

[12] A. Williams, S. Glavaski, and T. Samad, “Formations of formations:
Hierarchy and stability,” Proc. of the American Control Conference, pp.
2992-2997, 2005.

APPENDIX I
KHATRI-RAO PRODUCT

Consider an interval I = [0, N ], where N is a positive
integer. Take finite number of integer points 0 = ζ0 < ζ1 <
· · · < ζn = N in I , and define the partition ∆ which
divides I into n(≤ N) small intervals as ∆ = {ζ1, . . . , ζn}.
We denote the length of interval N as ρ(∆), the number
of partition n as #(∆). Let the length of each interval be
δi := ζi−ζi−1. Then, define the set of m×n block matrices
as follow:

Mm×n(∆1,∆2) := {A ∈ Rρ(∆1)×ρ(∆2)|Aij ∈ Rδi1×δj2}

where partitions ∆1 and ∆2 satisfy #(∆1) = m and
#(∆2) = n, respectively, and Aij represents the (i, j) block
matrix of A.

We now define Khatri-Rao product.

Definition 6: A binary operator Khatri-Rao product ⊙ :
Rm×n × Mm×n(∆1,∆2) → Mm×n(∆1,∆2) is defined as
follow:

A = [aij ] ∈ Rm×n, B = [Bij ] ∈ Mm×n(∆1,∆2)

A⊙B := C ∈ Mm×n(∆1,∆2), Cij = aijBij .

Khatri-Rao product defined in [5] is the binary operator
which acts on two block matrices, and is defined as the
Kronecker product for each block entry. We assume that all
the block entries of A is scalar in this paper.

If ∀i, j, δi1 = δj2 = 1, that is, Bij ∈ R, then A ⊙ B
is equivalent to the Hadamard product of A and B. If
∀i, j, Bij = B0, then we can rewrite A ⊙ B = A ⊗ B0

using Kronecker product.
For simplicity of notation, we write Mm×n

∆ instead of
Mm×n(∆,∆) in the case where ∆1 = ∆2 = ∆. Moreover,
considering the set of n × 1 and 1 × n block matrices,
∆2 and ∆1 are uniquely determined by the length of the
interval. We let Mn

∆1
and M1×n

∆2
stand for Mn×1(∆1,∆2)

and M1×n(∆1,∆2), respectively.
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