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Abstract— We address the problem of global stabilization in de-
centralized formation control. Formation control is concerned with
problems in which autonomous agents are required to stabilize at a
given distance of other agents. In this context, a graph associated to
a formation encodes both the information flow in the system and the
distance constraints, by fixing the lengths of the edges. While globally
stabilizing control laws for the case of n = 3 agents in a cyclic formation
have been proposed, the case of n = 4 agents has so far resisted
attempts to obtain globally stabilizing control laws. We show that a
large class of control laws, including all control laws shown to work
in the three agents case, cannot satisfactorily stabilize a four agents
formation. The proof relies on applying ideas from singularity theory
and dynamical systems theory which can be used to address global
stabilization of a broad class of decentralized control systems.

I. INTRODUCTION

With the exception of some work on the relation between
Lyapunov theory and Morse theory [1], ideas from topology and
singularity theory have not played an important role in the analysis
of globally stabilizing control laws. The main reason behind this fact
is that singularities are, in general, easily avoided by considering
a small perturbation of the system or the control law. In this
paper, we will show that the information flow constraints inherent
to decentralized control can make such singularities generic and
that these singularities affect the global stabilization properties
of the system. Using this approach, we prove that if one tries
to stabilize a particular formation at a given configuration via a
continuous feedback law, other equilibrium configurations appear
and are stable, thus preventing global stability.

Consider the following problem, depicted in Figure 1a: agent 1
observes the position of agent 2, agent 2 the position of agent 3
and agent 3 the position of agent 1. Let the vector µ parametrize
the configuration agents 1, 2 and 3 are required to reach (i.e. a
triangle in the plane) and x the state of the system. Is there a
continuous feedback control u(µ;x) such that the system stabilizes
to any prescribed configuration in the plane? Problems of this type
have been a focal point of attention of control theory for the past
decade or more, as they arise in a wide variety of natural (think
schooling, herding, etc) and engineering situations. There are three
key features to problems of this type:
• the objective (i.e. reaching a given formation in the plane) is

in general parametric, and the feedback control law depends
on the parameter describing the objective.

• the control law is decentralized both in its design (i.e. different
agents have access to only ”part” of the vector µ) and in its
implementation (i.e. the agents have only access to ”part” of
the state vector x). For a detailed discussion of these points,
see [2]

• the interactions are not symmetric: e.g. agent 1 knows the
position of agent 2 whereas agent 2 is not aware of agent 1.

In this paper, we prove that there are no decentralized feedback
control that globally stabilizes the so-called two-cycles formation,
depicted in Figure 1b. For a survey of related results, see [3]
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Fig. 1: (a). Three agent in a cyclic formation in the plane. Agent 1
observes agent 2, which observes agent 3 which in turn observes agent
1. (b). The two-cycles formation.

The relevance of the two-cycles formation stems from the fol-
lowing: it was shown in a series of papers ([4], [5], [6] and
references therein) that for the case of triangular formations, global
stabilization to almost any triangle is possible in a decentralized
manner. Even more, a careful analysis exhibited a whole family
of stabilizing laws and gave a unified framework to analyze their
global convergence properties. It was then conjectured that the
results would extend to the case of n > 3 agents—which we prove
here is not the case.

The fact that the two-cycles formations is the ”second simplest
formation” is a consequence of a Theorem of Baillieul and Suri [14]
that built upon earlier work of Brockett. The result states that when
the information flow graph is directed, one can generically require
of an agent to have two leaders at the most. From this point of view,
we can understand the formation depicted in Figure 1b as being
the formation right above the triangle in terms of complexity for
finding a control law. Indeed, this formation was singled-out in [6]
as an example of the difficulty to make progress in this area and
underscored the need of new results to address these decentralized
control problem.

II. NOTIONS OF STABILITY

Consider the control system

ẋ = f(x, u(x)) (1)

where x ∈ M , a smooth manifold, and all functions are assumed
smooth.

We are interested in global stabilization properties. Because
formation control is inherently nonlinear, we need to introduce some
definitions to precisely state the results. From [7], we know that for-
mation control problems evolve on a manifold M with non-trivial
homology groups [8]. As a result of the Morse inequalities [8],
these systems cannot be globally stable in the usual sense: under
reasonable assumptions on the dynamics, there is no continuous
u such that (1) has a unique equilibrium. Such situations happen
frequently in nonlinear control, e.g. in steering control.

From a practical standpoint, however, if one could make one
equilibrium stable, and all other equilibria either saddles or unstable,
the system would behave as if it were globally stable. Indeed, a
vanishingly small perturbation in the state of the system would
ensure that, if at a saddle or unstable equilibrium, it evolves to
the unique stable equilibrium. We formalize and elaborate on this
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observation here.
Let Ed be a finite subset of M containing configurations that

we would like to stabilize via feedback. All configurations in Ed
are equally appropriate for the stabilization purpose. We are thus
interested in the design of a smooth feedback control u(x) that will
stabilize the system to any point x0 ∈ Ed. We call these points the
design targets or design equilibria:

Ed = {x0 ∈M s.t. x0 is a design equilibrium}

Let
E = {x0 ∈M s.t. f(x0, u(x0)) = 0},

the set of equilibria of (1). We assume that E is finite.
As explained above, when the system evolves on a non-trivial

manifold, the Morse inequalities make it unreasonable to expect
that there exists a control u(x) that makes the design equilibria
the only equilibria of the system, i.e. such that Ed = E . We call
the additional equilibria, whose existence is a consequence of the
non-trivial topology of the space, ancillary equilibria:

Ea = E − Ed.

Let us assume for the time being that the linearization of the
system at an equilibrium has no eigenvalues with zero real part.
We decompose the set E into stable equilibria, by which we mean
equilibria such that all the eigenvalues of the linearized system
have a negative real part, and unstable equilibria, where at least
one eigenvalue of the linearization has a positive real part. Observe
that under this definition, saddle points are considered unstable. In
summary:

E = Es ∪ Eu

where

Es = {x0 ∈ E | x0 is stable} and Eu = {x0 ∈ E | x0 is unstable}.

With these notions in mind, we introduce the following definition:
Definition 1. Consider the smooth control systems ẋ = f(x, u(x)),
where u ∈ U , a set of admissible controls, x ∈M and the set E of
equilibria of a system given an admissible u is finite. Let Ed ⊂M
be a finite set. We say that Ed is

1) feasible if we can choose a smooth u(x) such that Ed∩E 6= ∅.
2) type-A stable if we can choose a smooth u(x) such that Es ⊂
Ed.

When the set Ed is clear from the context, we say that the system
is feasible or type-A stable. If the system depends on a parameter
µ, we say that it is feasible (resp. type-A stable) if we can choose
u(µ;x) such that it is feasible (resp. type-A stable) for almost all
parameters.

The set Ed is feasible if we can choose u(x) such that at least
one equilibrium of the system is a design target. It is said to be
type-A stable if the system stabilizes to Ed almost surely for any
initial condition on M .

The usual notion of global stability is a particular instance of
type-A stability; indeed, it corresponds to having u(x) such that
Ed = E = Es. Looking at the contrapositive of this definition, a
system is not type-A stable if there exists a set of initial conditions,
which is of strictly positive Lebesgue measure, that lead to an
ancillary equilibrium.
Example 1. Consider a system

ẋ = x(1− kx2)
where k ∈ R is a feedback parameter to be chosen by the user. We
show that any Ed ⊂ (0,∞) is not type-A stable. We first observe

that the system has an equilibrium at 0 and two equilibria at x =
±
√

1/k if k > 0. The system is thus feasible for any Ed ⊂ R. The
Jacobian of the system is 1 at x = 0 and −2 at x = ±

√
1/k. For

k > 0, we thus have

E = {0,±
√

1/k} = {
√

1/k}︸ ︷︷ ︸
Ed

∪{0,−
√

1/k}︸ ︷︷ ︸
Ea

.

From the linearization of the system, we have that Es =
{±
√

1/k} and Eu = {0}. We conclude that the system is not type-
A stable for Ed ⊂ (0,∞) since Es * Ed.

III. GENERICITY, ROBUSTNESS AND JET SPACES
Informally speaking, a property of elements of a topological

space is said to be generic if it is satisfied by almost all elements
of the set.
Definition 2. A property P is generic for a topological space S if
it is true on an everywhere dense intersection of open sets of S.

Everywhere dense intersections of open sets are sometimes called
residual sets [9]. In general, asking for a given property to be
generic is a rather strong requirement, and oftentimes it is enough
to show that a given property is true on an open set of parameters,
initial conditions, etc. We define
Definition 3. An element u of a topological space S satisfies the
property P robustly if there exists a neighborhood U of u in S
such that P is true for all u′ ∈ U . A property P is robust if there
exists a robust u which satisfies the property.

In practical terms, if a property satisfied only at non-robust u’s,
then it fails to be satisfied under the slightest error in modelling or
measurement.

IV. SINGULARITIES AND TRANSCRITICAL BIFURCATION
We now recall a few definitions from dynamical systems theory.

Consider a dynamical system of the form

ẋ = f(µ;x) (2)

where x ∈M , an n−dimensional manifold, and µ ∈ Rk is a vector
of parameters on which the system smoothly depends.
Definition 4 (Hyperbolic and singular equilibria, bifurcation).

1) An equilibrium x0 of (2) is called hyperbolic if the eigenvalues
of the linearization of (2) at x0 have non-zero real-parts. It is
called singular or degenerate otherwise.

2) A value µ0 in the parameter space Rk for which the flow of (2)
has a singular equilibrium is called a bifurcation value.

Singularities of vector fields are, generally speaking, not generic
since a small perturbation of the vector field f will make its
Jacobian, or linearization, non-singular [9]. Our approach relies on
showing that, by opposition to the general case, the decentralized
nature of the system makes the existence of such singularities
generic.

We show below that the 2-cycles behaves similarly to the logistic
equation, which is presented here, in the sense that they both exhibit
the same type of bifurcation. The logistic equation, which is often
used to describe systems in which two competing effects—such
as supply and demand or predator and prey— are at play, is the
one-dimensional ODE given by

ẋ = x(µ− x). (3)

This equation displays what is called a transcritical or transfer of
stability bifurcation at µ = 0, which we explain here. Observe that
the system has two equilibria, one at x = 0 and one at x = µ. The
linearization of the system at x is

df = (µ− x)− x = µ− 2x.
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From this linearization, we see that for µ > 0, the equilibrium
x = 0 is unstable whereas the equilibrium x = µ is stable. The
situation is reversed for µ < 0. We conclude that at the bifurcation
value µ = 0, the two equilibria coalesce and exchange their stability
properties.

Our approach relies on showing that the 2-cycles dynamics is in
some sense equivalent to the one system (3). The most common
approach to establish this equivalence near a non-hyperbolic equi-
librium relies on the use of the center manifold theorem [10]. This
theorem asserts the existence of a nonlinear change of coordinates,
valid near the equilibrium, where the dynamics can be put in a so-
called normal form. While very useful in general, such an approach
is without much hope for success for our objective. Indeed, the
change of variables involved in the analysis depends on the control
u, and tracking the effect of this dependence through the whole
procedure is not feasible if one considers a broad class of control
laws.

In order to overcome this difficulty, we have recourse to the
following result of Sotomayor [11], which characterizes the generic
behavior of dynamical systems near non-hyperbolic fixed-points
without recourse to the center manifold.
Theorem 1 (Sotomayor). Let ẋ = f(µ;x) be a system of ODE
in Rn depending on a scalar parameter µ. For µ = µ0, assume
that the system has an equilibrium x0 satisfying the following
conditions:

1) ∂f(µ0;x)
∂x

|x0 has a unique zero eigenvalue with left and right
eigenvectors w and v respectively. The other eigenvalues are
negative.

2) wT ∂f(µ;x)
∂µ
|x0,µ0v = 0

3) wT ∂
2f(µ0;x)

∂x2
|x0(v, v) 6= 0 and wT ∂

2f(µ0;x)
∂x∂µ

|x0,µ0(v, v) 6= 0

Then the phase portrait is topologically equivalent to the phase
portrait of the logistic equation, i.e. we have a transcritical bifur-
cation about x0 for µ = µ0. Thus around µ = µ0, there are two
arcs of equilibria whose stability properties are exchanged when
passing through µ0.

V. FORMATION CONTROL

Let G = (V,E) be a directed graph with n vertices — that is
V = {x1, x2, . . . , xn} is an ordered set of vertices and E ⊂ V ×V
is a set of edges. We let |E| = m be the cardinality of E. We call
the outvalence of a vertex the number of edges originating from
this vertex and the invalence the number of incoming edges.

Directed graphs are used to encode the information flow in
formation control problems. We follow the convention that an arrow
leaving vertex i for vertex j means that agent i measures the
relative—to its own location— position of agent j.

The mixed-adjacency matrix of a graph G = (V,E) is a |E|×|V |
matrix whose entry i, j is −1 if edge i originates from vertex j, 1
if edge i ends at vertex j and 0 otherwise:
Definition 5 (Mixed adjacency matrix). Given a directed graph
G = (V,E), its mixed adjacency matrix Am ∈ Rn×m is defined
by

Am,ij =


−1 if ei = (j, s), s ∈ V
+1 if ei = (k, j), k ∈ V
0 otherwise.

We will often have to consider the matrix Am ⊗ I where ⊗ is
the Kronecker product and I the two-by-two identity matrix. In
order to keep the notation simple, we write A(2)

m for this Kronecker
product.

A. Rigidity
We briefly cover the fundamentals of rigidity and establish the

relevant notation. We refer the reader to [3], [12] for a more detailed
presentation. We call a framework an embedding of a graph in R2

endowed with the usual Euclidean distance, i.e. given G = (V,E),
a framework p attached to a graph G is a mapping

p : V → R2.

By abuse of notation, we write xi for p(xi). We define the distance
function δ of a framework with n vertices (represented as an
element of R2n) as

δ(p) : R2n → Rn(n−1)/2
+ : (x1, . . . , xn)

→ 1

2

[
‖x1 − x2‖2, . . . , ‖x2 − x3‖2, . . . , ‖xn−1 − xn‖2

]
,

where R+ = [0,∞). We denote by δ(p)|E the restriction of the
range of δ to edges in E.

For a graph G with m edges, we define

L =
{
d = (d1, . . . , dm) ∈ Rm+ s.t. ∃p with δ(p(V ))|E =

√
d
}
,

where the square root of d is taken entry-wise. Properties of this set
and its relations to the number of ancillary equilibria are discussed
in [7]. We have taken the square root of d for computational
convenience, as will be seen below. We denote by L0 the interior
of L.

The rigidity matrix of the framework is the Jacobian ∂δ
∂x

restricted
to the edges in E. We denote it by ∂δ

∂x
|E . A framework is said to

be infinitesimally rigid if there are no vanishingly small motions
of the vertices, except for rotations and translations, that keep the
edge-length constraints on the framework satisfied. This translates
into [13] rank( ∂δ

∂x
|E) = 2n− 3. A framework attached to a graph

G is said to be rigid if there are no motions, save for rotations and
translations of the plane, of the vertices that keep the edge length
constraints satisfied and minimally rigid if all the edges of the graph
are necessary for rigidity.

B. Directed formation control
We formalize in this section the type of control system consid-

ered. We are given a graph G = (V,E) which is assumed to be
minimally rigid with |V | = n and |E| = m. Let d ∈ L be a feasible
edge-length vector. The objective of the formation control problem
is to find a decentralized control law, where the information flow
is given by G, that will stabilize the system around a framework
where the inter-agent distances are given by d.

In more detail, each agent with position xi ∈ R2 is represented
by a vertex i in V . The dynamics of xi is allowed to depend only
on the position of agents xk for which there is an edge originating
at xi and ending at xk:

ẋi = ui(µ;xk, xl, . . .), where (i, k), (i, l), . . . ∈ E.
The objective is then to find ui such that the system stabilizes
around a framework with the prescribed edge lengths µ. Follow-
ing [14], we assume from now on that G has a maximum outvalence
of two.

We denote by the variables zi ∈ R2 the relative position of
the agents. Precisely, given (arbitrary) orderings of the edges and
vertices of G, we define

zi = xk − xl and ei = zTi zi − di
where edge i links nodes xk to xl, and ei is the corresponding error
in edge length.

With the convention of Section II, we have

Ed = {x ∈ R2n|ei(x) = 0, for all edges in E}.
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Fig. 2: Four formations in the plane that are not equivalent under
rotations and translation and that have the same corresponding edge
lengths. (a) is the mirror-symmetric of (c) and (b) is the mirror-
symmetric of (d).

An important feature of the formation control problem is that it is
defined up to a rigid transformation of the plane: if x ∈ R2n is a
framework of G, frameworks obtained by a rotation and translation
of x—we write them as A · x, for A ∈ SE(2), the special
Euclidean group [7]— are equivalent to x in formation control.
As a consequence, we can assume without loss of generality that
the agents measure only the relative position of other agents.

We emphasize that the feedback laws can depend explicitly on
the design distances d, and not solely on them through the ei’s as is
implicitly assumed in most related work on formation control. We
write this dependence of the feedback on d, which is a parameter
by opposition to a dynamical variable, by using a semi-colon as in
previous sections. We have, for xi, zi ∈ R2, ui ∈ R:

ẋi = ui(di; ei)zi

in case agent i follows a single agent and

ẋi = u1i(dk, dl; ek, el, z
T
k zl)zk + u2i(dk, dl; ek, el, z

T
k zl)zl

in case agent i follows two agents. This general form respects
both the invariance under the SE(2) action and the decenralization
constraints on d and x given by G.

We established in [7] a few conditions a feedback control law
had to satisfy in order to yield a well-defined formation control
system (Definition 7). We recall them here:
Definition 6. A feedback control law ui is compatible with a
formation control problem if

1) ui(dj ; ej) is such that ui(dj ; 0) = 0 if agent i has one co-
leader.

2) ui(dj , dk; ej , ek, zj · zk) is such that ui(dj , dk; 0, 0, z) = 0
for all z if agent i has two co-leaders.

We accordingly define the class of controls U to be all smooth
control laws such that ui(di; ei) = 0 and uj(di, dj ; ei, ej , ·) = 0
for ei = ej = 0.

From the above discussion, we conclude that:

Proposition 1. Let Ed be the set of design equilibria for a formation
control problem with underlying information flow graph G. If the
graph G is rigid, the set Ed/SE(2) is finite. In other words, the
set of design equilibria is finite up to rigid transformations.

C. The two-cycles formation
The two-cycles is the formation represented in Figure 1b. Let

xi ∈ R2, i = 1 . . . 4 represent the position of 4 agents in the plane.
We define the vectors{

z1 = x2 − x1; z2 = x3 − x2; z3 = x1 − x3
z4 = x3 − x4; z5 = x4 − x1

(4)

Hence a general control law for such a system is
ẋ1 = u11(d1, d5; e1, e5, z

T
1 z5)z1 + u12(d1, d5; e5, e1, z

T
1 z5)z5

ẋ2 = u2(d2; e2)z2
ẋ3 = u3(d3; e3)z3
ẋ4 = u4(d4; e4)z4

(5)
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x4
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z
5

z
2 z4

z 3

(a)

x1

x2

x3

x4

z1
z5

z
2

z 4

z 3

(b)

Fig. 3: The formation in (a) is such that (‖z1‖, . . . , ‖z5‖) /∈ S, whereas
(‖z1‖, . . . , ‖z5‖) ∈ S for the formation depicted in (b)

The set of design equilibria Ed for the 2-cycles is of cardinality
4, up to rigid transformations, since there are four frameworks in
the plane for which ei = 0; they are depicted in Figure 2.

The set Ea of ancillary equilibria of (5) depends on the choice
of feedbacks ui ∈ U . Due to the invariance and distributed nature
of the system, some configurations belong to Ea for all elements
of U :

Proposition 2. The set E of (5) contains, in addition to the
equilibria in Ed, the frameworks characterized by

1) zi = 0 for all i, which corresponds to all the agents being at
the same position.

2) all zi are aligned, which corresponds to having all agents on
the same one-dimensional subspace in R2. These frameworks
form a three dimensional invariant subspace of the dynamics.

3) e2 = e3 = e4 = 0, z1 and z5 are aligned and so that

u1(e1, e5, z1 · z5)‖z1‖ = ±u5(e1, e5, z1 · z5)‖z5‖,

where the sign depends on whether z1 and z5 point in the
same or opposite directions.

This result is straightforward from an inspection of Equation (5).
Frameworks of type 2 above are non-infinitesimally rigid and they
define an invariant submanifold of the dynamics.

The main result of this paper is to show that the 2-cycles
formation is not robustly type-A stabilizable for an open set of
parameters d ∈ L or, equivalently, that there does not exist robust
feedback laws that will stabilize any of its four design equilibria
without stabilizing an ancillary equilibria:
Theorem 2. The two-cycles formation is not robustly type-A stable.

Because of space constraints, we prove Theorem 2 in a particular
case.

D. Singular formations for n = 4 agents.
Our work singles out a particular type of frameworks which,

even though they are infinitesimally rigid, show a certain degree
of degeneracy. We first observe that, in general, the angle between
z1 and z5 is not uniquely determined by the edge lengths. We
define S to be set of edge lengths such that, at least one of the
four frameworks corresponding to d has z1 parallel to z5 with the
notation of Figure 3:

S = {d ∈ L s.t. z1 parallel z5 for one framework at least.}.

We define S0 = S ∩ L0.
We will need the following properties of this set:

Lemma 1. The following properties of S hold:
1) S is of codimension one in L.
2) The frameworks corresponding to edge lengths in S0 are

infinitesimally rigid.

Proof. For the first part, observe that we can parametrize S by
first choosing a feasible d1, d2, d3 yielding a triangle x1, x2, x3
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and one additional parameter giving the signed length of z5, with
the sign referring to z5 going in the same direction as z1 or the
opposite direction. Hence 4 parameters are sufficient and necessary
to describe a formation in S; it is thus of codimension one in L

For the second part, we have that the rigidity matrix of the two-
cycles is given by R in Equation (6):

R =


zT1 −zT1 0 0
0 zT2 −zT2 0
−zT3 0 zT3 0
0 0 zT4 −zT4
zT5 0 0 −zT5

 , Z =


zT1 0 . . . 0
0 zT2 . . . 0

0 . . .
. . .

...
0 0 . . . zT5

 .
(6)

Some simple algebra shows that one has

R = ZA(2)
m (7)

where we recall that Am is the mixed adjacency matrix. In the
case of the 2-cycles, the mixed adjacency matrix Am ∈ R5×4 is
of rank 3. The cokernel of Am is spanned by [0, 0, 1, 1, 1]T and
[1, 1, 1, 0, 0]. Hence, the cokernel of A(2)

m is four dimensional and
spanned by the vectors [0, 0, 1, 1, 1]T ⊗ [1, 0]T , [0, 0, 1, 1, 1]T ⊗
[0, 1]T , [1, 1, 1, 0, 0]T ⊗ [1, 0]T and [1, 1, 1, 0, 0]T ⊗ [0, 1]T

The matrix Z is of full rank unless zi = 0 for some i, which
corresponds to two agents superposed. We thus have that Z is of
full rank for formations in L0. The kernel of Z is given by the
relations z1 + z2 + z3 = 0 and z3 + z4 + z5 = 0. Because Z is
of full row rank, R is of full (row) rank if A(2)

m maps onto the
coimage of Z. It is readily verified to be the case from the above
relations describing the cokernel of A(2)

m and the kernel of Z. �

VI. THE TWO-CYCLES IS NOT TYPE-A STABLE

We now focus our attention on the system,{
ẋ1 = u(e1)z1 + u(e5)z5; ẋ2 = u(e2)z2

ẋ3 = u(e3)z3; ẋ4 = u(e4)z4
(8)

We show that the system of Equation 8 is equivalent to the
logistic equation around S0. We denote by F (x) the vector field on
the right-hand side of Equation (8). In this particular case, the set
of admissible control laws U contains twice differentiable u with
u(0) = 0.
Theorem 3. Consider the set of vector fields F = {F (x)|u(x) ∈
U}. For all robust u ∈ U , the system undergoes a transcritical
bifurcation at frameworks with d ∈ S0.

We will prove Theorem 2 as a corollary of this result. We prove
Theorem 3 in several steps:
Proposition 3. For d ∈ S0 there is a non-zero vector w ∈ R8 such
that wT ∂F

∂x
|ei=0,d = wT ∂F

∂d
|d = 0 for at least one framework with

edge lengths d.

We will prove Proposition 3 by relying on some technical
lemmas. We use the notation Zi = ziz

T
i .

Lemma 2. The Jacobian of system 8 at a design equilibrium is
given by

∂F

∂x
|ei=0,d = −2u′(0)


−Z1 − Z5 Z1 0 Z5

0 −Z2 Z2 0
Z3 0 −Z3 0
0 0 Z4 −Z4

 .
Proof. We write F1(x) = u(e1)z1 + u(e5)z5, F2(x) = u(e2)z2,
and so forth. Observe that

∂u(e1)z1
∂x1

= u(e1)

[
1 0
0 1

]
+ u′1(e1)z1z

T
1 .

Since u(0) = 0 and design equilibria are such that ei = 0,
we have that ∂F1

∂x1
|e1=0 = 2u′(0)(z1z

T
1 + z5z

T
5 ). We have similar

relations for other derivatives ∂Fi
∂xj

. Gathering the above relations,
we obtain the result. �

Lemma 3. The Jacobian of F with respect to the parameters d at
a design equilibrium is given by

∂F

∂d
|ei=0,d = −u′(0)


z1 0 0 0 z5
0 z2 0 0 0
0 0 z3 0 0
0 0 0 z4 0

 (9)

Proof. We have that ∂F1
∂d1

= −u′1(e1)z1 and similar expressions for
the other entries. �

Lemma 4. Let d ∈ S0, then w is a left eigenvector of ∂F
∂x
|ei=0,d

with eigenvalue 0 if and only if wT ∂F
∂d
|ei=0,d = 0

Proof. Let R ∈ R5×8 be the rigidity matrix of the two-cycles
formation. A direct computation yields

∂F

∂d
R =

∂F

∂x
. (10)

From Equation 10 and Lemma 1, we conclude that wT ∂F
∂x

= 0
if and only if wT ∂F

∂d
= 0. �

Because the control system is invariant under an action of the
Euclidean group SE(2) on R2, its Jacobian at an equilibrium has
three zero eigenvalues:

Proposition 4. The eigenvalues at a desired equilibrium of the
linearized system of Equation 8 are (0, 0, 0) and the eigenvalues of
the matrix

J = ZA(2)
m
∂F

∂d
. (11)

Proof. We know from Lemma 4 and Equation (7) that ∂F
∂x

=
∂F
∂d
R = ∂F

∂d
ZA

(2)
m , which has the same non-zero spectrum as

ZA
(2)
m

∂F
∂d

[15]. The result is a simple consequence of the dimen-
sions of the operators involved. �

Corollary 1 (Singular formations). The Jacobian J of the 2-cycles
formation is of corank 1 for at least one framework in S0.

Proof. An explicit computation yields

J =


zT1 z1 −zT1 z2 0 0 −zT1 z5
0 zT2 z2 −zT2 z3 0 0

−zT3 z1 0 zT3 z3 0 −zT3 z5
0 0 −zT3 z4 zT4 z4 0

−zT1 z5 0 0 −zT4 z5 zT5 z5


The first and last column are multiple of each other if z1 is

parallel to z5, and quick computation shows that the first four
columns, are linearly independent. The corank is higher if one of
the zi is in addition zero. �

Proof of Proposition 3. Consider a framework with d ∈ S0 and z1
parallel to z5. From Corollary1, we know that ∂F

∂x
is generically

of rank 4. Let w be an eigenvector corresponding to the zero
eigenvalue. We conclude using Lemma 4 that wT ∂F

∂d
= 0. �

Proof of Theorem 3. Write d0 = (d1, d2, d3, d4, d5). We consider
the one parameter system where only µ ∈ R is allowed to vary:

ẋ1 = u(e1)z1 + u(e5)z5
ẋ2 = u(e2)z2
ẋ3 = u(zT3 z3 − (d3 + µ))z3
ẋ4 = u(e4)z4

. (12)
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Fig. 4: We illustrate the stability properties of ancillary and design
equilibria around S0. Let the vector (d1, d2, d3, d4, d5) ∈ S0. The
horizontal dashed line corresponds ancillary equilibria and the slanted
line that intersects it to design equilibria. They coincide at µ = 0,
as seen in Proposition V-C; for µ 6= 0 configurations in S0 are
ancillary equilibria. For µ1 < 0, there is an ancillary equilibrium with
e2, e3, e4 = 0 but e1 = ε1 and e5 = ε2 and z1 and z5 aligned. It
is illustrated in the top-left corner of the figure. This equilibrium is
moreover stable. For µ2 > 0, there is a similar ancillary equilibria
with e1 = ε3 and e5 = ε4, illustrated in the bottom-right corner, but
this equilibrium is unstable. We see that around the bifurcation value
µ0, there is a transfer of stability from Ed to Ea. The orientation may
be reversed (i.e. µ1 > 0, µ2 < 0 and all else the same in the figure)
depending on the sign of the second derivatives in Theorem 3. �

We prove that conditions (1), (2) and (3) of Theorem 1 are satisfied
at robust u ∈ U . From Corollary 1 and the fact that u′ 6= 0
generically at a zero of u [9], we know that the Jacobian of the
two-cycles at S0 has a unique zero eigenvalue zero generically for
F ∈ F . Hence condition (1) is verified. Condition (2) follows from
Proposition 3.

The second derivatives of condition (3) in Theorem 1 are, at a
design equilibrium, the sum of two terms:

∂2F

∂x2
= u′

∑
l

wlv
TQlv + u′′

∑
l

wlv
T Q̃lv

where Ql, Q̃l ∈ R8×8 are obtained by evaluating the Hessian
of Fl. One can easily check that

∑
l wlv

TQlv and
∑
l wlv

T Q̃lv
are generically non-zero on S0. Set a =

∑
l wlv

TQlv and b =∑
l wlv

T Q̃lv. L We thus have ∂2F
∂x2

is zero only if

u′a+ u′′b = 0

when u vanishes. Let C ⊂ J2(R,R)1be defined by the equations
au′ + bu′′ = 0 and u = 0. Since C is of codimension 2 in J2,
the 2-jet extension of u is transversal [9] to C if and only if u 6=
0 or au′ + bu′′ 6= 0. We conclude using Thom’s transversality
Theorem [9] that ∂2F

∂z2
is generically non-zero.

Observe that ∂F2

∂x∂d
is a constant matrix independent of the

configuration. Using a similar reasoning as above, we can conclude
that wT ∂2F

∂x∂d
v is generically non-zero. �

Proof of Theorem 2. We depict the setting in Figure 4. We will
show that there is a set of positive measure in L which cannot

1The jet space of real-valued functions on R, see [9] or [3]

be made robustly type-A stable. We do so by showing that for Ed
corresponding to distances in that subset of L, there is a stable
ancillary equilibrium for all robust u ∈ U .

Denote by Sε a tubular neighborhood of S:
Sε = {d ∈ L s.t. ∃ d0 ∈ S, with ‖d− d0‖ < ε}

and Sε0 = Sε ∩ S0. The set Sε contains frameworks where z1 and
z5 are close to parallel. These frameworks are infinitesimally rigid
and non-singular. Let d ∈ Sε0 and d0 ∈ S0 be such that there is
−ε < µ < ε with d = d0 + (0, 0, µ, 0, 0). Such d0 and µ exist by
definition of Sε0 .

Because the system is invariant under mirror symmetry [7] along
z3, the stability property of the equilibria (a) and (c) and (b) and
(d) in Figure 2 are the same. Assume without loss of generality
that u is such that the design equilibria for the frameworks with
x1 and x4 on the same side of z3 are stable. Because the system
undergoes a transcritical bifurcation when µ = 0 by Theorem 3,
and because u′ 6= 0 generically when u vanishes, we have that for ε
small enough, Ea contains the framework where z1 is parallel to z5
for all frameworks with −ε < µ < ε. Furthermore, for either µ > 0
or µ < 0, we have that this framework is asymptotically stable, i.e.
Es ∩ Ea 6= ∅. Hence, there is a set of positive measure of target
frameworks in Sε0 which contains a stable ancillary equilibrium and
thus the system is not robustly type-A stable. �
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