
Cooperative Control Design for Circular Flocking
of Underactuated Hovercrafts

Thanh-Trung Han and Shuzhi Sam Ge

Abstract—This paper introduces a Lyapunov-based control
design for circular flocking with collision avoidance of underac-
tuated hovercrafts. The desired flocking is achieved by means of
consensus on a coordinate-dependent transformation of vehicle
linear velocity in surge and finiteness of a coordination function.
The design makes use of linear velocity in surge and angular
velocity in yaw as virtual controls in a backstepping scheme so
that the desired flocking algorithm is obtained in a systematic
way, and both convergence and collision avoidance are proved
with mathematical rigor.

I. INTRODUCTION

Flocking motion of autonomous agents has been a matured
topic in systems and control. After the early development
of flocking algorithms inspired by modeling and simulation
studies in biophysics and computer graphics [1]–[3] for
agents of point mass type, e.g., [4], [5], recent development
aims at either deriving cooperative control systematically [6]
or studying flocking algorithms for agents of real vehicles
such as nonholonomic mobile robots [7], [8]. Yet, flocking
in nonlinear geometric shapes is of increasing interest [8]–
[10]. Towards further development, the current paper takes
the goals of systematic derivation and convergence analysis
of cooperative control for circular flocking with collision
avoidance of underactuated hovercrafts.
In comparison to reported results, specifying the state of

circular flocking for hovercraft systems appeals for a serious
attention. Indeed, the circularity in geometric shape does not
admit consensus on even vehicle linear speed as in, e.g, [5],
[7] since, in a circular flocking, inner vehicles might move
at a speed lower than speeds of outer vehicles. Furthermore,
the second-order nonholonomy in hovercraft systems makes
the unit speed assumption for cooperative control of mobile
robots [6], [8]–[10] no longer relevant.
On the other hand, achieving collision avoidance in flock-

ing of nonholonomic vehicles of either mobile robot type or
underactuated hovercraft type is still of current challenge.
Though collision avoidance has been considered in [7], [8],
these works are still in the extent of improving collision
avoidance ability by incorporating an additional term to
the formation control. A systematic derivation for flocking
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control achieving simultaneously collision avoidance and
formation remains open.
In this paper, we resolve the above issues in an intrinsic

approach of formulating, in Section II, a relevant control
problem whose solution is to be achieved, in Section III, in
a systematic way of Lyapunov-based design. We consider
a coordinate-dependent transformation of hovercraft linear
velocity in surge that feature both flocking geometry and
curvature-dependent motion. In such a way, the control goals
for circular flocking become consensus on the transformation
among vehicles and collision avoidance.
To achieve collision avoidance, it is customary to have

finiteness for a coordination function usually called potential
function. In this paper, we explicitly incorporate this function
into Lyapunov function candidate and develop a backstep-
ping design from the kinematic level of coordinate variables
to dynamic level of linear velocities and angular velocity.
Due to reduced actuators, we achieve the desired specifi-
cation on potential function by using the linear velocity in
surge as virtual control and then cancel its effect in sideways
motion coupled with linear velocity in sway by the control
torque in yaw. Using this approach, we obtain the collision
avoidance term for the final control that actually guarantees
collision avoidance for the resulting flocking motion, and, at
the same time, the consensus term for the final control is
obtained by a direct matching design.
The theoretical interest of the above approach is the

enabled mathematical proof of collision avoidance and co-
hesion maintenance in flocking of nonholonomic vehicles
which shall be presented in Section IV. To illustrate the
novelty of the proposed control, we present in Section V
simulation result. And finally, Section VI concludes the
results presented.

II. PROBLEM FORMULATION
Given a collective system of N identical underactuated

hovercrafts labeled by numbers 1, . . . , N whose respective
equations of motion are

ẋi = ui cosψi − vi sinψi

ẏi = ui sinψi + vi cosψi

ψ̇i = ri

u̇i = viri + τu,i

v̇i = −uiri

ṙi = τr,i

, i = 1, . . . , N (1)

where, as shown in Fig. 1, for the i-th vehicle, qi =
[xi, yi]

T ∈ R
2 is the position vector, ψi ∈ R is the
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Fig. 1. Configuration of the i-th hovercraft: ψ̃i = ψr(qi, qC)− δψ(χi)

orientation, ui ∈ R and vi ∈ R are linear velocities in
surge and sway, respectively, ri ∈ R is the angular velocity,
τu,i ∈ R is the control force in surge, and τr,i ∈ R is the
control torque in yaw. The derivation for the model (1) is
available in [11].
To continue, let us clarify the following notations.
Notations: for q = [q1, . . . , qn]

T , ∇q is the del operator
∇q = [∂/∂q1, . . . , ∂/∂qn]

T [12]; for two vectors a and b, a·b
is their scalar product, and col(a, b) is the vector [aT , bT ]T ;
| · | is the absolute value of scalars; and ‖ · ‖ is the Euclidean
norm of vectors.
The control goal for the collective system (1) is to design

state-feedback controls τi
def
= [τu,i, τr,i]

T of the same struc-
ture such that resulting collective motion of the N vehicles
eventually forms a ring centered at their center of mass

qC
def
=

[
xC
yC

]
=

1

N

N∑
i=1

qi. (2)

Towards this goal, our preliminary work is to configure the
desired flocking motion by specifications that are technically
achievable.
At the individual level, the two primitive vehicle behav-

iors are orientation and coordination. Accordingly, we shall
specify the desired circular flocking motion by reference ori-
entation and coordination function for either vehicle relative
positioning or flock positioning. Assuming a circular orbit
centered at the center of mass of theN vehicles, the reference
orientation for the i-th vehicle can be given by the angle

ψr(qi, qC) = ϕ(qi, qC)−
π

2
, (3)

where ϕ(qi, qC) is the argument of the vector qi − qC .
Clearly, the circular shape for collective motion of all vehi-
cles corresponds to the consensus on orientation mismatches
ψi−ψr(qi, qC). This in combination with the nonholonomic
structure, for which the desired hovercraft velocity cannot
be created directly, motivates us aim at consensus on the

following modified orientation mismatches

ϑi = ψi − ψr(qi, qC) + δψ(χi), (4)

where χi = col(qi, qC , ψi) and δψ is a design function.
On the other hand, it is customary to have vehicle linear

speed varies with the trajectory curvature. Such property
is of design interest in circular flocking for which the
centering vehicles might move slower than the vehicles at
the boundary. However, in view of the reduced number of
actuators, we shall achieve this property with respect to the
linear velocity in surge ui. Thus, we are also interested in
consensus on

νi(qi, qC , ui) = κ(qi, qC)ui =
1

ε+ ‖qi − qC‖
ui (5)

where κ(qi, qC) can be considered as the mollified curvature
of the circle centered at qC and pass qi.
In light of the above elaboration, we shall achieve the

circular shape for our desired flocking motion by means of
consensus on the following velocity transformation

uf,i(qi, qC , ui) = νi(qi, qC , ui)�e(ϑi), (6)

where �e(ϑi) = [cosϑi, sinϑi]
T .

The remaining specification of flocking motion is about
collision avoidance and cohesion maintenance. Let q̄N =
[qT1 , . . . , q

T
N ]T . As usual, we are interested in the following

potential function with binary structure

U(q̄N ) =
1

N

N∑
i=1

U0(qi, qC) +
1

2

1

N

N∑
i=1

1

N

N∑
j=1

U1(qi, qj).

(7)
Usually, the specification of U0 and U1 is such that the

desired configuration q̄N corresponds to the minimal value
of U(q̄N ). In this way, we have the control problem of
driving ∇qiU(q̄N ) converge to zero. Nevertheless, due to
reduced number of actuators, we do not have sufficient
degree of freedom to drive ∇qiU(q̄N ) converge to zero by
direct matching design. To overcome this difficulty, we shall
achieve this goal indirectly by firstly use the linear velocity
in surge ui as virtual control to drive the following quantity
to zero

�e(ψi) · ∇qiU(q̄N ), (8)

with �e(ψi) = [cosψi, sinψi]
T the unit vector in surge, and

then by a proper design of δψ,i, the hovercraft orientation
�e(ψi) is continuously forced to turn away the direction of
the normal vector of ∇qiU(q̄N ) until ∇qiU(q̄N ) = 0.
In summary, we have the following control problem to

achieve the desired flocking algorithm.
Property 2.1: The function U(q̄N ) is bounded away from

zero and has the structure (7). The function U1 symmetric,
i.e. U1(q1, q2) = U1(q2, q1), ∀q1, q2 ∈ R

2. Furthermore,
the functions U0(q1, q2) and U1(q1, q2) are continuously
differentiable except at q1 = q2, receive zero value at q1 = q2
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and has the following properties

lim sup
‖q1−q2‖→0

Ui(q1, q2) = ∞

lim sup
‖q1−q2‖→∞

Ui(q1, q2) = ∞, i = 0, 1. (9)

Problem 2.1 (Flocking Control Problem): Given the col-
lective system (1) of N hovercrafts and state-dependent
functions U(q̄N ), ψr, δψ with U(q̄N ) satisfying Property 2.1.
Find, for system (1), the state-feedback controls τi

def
=

[τu,i, τr,i]
T , i = 1, . . . N such that the following properties

hold along the trajectory of the closed-loop system:
i) U(q̄N ) remains finite;
ii) ϑi(t)− ϑj(t) → 0, t→ ∞;
iii) νi(t)− νj(t) → 0, t→ ∞; and
iv) �e(ψi(t)) · ∇qiU(q̄N (t)) → 0, t→ 0

for all i, j = 1, . . . , N .
Remark 2.1: As this is an early development, we do not

limit hovercrafts’ sensing ranges, a case that usually requires
the incorporation of the graph theory [4]. Nevertheless, by
property (9), condition i) in the above problem is to have
both cohesion maintenance and collision avoidance. The
conditions ii)–iv) are for desired flocking geometry.
Remark 2.2: The inclusion of U0 in (7) is to make the

hovercrafts generate flocking motion circulating around a
desired point qC . As can be seen in the following derivation,
qC can be replaced by a fixed point or a moving reference
point qr(t) whose derivative is computable.

III. CONTROL DESIGN
In this section, we present a systematic design procedure

achieving solution to the Problem 2.1 formulated in the
previous section. As we are using the linear velocity in surge
ui and the angular velocity in yaw ri as virtual control, let
us consider the following changes of variable:

ζi = νi − κ(qi, qC)αi

ηi = ri − ψ̇r(qi, qC) + δ̇ψ(χi)− βi, (10)

where χi = col(qi, qC , ψi), νi and κ are given by (5), and
αi and βi are design functions to be specified.
In view of (10), the consensus on ζi coupled with van-

ishing αi implies consensus on νi. Accordingly, we shall
achieve the property ii) in Problem 2.1 by means of consen-
sus on ζi and convergence of αi. Defining κi = κ(qi, qC)
and using (1), (5), and (10), we have

ζ̇i = κi(viri + τu,i) + uiκ̇i −
d

dt
(κiαi)

η̇i = τr,i −
d

dt
(βi + ψ̇r(qi, qC)− δ̇ψ(χi)). (11)

We have the following initial design.

A. Initial Design
In view of (11), let us consider the following structure for

the control τu,i and τr,i:

τu,i = τ◦u,i +
1

κi
τ1u,i

τr,i = τ◦r,i + τ1r,i, (12)

and make the initial design

τ◦u,i = −viri −
1

κi

(
uiκ̇i −

d

dt
(κiαi)

)
τ◦r,i =

d

dt

(
βi + ψ̇r(qi, qC)− δ̇ψ(χi)

)
. (13)

We note that αi and βi are design functions of xi, yi, ψi
to be given by (24) and (27). The design of α and β is
independent of τ◦u,i and τ◦r,i so that there will arise no circular
argument while the control (13) is computable explicitly
using the dynamic equation of xi, yi, ψi given by (1).
Let qi = [xi, yi]

T and �e(ψi) = [cosψi, sinψi]
T . Then,

under the control (12)-(13) and changes of variable (4) and
(10), the collective system (1) becomes

q̇i =
( ζi
κi

+ αi

)
�e(ψi) + vi�e

⊥(ψi)

ϑ̇i = ηi + βi

ζ̇i = τ1u,i

η̇i = τ1r,i

v̇i = −
( ζi
κi

+ αi

)(
ηi + βi + ψ̇r(qi, qC)− δ̇ψ(χi)

)
.

i = 1, . . . , N

(14)
We note that, in view of (4), ψi in (14) is now a function

of ϑi and qi. Using (14), we have the following Lyapunov-
based design for α, β, τ1u,i and τ1r,i.

B. Lyapunov-based Control Design
Consider the following Lyapunov function candidate

V =
1

2

N∑
i=1

ζ2i +
1

2

N∑
i=1

ϑ2i + U(q̄N )
1

2

N∑
i=1

η2i , (15)

where U(q̄N ) is the design function (7).
The time derivative of V along trajectory of (14) is

V̇ =

N∑
i=1

ζiτ
1

u,i +

N∑
i=1

ϑi(ηi + βi) + U(q̄N )

N∑
i=1

ηiτ
1

r,i

+
η∗

2N

N∑
i=1

∇qiU0(qi, qC) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)

+
η∗

2N

N∑
i=1

∇qCU0(qi, qC) ·
1

N

N∑
j=1

(
uj�e(ψj) + vj�e

⊥(ψj)
)

+
η∗

4N

N∑
i=1

1

N

N∑
j=1

∇qiU1(qi, qj) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)

+
η∗

4N

N∑
i=1

1

N

N∑
j=1

∇qjU1(qi, qj) ·
(
uj�e(ψj) + vj�e

⊥(ψj)
)
,

(16)
where

η∗ =

N∑
i=1

η2i and ui =
ζi
κi

+ αi. (17)

By the symmetry of U1(qi, qj), we have U1(qi, qj) =
U1(qj , qi) and hence

∇qjU1(qi, qj) = ∇qjU1(qj , qi). (18)
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Accordingly, we have the following expression for the last
term of (16)

η∗

4N

N∑
i=1

1

N

N∑
j=1

∇qjU1(qi, qj) ·
(
uj�e(ψj) + vj�e

⊥(ψj)
)

=
η∗

4N

N∑
i=1

1

N

N∑
j=1

∇qjU1(qj , qi) ·
(
uj�e(ψj) + vj�e

⊥(ψj)
)

=
η∗

4N

N∑
j=1

1

N

N∑
i=1

∇qiU1(qi, qj) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)
,

(19)
where we have relabeled the running indices i → j and
j → i for the third line of (19). Clearly, the last term of (19)
is exactly the term in the fourth line of (16).
Also, by relabeling the running indices i→ j and j → i,

the term in the third line of (16) is

η∗

2N

N∑
i=1

∇qCU0(qi, qC) ·
1

N

N∑
j=1

(
uj�e(ψj) + vj�e

⊥(ψj)
)

=
η∗

2N

N∑
j=1

∇qCU0(qj , qC) ·
1

N

N∑
i=1

(
ui�e(ψi) + vi�e

⊥(ψi)
)

=
η∗

2N

1

N

N∑
i=1

N∑
j=1

∇qCU0(qj , qC) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)

(20)
Substituting (19) and (20) into (16) yields

V̇ =

N∑
i=1

ζiτ
1

u,i +

N∑
i=1

ϑi(ηi + βi) + U(q̄N )

N∑
i=1

ηiτ
1

r,i

+
η∗

2N

N∑
i=1

∇qiU0(qi, qC) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)

+
η∗

2N

1

N

N∑
i=1

N∑
j=1

∇qCU0(qj , qC) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)

+
η∗

2N

N∑
i=1

1

N

N∑
j=1

∇qiU1(qi, qj) ·
(
ui�e(ψi) + vi�e

⊥(ψi)
)
.

(21)
Defining

W =
N∑
i=1

∇qiU0(qi, qC) · �e
⊥(ψi)vi

+
1

N

N∑
i=1

N∑
j=1

∇qCU0(qj , qC) · �e
⊥(ψi)vi

+
1

N

N∑
i=1

N∑
j=1

∇qiU1(qi, qj) · �e
⊥(ψi)vi

�Wi = ∇qiU0(qi, qC) +
1

N

N∑
j=1

∇qCU0(qj , qC)

+
1

N

N∑
j=1

∇qiU1(qi, qj) (22)

and using expression (17) for η∗ and ui, the expression (21)
becomes

V̇ =

N∑
i=1

ζiτ
1

u,i +

N∑
i=1

ϑi(ηi + βi) + U(q̄N )

N∑
i=1

ηiτ
1

r,i

+
η∗

2N

N∑
i=1

( ζi
κi

+ αi

)
�Wi · �e(ψi) +

1

2N

N∑
i=1

η2iW (23)

As U(q̄N ) is bounded away from zero by the hypothesis of
Problem 2.1, we have the following design from (23)

τ1r,i = −
1

U(q̄N )

(
ϑi +

ηi
2N

W
)

τ1u,i = τ ′u,i −
η∗

2N

1

κi
�Wi · �e(ψi)

αi = −k1 �Wi · �e(ψi) (24)

where τ ′u,i is to be further specified and k1 > 0 is a design
constant. Under (24), the equation (23) becomes

V̇ =

N∑
i=1

ζiτ
′
u,i +

N∑
i=1

ϑiβi − k1
η∗

2N

N∑
i=1

( �Wi · �e(ψi))
2. (25)

Our remaining task is to design τ ′u,i and βi to achieve
consensus on ζi and ϑi. Such design is straightforward from
the identity

N∑
i=1

ai

N∑
j=1

(ai − aj) =
1

2

N∑
i=1

N∑
j=1

(ai − aj)
2. (26)

Let us have the design

τ ′u,i = −k2

N∑
j=1

(ζi − ζj)

βi = −k2

N∑
j=1

(ϑi − ϑj). (27)

Substituting (27) into (25) and using identity (26), we
arrive at

V̇ = −
k1
2N

N∑
k=1

η2k

N∑
i=1

( �Wi · �e(ψi))
2

−
k2
2

N∑
i=1

N∑
j=1

(
(ζi − ζj)

2 + (ϑi − ϑj)
2
)
. (28)

Finally, substituting (13), (22), (24), and (27) into (12),
we obtain the actual control τu,i and τr,i. This completes
our design procedure.

IV. CONVERGENCE ANALYSIS
In this section, we present the main theorem asserting that

a solution to the Problem 2.1 formulated in Section II is the
actual control τu,i and τr,i designed as (12), (13), (22), (24),
and (27) in the previous subsections.
Theorem 4.1: Given the collective system (1) and state-

dependent functions U(q̄N ), ψr, δψ with U(q̄N ) having Prop-
erty 2.1. Suppose that the design function δψ(χi) is mono-
tone, has the same sign as ψi − ψr(qi, qC), and is non-
zero for ‖ �Wi‖ �= 0. Then, the trajectory χ̄(t) with χ̄ =
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col(q1, ψ1, u1, v1, r1, . . . , qN , ψN , uN , vN , rN ) of the system
(1) subject to the control τu,i and τr,i given by (12),
(13), (22), (24), and (27) satisfies conditions i)–iv) in the
Problem 2.1. In addition, collision avoidance and cohesion
maintenance are guaranteed.

Proof: As designed in the previous subsection, under
the hypothesis of the theorem, the dissipation equality (28)
holds true along the trajectory of the closed-loop system.
Hence, by LaSalle’s invariance principle, the trajectory of
the closed-loop system converges to the set {χ : V̇ = 0}.
Thus, we have

lim
t→∞

|ζi(t)− ζj(t)| → 0 (29)

lim
t→∞

|ϑi(t)− ϑj(t)| → 0 (30)

lim
t→∞

N∑
k=1

η2k(t)
N∑
i=1

( �Wi(t) · �e(ψi(t)))
2 → 0. (31)

We now use (31) to verify that �Wi(t) · �e(ψi(t)) → 0 as
t→ ∞. Indeed, suppose that the converse holds true. Then,
there is a constant ε > 0 and T ≥ 0 such that �Wi(t) ·
�e(ψi(t)) ≥ ε, ∀t ≥ T . Accordingly, we have

lim
t→∞

ηi(t) → 0, ∀i = 1, . . . , N, (32)

and hence η̇i(t) → 0, t → ∞. This in combination with the
dynamics of ηi given by (14) and the design of τ1r,i in (24)
indicates that

lim
t→∞

ϑi(t) = 0. (33)

Furthermore, the design function δψ(χi) is specified to
have the same sign as ψi − ψr(qi, qC). Thus, (33) and
definition (4) of ϑi imply that

lim
t→∞

δψ(χi(t)) = 0. (34)

However, as δψ(χi) is specified to be monotone and have
non-zero value for ‖ �Wi‖ �= 0, (34) further implies that
‖ �Wi(t)‖ → 0, t→ ∞ and hence

lim
t→∞

�Wi(t) · �e(ψi(t)) = 0 (35)

which is a contradiction.
Thus, we conclude that �Wi(t) · �e(ψi(t)) → 0 as t → ∞.

Since U(q̄N ) assumes the structure (7) and �Wi is defined by
(22), we have �Wi = ∇qiU(q̄N ) and hence conclude that the
closed-loop system satisfies condition iv) of Problem 2.1.
We now verify condition i) of Problem 2.1 also by a

contradiction argument. Assume that the closed-loop system
does not satisfy this condition, i.e., U(q̄N (t)) → ∞, t → t1
for some t1 ≥ 0. Then, in view of (15) and (28), we must
have

lim
t→t1

N∑
i=1

η2i (t) = 0. (36)

Thus, using the same argument as above, we have

lim
t→t1

‖ �Wi(t)‖ = 0 (37)

which, in view of (22), indicates that both U0(qi(t), qC(t))
and U1(qi(t), qj(t)) remain finite as t → t1 and hence so
does U(q̄N (t)). This is a contradiction. Thus, the closed-
loop system satisfies condition i) of Problem 2.1.
The satisfaction of condition ii) of Problem 2.1 is obvi-

ous from (30). Furthermore, by the design (24) of α, the
satisfaction of condition i), and the definition (10) of ζi, we
have

lim
t→∞

|νi(t)− νj(t)|

≤ lim
t→∞

|ζi(t)− ζj(t)|

+ lim
t→∞

|κi(t)αi(t)− κj(t)αj(t)| = 0 (38)

which indicates that condition iii) is satisfied.
Finally, by the designed Property 2.1 and the satisfaction

of condition i) of U(q̄N ), both collision avoidance and
cohesion maintenance are guaranteed.

V. SIMULATION STUDY
In this section, we present result of the simulation of the

above theory. The desired performance is that the group of
hovercrafts as a whole shrinks toward its center of mass
qC =

∑
i qi/N and, at the same time, forms an circular

ring centered at qC . The general design for the control τu,i
and τr,i has been given by (12), (13), (22), (24), and (27) .
Our job now is to specify the design functions U0, U1, ψr,
and δψ.
To specify functions U0 and U1, let us specify the behavior

of the i-th vehicle as follows. The i-th vehicle moves away
qC if its distance to qC , ri = ‖qi − qC‖, is smaller than
a reference value r0 and the vehicle move towards qC if
ri > r1. Within the range r0 ≤ ri ≤ r1, the vehicle rests on
its circulation motion. Clearly, such behavior is ensured by
the design

U0(qi, qC) =
h(ri; r0 + ε, r0)

ri − r0
+ h(ri; r1, r1 + ε)(ri − r1),

(39)
where ε > 0 is a small constant and h(x; a, b) is the bump
function defined by [13]

h(x; a, b) = g
(x− a

b− a

)
(40)

where

g(s) =
f(s)

f(s) + f(1− s)
, f(s) =

{
e−1/s if s > 0

0 if s ≤ 0
.

(41)

Similarly, we have the following design for U1(qi, qj)

U1(qi, qj) =
h(dij , d0 + ε, d0)

(dij − d0)2

+ h(dij , d1, d1 + ε)(dij − d1), (42)

where dij = ‖qi−qj‖ and d0, d1 > 0 are design parameters.
To generate circular flocking, it is relevant to have the

hovercrafts move on circles all centered at the center of
mass qC = [xC , yC ]

T . According, we specify the desired
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Fig. 2. Trajectories of 20 hovercrafts

orientation ψr(qi, qC) for the i-th hovercraft visiting the
location qi = [xi, yi]

T as follows. Consider the following
equation of the the circle passing qi and centering at qC

(x− xC)
2 + (y − yC)

2 = (xi − xC)
2 + (yi − yC)

2. (43)

From the following expression of the unit vector tangent
to the circle (43) at qi

�e(qi, qC) =
1

(xi − xC)2 + (yi − yC)2

[
−(yi − yC)
xi − xC

]
, (44)

we have the specification ψ(qi, qC) = arg�e(qi, qC), the
argument of �e(qi, qC).
Finally, we have the specification

δψ(χi) = −kψ arctan((�U ′(qi))
⊥ ·�e(qi, qC)‖∇qiUi‖), (45)

where kϕ > 0 is a design parameter, (�U ′(·))⊥ is the rotation
by an angle of π/2 of �U ′(qi) =

∑
j(∇qCU0(qj , qC) +

∇qi(U0(qi, qC) + U1(qi, qj))), and Ui = U0(qi, qC) +∑
j U1(qi, qj). Such design (45) is to ensure the performance

that the i-th hovercraft turns away qC if it is close to qC ,
i.e., (�U ′(qi))

⊥ · �e(qi, qC) < 0, turns towards qC if it is far
from qC , i.e., (�U ′(qi))

⊥ ·�e(qi, qC) > 0, and rests on circular
motion if (�U ′(qi))

⊥ · �e(qi, qC) = 0 which, by Theorem 4.1,
is the ultimate state of the system.
The result of our simulation with 20 hovercrafts is shown

in Fig. 2 and Fig. 3. We selected: k1 = 2, k2 = 1, a =
3, b = 2, ε = 0.2, r0 = 10, r1 = 30, d0 = 5, d1 = 10, and
kψ = 0.2. Fig. 2 indicates that a ring had been established,
and Fig. 3 indicates that the minimal distance among all pairs
of vehicles dmin(t) = min{‖qi(t)−qj(t)‖ : i �= j} is always
greater than d0 = 5, i.e., collision avoidance was guaranteed.
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Fig. 3. Time diagram of the minimal distance among all pairs of hovercrafts

VI. CONCLUSION
We presented a systematic design for synthesizing in-

dividual control for circular flocking with collision avoid-
ance of underactuated hovercrafts. The control design take
the curvature-dependent motion into account. Using linear
velocity in surge and angular velocity in yaw as virtual
controls, we obtained the desired actual control force in
surge and actual control torque in yaw in a systematic
way of Lyapunov-based design. In such a way, we have
proved collision avoidance and cohesion maintenance with
mathematical rigor.
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