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Abstract— This paper studies the problem of achieving
consistent performance for visual servoing. Given the
nonlinearities introduced by the camera projection equa-
tions in monocular visual servoing systems, many control
algorithms experience non-uniform performance bounds.
The variable performance bounds arise from depth de-
pendence in the error rates. In order to guarantee depth
invariant performance bounds, the depth nonlinearity
must be cancelled, however estimating distance along the
optical axis is problematic when faced with an object with
unknown geometry. By tracking a planar visual feature
on a given target, and measuring the area of the planar
feature, a distance invariant input to state stable visual
servoing controller is derived. Two approaches are given
for achieving the visual tracking. Both of these approaches
avoid the need to maintain long-term tracks of individual
feature points. Realistic image uncertainty is captured in
experimental tests that control the camera motion in a 3D
renderer using the observed image data for feedback.

I. INTRODUCTION

This paper examines the geometry associated to pla-
nar, or nearly planar, object tracking in order to derive
a depth-invariant visual servoing controller. Visual-servo
control is a closed-loop visual control strategy that uses
the image stream dynamics directly to perform a control
task. While it is highly desirable to tightly integrate the
visual processing and feedback control strategy, many
robotic systems typically decouple the two steps.

Ignoring the feedback strategy and considering the
visual processing loop only leads to open-loop visual
tracking. Visual tracking is an estimation procedure that
generates a spatial description of the target within the
image. This description is typically either a point or a
closed region in the image. Visual tracking is inherently
nonlinear, and thus necessitates design procedures from
nonlinear control when closing the loop. Common non-
linear strategies can be found in [12], [13]. Recently
these nonlinear design techniques have been applied to
adaptive camera calibration [10] and motion trajectory
tracking [23].

Unlike open-loop vision-based estimation, the use
of underlying computer vision techniques directly in
closed-loop design is less well-understood. Typical sys-
tems in hardware consider the vision estimation algo-
rithms as black-box measurement sources. Image for-
mation, rigid body motion, and projective geometry are

now well-understood [15], [18], as are the significant
difficulties in computing solutions to the related inverse
problems. A number of papers in the control field work
towards the goal of linking control-theoretic design to an
understanding of geometric image formation, with a par-
ticular focus on homography decomposition and depth
estimation from correspondence of projected points [2],
[5], [6], [8], [9], [14], [17]. Feedback terms used in
these works require as input a stream of solutions to
inverse problems in computer vision, such as reliable
feature-correspondence and homography-decomposition
for rigid pose estimation. Accurate, numerically stable
geometric estimation requires nonlinear optimization
and outlier-rejection schemes [15], [22].

Contribution. In [11], a depth-invariant visual servo-
ing strategy was derived by assuming the existence of a
variable focal length monocular camera. Augmenting the
system dynamics to include the rate of change of the fo-
cal length for area stabilization neutralized the nonlinear
effects of the camera projection equations. Inspired by
this research, but seeking to remove the constraint of a
variable focal-length system, we propose a time-varying
visual servoing strategy that properly accounts for the
depth nonlinearity to arrive at a depth-invariant feedback
strategy. Furthermore, the time-varying gain is directly
obtained through one of two known visual tracking
strategies from the literature, segmentation-based [19] or
template-based visual trackers [3], [20]. This approach
contrasts with the existing literature which commonly
utilizes tracked feature points or a tracked centroid.
Often the feature points are associated to points on
known 3D structure. Feature points may be unreliable
in the long term (depending on the visual conditions).
Segmentation-based or template-based methods rely on
larger-scale imaging information, and are therefore more
robust to image variation.

Organization. The remainder of this paper is or-
ganized as follows. In Section II, we describe the
system and geometric quantities of interest for visual
tracking. Control methodology is given in Section III,
with the assumption that the geometric quantities of
interest are measurable. Section IV describes the direct
measurement of the main geometric quantity, the target
area, required for depth-invariant visual servoing. The

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4992



resulting closed-loop system is tested in a 3D virtual
environment simulation in Section V. Finally, Section VI
concludes the paper.

II. PROBLEM FORMULATION

The visual servoing task under consideration specifies
that a target with unknown motion be image-centered
when viewed by a moving monocular camera equipped
with pan-tilt actuators. A pinhole camera model, is
utilized for the image formation process. Due to the
visual tracking algorithms utilized, it is presumed that
a template image I0 of the target is available and that
it corresponds to a planar region viewed head-on (e.g.,
with the plane’s normal parallel to the optical axis).
Planarity can be relaxed if the depth variation is minimal
compared to the ratio between the focal length and the
distance to the target. A control policy is sought such
that future images, I(t), capture the target as close to
the image center as possible.

The remainder of this section examines the geome-
try associated to the problem formulation and presents
equations needed to derive the desired feedback strategy.

A. Rigid Camera Motion

A rigid body transformation can be represented by a
rotation R ∈ SO(3) and a Euclidean translation T ∈ R3.
The set of all such configurations can be described in
homogeneous matrix form as:

SE(3)
.
=

{(
R T
0 1

)
|R ∈ SO(3), T ∈ R3

}
, (1)

and is called the special Euclidean group in three dimen-
sions. It is a subgroup of the four dimensional general
linear group GL(4). Let us denote a particular element
in SE(3) by gWC . The group SE(3) also describes trans-
formations of reference frames for points. The element
gWC maps a homogeneous coordinate point qC in the
camera frame to qW in the world frame. A camera-
centric, or body, coordinate formulation of the dynamics
using gCW = (gWC )−1 is obtained from the relationship

qC = gCW qW =
(
gWC
)−1

qW . (2)

The time derivative of the transformation gWC satisfies

(
gWC
)−1

ġWC =

((
RW

C

)
TṘW

C −
(
RW

C

)
TṪW

C

0 0

)
=ζCC (t) ,

where ζCC (t) is the body velocity as it describes motion
of the camera with respect to its own moving coordinate
frame via a skew-symmetric block matrix ω̂(t) and a

(a) System (b) Measurement

Fig. 1. The system consists of a moving pan-tilt camera observing
a moving target via a monocular, projective camera.

translational vector ν(t), which is zero if the camera
origin is fixed,

ω̂
.
=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ζCC (t)
.
=

(
ω̂(t) ν(t)

0 0

)
(3)

The time derivative of the observed point qC is:

q̇C = −
(
gWC
)−1

ġWC
(
gWC
)−1

qW +
(
gWC
)−1

q̇W

= −ζCC (t)qC + gCW q̇W (4)

where q̇W is unknown target motion in the world
frame creating input disturbance (vCx , v

C
y , v

C
z , 0)T =(

gWC
)−1

q̇W . The matrix ω̂ satisfies ṘW
C = RW

C ω̂, a
nonlinear ordinary differential equation that describes
the camera-frame angular motion as per Fig. 1(a).

B. Imaged Point Dynamics

The coordinates of a point qC(t) on the target’s
surface in 3D is not directly observable for a monocular
camera. Measurements are generated by a projection and
scaling [15], whereby depth information is lost. Setting
qC = (x, y, z, 1)T and using the model of a pinhole
camera with fixed image size and isotropic scaling gives:

xc = f
x

z
, yc = f

y

z
, Π(f, qC)

.
=

(
xc
yc

)
. (5)

For a fixed focal length, f , the dynamics of the image
point in the image coordinate system is

d

dt
Π(qC) = DΠ(qC) ˙qC

=

(
f
z 0 − fx

z2 0

0 f
z − f

z2 0

)(
−ζCC qC + gCW q̇W

)
, (6)

This is a product of the measurement’s interaction ma-
trix [1] with a twist-induced motion. Assuming rotation-
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only camera motion, the resulting image-coordinate dy-
namics are(
ẋc
ẏc

)
=

 ycω3 − ω2f +
ω1xcyc−ω2x

2
c

f +
fvC

x −xcv
C
z

z

−xcω3 + ω1f − ω2xcyc−ω1y
2
c

f +
fvC

y −ycv
C
z

z

.
(7)

C. Depth Dependent Area of a Planar Target.

Consider a target of finite extent that is planar, and
whose normal to the plane aligns with the camera’s
optical axis (the ẑC-axis). The target, when imaged by
the camera will have a depth varying area. For a template
view of the target from a known distance z0,

A0 =

∫
S0
dxcdyc =

∫
A

f2

z2
0

dxdy =
f2

z2
0

∫
A
dxdy, (8)

where S0 is the segmented region of the target, and A
gives the collection of coplanar coordinates associated
to the target in 3D. A later view of the same target at
the distance z(t) has the area

A(t) =

∫
S(t)

dxcdyc =

∫
A(t)

f2

z2
dxdy =

z2
0

z2(t)
A0.

(9)
Thus, the ratio of the two areas is equivalent to the ratio
of the two depths squared,

α(t)
.
= A(t)/A0 = z2

0/z
2(t). (10)

Kowledge of the area ratio provides an inversely pro-
portional estimate of the target depth. This information
can be strategically used for visual servoing1.

III. DEPTH-INVARIANT VISUAL SERVOING

This section derives a Lyapunov-based controller for
visual servoing. With ω1 and ω2 as control inputs and
ω3 = 0,

ẋc = −ω2f +
ω1xcyc − ω2x

2
c

f
+
fvCx − xcvCz

z

ẏc = ω1f −
ω2xcyc − ω1y

2
c

f
+
fvCy − ycvCz

z
.

(11)

Proposition III.1 Given the area ratio α(t) between the
current imaged target and a template version viewed at

1The focal length, f , cancels in the ratio. Thus the focal length
of the camera does not need to be known precisely. In fact, all scale
ambiguity is cancelled in this ratio. The ratio still holds if the plane
is rotated and has non-trivial projection onto the image plane

a fixed distance is available, then the control strategy
Eq. 12-Eq. 14:

ω1(t) = −K(t)yc
f

(12)

ω2(t) =
K(t)xc
f

(13)

K(t) = K0α
1
2 (t) (14)

renders the system (11) GES under zero target velocity.
As a consequence (11) is input-to-state stable when
there is bounded velocity target motion. Furthermore,
the region of stability is invariant to depth for known
bounds on target velocities.

Proof: Consider the candidate Lyapunov function

V (x) =
1

2
(x2

c + y2
c ) (15)

Using the previously computed ẋc, ẏc, the associated
time-derivative for V is

V̇ = xcẋc + ycẏc

= xcycω3 − ω2fxc − xcycω3 + ω1ycf

+
ω1x

2
cyc − ω2x

3
c

f
+
fxcv

C
x − x2

cv
C
z

z

− ω2xcy
2
c − ω1y

3
c

f
+
fycv

C
y − y2

cv
C
z

z

(16)

The control input terms ω1 and ω2 are the tilt and
pan angular rates. The relative target motion in the
camera frame vC is unknown. Let ω1 = −Kyc/f and
ω2 = Kxc/f , where K is to be refined later. The time
derivative becomes,

V̇ = −K
(
x2
c + y2

c

)
−Kf−2

(
x2
c + y2

c

)2
+
f

z

(
xcv

C
x + ycv

C
y

)
− vCz

z

(
x2
c + y2

c

) (17)

with a negative-definite part (the first two terms) and a
disturbance part (the last two terms). When vC(t) = 0,
then

V̇ = −K
(
x2
c + y2

c

)
−Kf−2

(
x2
c + y2

c

)2
, (18)

and the system (11) is clearly GES and Lipschitz. When
vC(t) 6= 0, then the system (11) is bounded and Lips-
chitz when z is bounded from below2, f is bounded from
above, and vC(t) is bounded and Lipschitz. Since these
conditions are met and the image domain is finite, the
closed-loop system is Lipschitz and GES when unforced
by the disturbance. Under disturbances, it is ISS [21].

Note that in (17), the disturbance scales according to
the distance of the target along the optical axis. This

2z(t)>z>0 holds when the target is in the camera’s field of view.
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simple visual servoing law will have variable perfor-
mance depending on the target depth. The attracting
invariant set radius will vary with z. It is clear that
the invariant set radius can be made independent of
z by simply scaling the gain by z−1(t), e.g., define
K(t)

.
= K0α

1
2 (t). The variable gain has a beneficial

effect on the time-derivative of V . Since α
1
2 = z0/z(t),

V̇ =
1

z

[
−K0z0

(
x2
c + y2

c

)
−K0z0f

−2
(
x2
c + y2

c

)2
+f
(
xcv

C
x + ycv

C
y

)
− vCz

(
x2
c + y2

c

)]
,

(19)

meaning that the depth is not a consideration when
seeking to dominate the disturbance for estimating the
invariant set radius.

Since the α(t) term is a function of the directly
measured area, using it as a modifier on control gains
does not entail the added complexity and potential
convergence problems of an observer estimating z(t).

IV. AREA RECTIFICATION

Derivations in Section II-C assumed that the normal
to the plane was parallel to the optical axis. When this
is not the case, then the area of the target will be warped
by the perspective transformation. As compared to the
head-on view, pure rotation of the target relative to the
template shrinks the apparent area in the image. If,
however, the image template could be rectified so as
to provide the head-on view, then the area computation
would be correct. This section describes how to rectify
the imaged object by inverting out the estimated rotation
(or by applying the estimated translation). Compensation
requires computation of the determinant of the transfor-
mation’s Jacobian.

A. Effect of Target Rigid Body Displacement

From an initial camera view of the object (template
image) to a new camera view of the object, four
reference frames exist as per Figure Fig. 2. The first
pair belongs to the camera and the object associated
to the initial view, and the second pair describes the
new frames of the camera and object configurations. The
camera frames are denoted C0 and C1 while the object
frames are denoted P0 and P1. Assume the initial camera
view is such that gC0

P0
consists of no rotation, R0 = 1 and

translation along the optical axis only, d0 = (0, 0, z0)T ,
with the plane normal parallel to the optical axis. This
view provides a head-on view of the planar target.
All points on the planar target are described by the
coordinates qP0 = (x, y, 0)T . Projections of points on

gP0

P1

gC1

P1

gC0

P0

gC0

C1

C0

P0
P1

C1

Fig. 2. Depiction of frames for template view and new view.

the planar target to image coordinates are

r0 = Π
(
gC0

P0
qP0

)
= γ

(
x
y

)
(20)

r1 = Π
(
gC1

P1
qP1

)
= Π

(
gC1

P1
gP1

P0
qP0

)
= Π

(
gC1

P0
qP0

)
,

(21)

where γ is a scalar factor depending on f and z0. The
mapping taking the coordinates r0 to r1 has a nice
structure, whose determinant provides clues regarding
the true area. The following propostion is well known:

Proposition IV.1 Under the presumption that the trans-
lation T = (tx, ty, tz)T and rotation R define the
element gC1

P0
, and points on the planar object are given

by (x, y, 0) in the object frame, the perspective trans-
formation becomes

P (x, y) =

(
f
R11x+R12y + tx
R31x+R32y + tz

, f
R21x+R22y + ty
R31x+R32y + tz

)
(22)

with associated Jacobian determinant

det (DP ) = f2(R31x+R32y + tz)
−3

·
(
(R11R22 −R12R21)tz + (R12R31 −R11R32)ty

+(R21R32tx −R22R31)tx
)
. (23)

Derivation:: The template is a planar patch in
3D; all of the z-coordinates on the patch in the target
frame are zero. In terms of the planar patch x and
y coordinates, the visualized image coordinate are as
per Equation (21). Expanding out the transformation of
coordinates and the projection equation,

r1 = Π
(
gC1

P0
qP0

)

= Π



R11x+R12y + tx
R21x+R22y + ty
R31x+R32y + tz

1


 = P (x, y) (24)
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rotate−−−−→

translate

y ytranslate

rotate−−−−→

Fig. 3. Commutative diagram: template view is translated and rotated
and projected to the 2D image plane.

The determinant naturally follows when computing the
differential of P . Furthermore, for the template setup
defined, the above perspective transformation and deter-
minant also applies to the coordinate warp from r0 to
r1; the translation will be scaled relative to that of gC1

P0
.

Area Integral Compensation:: Generation of the
area ratio will require one of two potential image pair-
ings, both of which are depicted in Fig. 3. There exists
a transformation g whose perspective transform P maps
from the template view (top left) to the current view
(bottom right). One may consider the area ratio between
the template and a translated version, or between the
current segmentation and a rotated version of the tem-
plate (area ratios occur between a lower element and the
corresponding upper element in the diagram).

Let the image domain be given by Ω with the target
region given by S ⊂ Ω, and let the head-on image of the
target lead to Ω0 and S0. Through a direct application
of the change-of-variable theorem and the Jacobian (23),
the area of the target in domain Ω0 is

A(t) =

∫
S
dxcdyc =

∫
S0
det(P (xc, yc)dxcdyc. (25)

To obtain the area ratios, define PT /PR to be the
perspective transformation arising from only applying
the translation/rotation part of g. The measurement α
results from either one of the following computations

α(t) =

∫
S dxcdyc∫

S0 det(PR(xc, yc))dxcdyc
(26)

or

α(t) =

∫
S0 det(PT (xc, yc))dxcdyc∫

S0 dxcdyc
. (27)

It is important to note that the camera focal length
and the target distance in the template view need not
be known precisely. The area ratio cancels out any
scale ambiguity introduced by errors in both values.

The controller derived in Section III need only use
one of the ratios to achieve invariance with respect
to target rotation. Which to use will depend on the
estimation algorithm utilized, as each algorithm has
differing sensitivities in R and T . The next two sections
describe two different methods for estimating g, which
is decomposed into R = exp(ω̂) and T for improved
numerics.

B. Segmentation-Based Estimation

One method to achieve tracking of an object is to
extract the contour boundary of the target over time,
known as segmentation-based tracking. Segmentations
result in an indicator function φ : Ω→ R evaluating to
unity for target points and zero for background points.
Segmentation is achieved by minimizing a function
encoding for the error in the current segmentation and
for violation of any prior information. Once the segmen-
tations are computed, the following optimization solves
for the parametric warp P : Ω0 ⊂ R2 → Ω ⊂ R2

that aligns a template indicator function φ0 : Ω0 → R
(obtained from segmenting the template image) to the
one currently observed φ1 : Ω1 → R (obtained from
segmenting the current image). Define the following cost
function:

E(ω̂,T) =
1

2

∫
Ω1

(
φ1 − φ0 ◦ P−1

)2
dudv , (28)

which uses the inverse map since the forward map sends
Ω0 to Ω1.

C. Template-Based Estimation

Template-based tracking utilizes the template image
to generate a reference image patch T : Ω0 → R that
must be warped under P to align with a patch within the
new image I(t). The template patch T is defined over a
(strict) sub-domain of the image domain, ΩT ⊂ Ω0. The
target in the current image is located by optimizing:

min
ω,T
||T− I(t) ◦ P ||2 , (29)

The objective function seeks to match the pixel in-
tensities of the template to the pixel intensities of the
image. Note that the implementation is achieved by
comparing the template pixel intensities at the coor-
dinates (xc, yc)

T ⊂ ΩT to the image pixel intensities
at the perspective transformed coordinates (x′c, y

′
c)

T =
P (xc, yc). The collection of pixel intensities for both
defines two matrices of pixel intensity values. The norm
applied is the Frobenius norm of the difference between
the two matrices (one of which is g-dependent).
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(a) Pure rotation: images

(b) Rotation in-place: area ratio

Fig. 4. Under pure rotation of the target, direct computations of area
fluctuate significantly. The compensated area integral keeps the ratio
A/A0 close to unity.

D. A Note on the Methods

The field of visual tracking in computer vision
has a history of studying both template-based and
segmentation-based tracking [24]. There are a large
variety of tracking algorithms optimized for both of
these techniques [4], [7], [16]. By casting the visual
servoing framework to rely on these methods, we can
leverage the extensive literature associated to robust,
high performance tracking algorithms for them.

V. SIMULATION RESULTS

This section first demonstrates the effect of com-
pensating for area loss through incorporation of the
determinant of the perspective transformation Jacobian,
then demonstrates how the area compensating feedback
control law improves closed-loop performance when
faced with unknown target motion in the camera frame.

A simulation was carried out utilizing a planar region
undergoing pure rotations only (constant translational
displacement). The area of the target in the image plane
was computed and compared to the area of the target
as computed via (27). The compensated area remains
fairly constant with some fluctuation due to estima-
tion errors. The estimation errors arise from the pixel
quantization effects associated to images, continuously
changing measurements are not possible. The simulation
provides confidence that the image-based estimates are
sufficiently accurate for computation of the area integral.

To verify depth-invariance in closed-loop operation,
the camera is placed at a fixed location in space while
the target moves along a sinusoidal trajectory that ap-
proaches then recedes from the camera as depicted in

Fig. 5. Test Sequence: target approaches then recedes from camera.

Fig. 6. Performance comparison: using the K = α1/2K0 law (red)
gives a range-independent bound on the image centroid errors for given
velocity bounds. The tighter bound is particularly noticeable when the
target approaches the camera.

Fig. 8. Average execution time for region-based posed estimation,
with identity and previous frame’s estimate as initialization. Images
used are all of 4 : 3 aspect ratio, with widths 640, 480, 320, and 160.

Fig. 5. The tracking results are depicted in Fig. 6. Note
that the standard visual servoing strategy has depth-
varying performance while the proposed strategy has a
consistent error bound. Snapshots of the simulated visual
servoing task can be found in Fig. 7. The changing
depth and orientation can be clearly seen. A planar
ground surface is also depicted in the background to help
visualize the camera pan and tilt movements during the
visual servoing task.

It is natural to ask whether the formulation of region-
based pose estimation is necessarily too slow due to
computational burden, despite the benefits in accuracy.
Average execution time for representative image sizes is
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Fig. 7. Snapshots of target tracking. A video clip is available at http://www.youtube.com/watch?v=ssoixPyYaPQ.

shown in Fig. 8. During the iterative process, quadratic
approximations Ê to the objective function E(ω, T )
are periodically recomputed; performing the necessary
evaluations of E(·) to create Ê in parallel dramatically
speeds up the solver.

VI. CONCLUSIONS

We have presented a method for closed-loop vi-
sual tracking. The approach more directly links estab-
lished visual tracking algorithms (segmentation-based
and template-based) with nonlinear feedback control.
The results use a simulation to verify the conclusions
from a Lyapunov stability analysis. The system is robust
to unmodelled target motion and camera frame distur-
bances while being invariant to depth.

A similar visual regulation strategy is possible,
wherein a specific pose must be achieved relative to the
target in spite of unknown target motion. Furthermore,
the regulation can be performed using gradient descent
quantities computed in the image plane and mapped
back to the full three dimensional space. Converting the
gradient equations into depth-invariant update laws will
be required.
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