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Abstract— This paper addresses the design problem of Gain-
Scheduled Output-Feedback (GSOF) controllers for discrete-
time Linear Parameter-Varying (LPV) systems via Parameter-
Dependent Lyapunov Functions (PDLFs). In our problem
setting, it is supposed that scheduling parameters are provided
with some uncertainties. In this practical problem setting,
we give a sufficient condition for designing GSOF controllers
exploiting the uncertain scheduling parameters which minimize
the induced l2-norm in terms of Parameter-Dependent Bilinear
Matrix Inequalities (PDBMIs). Two algorithms for solving the
PDBMIs, i.e. line search and iterative algorithms, are shown.
Under the ideal situation, i.e. exact values of scheduling param-
eters are available, our method then recovers the conventional
design method via PDLFs.

I. INTRODUCTION

It is widely known that Gain-Scheduling (GS) strategy is a
promising method to address the changes of plant dynamics,
and this strategy has widely been applied to many real
systems, e.g. aircraft, missile [1], etc. Thus, a lot of papers
tackling the design problem of GS Output-Feedback (GSOF)
controllers for Linear Parameter-Varying (LPV) systems have
been reported, e.g. [2]–[7] and references therein. Most of
those papers suppose that scheduling parameters are exactly
available; however this assumption does not always hold true
in real systems. In other words, the scheduling parameters are
usually provided with some uncertainties. Several researchers
have already tackled this issue and some design methods of
GSOF controllers exploiting uncertain scheduling parameters
have successfully been proposed [8]–[11].

Most of the foregoing papers address the design problem
of GSOF controllers for continuous-time LPV systems. This
consequently means that the designed GSOF controllers are
also continuous-time systems. On the other hand, digital
computers are widely used for controlling real systems. Thus,
if the designed GSOF controllers are continuous-time, it is
required to discretize the GSOF controllers in some manner.
On this issue, a good paper has already been published [12],
in which trapezoidal approximation has been proposed. In
the approximation, it is supposed that I − Ts

2 Ac(θ), where
Ts and Ac(θ) respectively denote the sampling time and
the continuous-time state-space matrix of the designed gain-
scheduled controller, is non-singular. One of the simplest
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methods to satisfy this condition is to impose the poles
of the controller matrix to lie in some specific region.
However, additional requirements for controllers generally
increase conservatism. Thus, designing discrete-time GSOF
controllers directly for discrete-time LPV systems is another
promising method from a viewpoint of controller implemen-
tation. The author has already proposed a design method
along this approach [13], in which Parameter-inDependent
Lyapunov Functions (PiDLFs) are used.

It is widely known that Parameter-Dependent Lyapunov
Functions (PDLFs) produce less conservative controllers
than using PiDLFs when scheduling parameters vary with
bounded rates. Thus, PDLFs are recommended for designing
GSOF controllers, as in [3]–[5], [7], [9].

Considering these, this paper tackles the design problem
of discrete-time GSOF controllers for discrete-time LPV
systems via PDLFs under the condition that only inex-
act scheduling parameters are available. Using the design
method in [14], which is an extension of [15] to LPV
systems, we propose a design method of GSOF controllers
exploiting uncertain scheduling parameters via PDLFs.

In this note, we use the following notations: He {X} is a
shorthand notation for X + XT , In, I and 0 respectively
denote an n × n dimensional identity matrix, an identity
matrix and a zero matrix of appropriate dimensions, Z+

denotes the set of non-negative integers, Rn×m and Sn
respectively denote sets of n×m dimensional real matrices
and n × n dimensional symmetric real matrices, ∗ denotes
an abbreviated off-diagonal block in a symmetric matrix,
and diag (X1, · · · , Xk) denotes a block-diagonal matrix com-
posed of X1, · · · , Xk.

II. PRELIMINARIES

A. System Definitions

We consider the following discrete-time LPV generalized
plant G(θ) with l independent scalar parameters θ(k) =
[θ1(k) · · · θl(k)]

T :

G(θ) :



x(k + 1) =A(θ(k))x(k) +B1(θ(k))w(k)

+B2u(k)

z(k) =C1(θ(k))x(k) +D11(θ(k))w(k)

+D12(θ(k))u(k)

y(k) =C2x(k) +D21(θ(k))w(k)

,

(1)
where x(k) ∈ Rn, w(k) ∈ Rnw , u(k) ∈ Rnu , z(k) ∈ Rnz

and y(k) ∈ Rny are respectively the state with x(0) = 0, the
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Fig. 1. Example of admissible region Λθ (∆ denotes the maximum
deviation of θ for one sampling step, and θi and θi respectively denote
the maximum and minimum values of θi)

disturbance input, the control input, the performance output
and the measurement output at step k with k ∈ Z+. The
parameters θi, which represent changes of plant dynamics,
are supposed to be time-varying (possibly time-invariant).

As indicated in (1), the matrices B2 and C2 are set to be
constant. This assumption slightly restricts the applicability
of the exposed method hereafter; however, if strictly proper
Linear Time-Invariant (LTI) filters are applied to the original
signals u(k) and y(k) then this assumption is satisfied,
similarly to a continuous-time case [2].

The state-space matrices in (1) are supposed to have
compatible dimensions and to be polynomial with respect
to θi(k). The parameters θi(k) are supposed to lie in a
hyper-rectangle Ωθ which is known in advance: θ(k) ∈
Ωθ, ∀k ∈ Z+. Similarly to [7], the parameter deviation for
one sampling step, i.e. θ(k + 1)− θ(k), is also supposed to
be bounded. The admissible region for (θ(k), θ(k + 1)) is
supposed to be given as a polytope and is denoted by Λθ.
(See also Fig. 1.)

For the LPV system G(θ) in (1), we consider a parameter-
dependent full-order GSOF controller exploiting the avail-
able scheduling parameters. The scheduling parameters are
supposed to be available with some uncertainties; that is,
the i-th scheduling parameter at step k is provided as
θi(k)+δi(k) with an associated uncertainty δi(k). The vector
δ(k) = [δ1(k) · · · δl(k)]

T represents the uncertainties in
the provided scheduling parameters. It is supposed that the
uncertainties δi are independent from each other. The GSOF
controller K(θ + δ) to be designed is defined as follows:

K(θ + δ) :


xK(k + 1) =AK(θ(k) + δ(k))xK(k)

+BK(θ(k) + δ(k))y(k)

u(k) =CK(θ(k) + δ(k))xK(k)

+DK(θ(k) + δ(k))y(k)

, (2)

where xK(k) ∈ Rn denotes the state at step k with xK(0) =
0, and matrices AK(θ(k) + δ(k)), etc. are appropriately
dimensioned parameter-dependent matrices to be designed.

The uncertainties δi(k) are supposed to lie in a hyper-
rectangle Ωδ which is known in advance: δ(k) ∈ Ωδ, ∀k ∈
Z+.

The closed-loop system Gcl(θ, θ+δ) comprising G(θ) and

K(θ + δ) is given as follows:

Gcl(θ, θ + δ) :
xcl(k + 1) =Acl(θ(k), θ(k) + δ(k))xcl(k)

+Bcl(θ(k), θ(k) + δ(k))w(k)

z(k) =Ccl(θ(k), θ(k) + δ(k))xcl(k)

+Dcl(θ(k), θ(k) + δ(k))w(k)

,
(3)

where xcl(k) =
[
x(k)T xK(k)T

]T
, and

Acl(θ(k), θ(k) + δ(k))

=

[
A(θ(k)) +B2DK(θ(k) + δ(k))C2 B2CK(θ(k) + δ(k))

BK(θ(k) + δ(k))C2 AK(θ(k) + δ(k))

]
,

Bcl(θ(k), θ(k) + δ(k))

=

[
B1(θ(k)) +B2DK(θ(k) + δ(k))D21(θ(k))

BK(θ(k) + δ(k))D21(θ(k))

]
,

Ccl(θ(k), θ(k) + δ(k))

=
[
C1(θ(k)) +D12(θ(k))DK(θ(k) + δ(k))C2

D12(θ(k))CK(θ(k) + δ(k))
]
,

Dcl(θ(k), θ(k) + δ(k))

=D11(θ(k)) +D12(θ(k))DK(θ(k) + δ(k))D21(θ(k)).

B. Problem Definition

We are now ready to define our problem.
Problem 1: Suppose that the scheduling parameters θi(k)

are provided to the controller as θi(k) + δi(k) with un-
certainties δi(k). For a given positive number γ∞, find
a controller K(θ + δ) which stabilizes Gcl(θ, θ + δ) and
satisfies (4) for all combinations of admissible trajectories
(θ(k), θ(k + 1)) ∈ Λθ and uncertainties δ(k) ∈ Ωδ .

sup
w∈l2,w 6=0

‖z‖2 / ‖w‖2 < γ∞ (4)

C. Basic Lemmas

Hereafter the step index for θ(k), i.e. k, is omitted if it is
obvious, and θ(k+ 1) is denoted by θ+. Similarly, the index
for δ(k) is also omitted if it is obvious.

Now let us consider the case in which δ = 0 holds.
Suppose that some full-order controller as in (2) but δ being
set as 0, K(θ), is given. Then, the following lemma holds.

Lemma 1: [7] For a given positive number γ∞, if there
exists a parameter-dependent matrix Xcl(θ) ∈ S2n such that
(5) holds for all pairs (θ, θ+) ∈ Λθ, then the closed-loop
system Gcl(θ) is asymptotically stable and satisfies (4) for
all admissible trajectories (θ, θ+) ∈ Λθ.

Xcl(θ) ∗ ∗ 0

Acl(θ)Xcl(θ)Xcl(θ
+) 0 Bcl(θ)

Ccl(θ)Xcl(θ) 0 γ∞Inz
Dcl(θ)

0 ∗ ∗ γ∞Inw

 > 0 (5)

Applying the well-known Finsler’s lemma, one gets the
following lemma which is equivalent to Lemma 1, similarly
to an LTI case [15].
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Lemma 2: [14] For a given positive number γ∞, if
there exist parameter-dependent matrices Xcl(θ) ∈ S2n and
G(θ) ∈ R2n×2n such that (6) holds for all pairs (θ, θ+) ∈ Λθ,
then the closed-loop system Gcl(θ) is asymptotically stable
and satisfies (4) for all admissible trajectories (θ, θ+) ∈ Λθ.

He {G(θ)} −Xcl(θ) ∗ ∗ 0

Acl(θ)G(θ) Xcl(θ
+) 0 Bcl(θ)

Ccl(θ)G(θ) 0 γ∞Inz
Dcl(θ)

0 ∗ ∗ γ∞Inw

 > 0 (6)

Next let us consider the case in which there exist uncer-
tainties in the available scheduling parameters, i.e. δ 6= 0
holds. Suppose that some full-order controller K(θ + δ)
defined in (2) is given. Considering that the controller
K(θ + δ) has additional parameters δi, then the following
lemma is directly derived from Lemma 2.

Lemma 3: For a given positive number γ∞, if there exist
parameter-dependent matrices Xcl(θ) ∈ S2n and G(θ) ∈
R2n×2n such that (7) holds for all triplets ((θ, θ+) , δ) ∈
Λθ × Ωδ , then the closed-loop system Gcl(θ, θ + δ) is
asymptotically stable and satisfies (4) for all combinations
of admissible trajectories (θ, θ+) ∈ Λθ and uncertainties
δ ∈ Ωδ .

He {G(θ)} −Xcl(θ) ∗ ∗ 0

Acl(θ, θ + δ)G(θ) Xcl(θ
+) 0 Bcl(θ, θ + δ)

Ccl(θ, θ + δ)G(θ) 0 γ∞Inz Dcl(θ, θ + δ)

0 ∗ ∗ γ∞Inw

 > 0

(7)

In the next section, we propose our design method for
Problem 1 using Lemma 3. However, we need to cope with
the gap between θ+ δ and θ for constructing the state-space
matrices of K(θ+ δ). To do that, a technical lemma is used.
It is a variation on the celebrated property He{XTY } ≤
XTEX + Y TE−1Y, ∀E = ET > 0 (see [16]). Combined to
a Schur complement, the result is used to approximate in a
linear fashion some products of decision matrices.

Lemma 4: Suppose that a symmetric matrix Υ0 and ma-
trices Υ1,Υ2 with compatible dimensions are given. If one
of the following two inequalities holds for some positive
definite matrix E with compatible dimensions:[

Υ0 ∗[
Υ1 EΥ2

]
E

]
> 0 (8)[

Υ0 ∗
diag (Υ1, EΥ2) diag (E , E)

]
> 0 (9)

then Υ0 −
[

0 ∗
ΥT

2 Υ1 0

]
> 0 holds.

Proof: Applying a Schur complement to (8) gives

Υ0 −
[

0 ∗
ΥT

2 Υ1 0

]
>

[
ΥT

1 E−1Υ1 0

0 ΥT
2 EΥ2

]
≥ 0.

Thus, it proves the lemma for (8). Similarly,

Υ0 −
[

0 ∗
ΥT

2 Υ1 0

]
>

[
ΥT

1

−ΥT
2 E

]
E−1

[
Υ1 −EΥ2

]
≥ 0

is obtained from (9). Thus, it proves the lemma for (9).

III. MAIN RESULTS

As our method is based on the formulation in [14], we
briefly review the design method in [14] below1.

A candidate of the Lyapunov functions in Lemma 2 is
set as xTclXcl(θ)

−1xcl using a parameter-dependent matrix
Xcl(θ) ∈ S2n satisfying Xcl(θ) > 0, ∀θ ∈ Ωθ. Ma-
trix G(θ) is now set to be constant G with some con-
servatism being admitted. Then, matrix G and its inverse

are set as
[
X Z1

U Z2

]
and

[
YT Z3

VT Z4

]
respectively. Using the

change-of-variables K(θ) =

[
V YB2

0 Inu

]
K̄(θ)

[
U 0

C2X Iny

]
+[

YA(θ)X 0

0 0

]
, where K̄(θ) =

[
AK(θ) BK(θ)

CK(θ)DK(θ)

]
, a design

method of GSOF controllers has been proposed.
Remark 1: If matrix G is set to be parameter-dependent

G(θ), then the designed GSOF controller depends on the
current scheduling parameters θi(k) as well as future ones
θi(k + 1) [14]. Considering this property, this paper adopts
constant G even though some conservatism is introduced.

A. Proposed Method

We propose the following theorem for Problem 1. (Some
equations are given at the top of the next page.)

Theorem 1: For a given positive number γ∞, suppose
that there exist parameter-dependent symmetric matrices
P(θ),H(θ+ δ), E(θ, δ) ∈ Sn, parameter-dependent matrices
J (θ) ∈ Rn×n, K(θ + δ) ∈ R(n+nu)×(n+ny), and constant
matrices X ,S,Y ∈ Rn×n such that (10) holds.[

Υ∞(θ, θ+, θ + δ) ∗[
Υ(θ, δ) 0 0

]
Γ(θ, δ)

]
> 0, ∀

((
θ, θ+

)
, δ
)
∈ Λθ×Ωδ,

(10)
where Υ∞(θ, θ+, θ + δ) is defined in (11) using matrices
in (12), and (Υ(θ, δ),Γ(θ, δ)) is any pair chosen from (13).
Then, the controller K(θ + δ) whose state-space matrices
K̄(θ + δ) are given in (14), in which A(θ + δ) denotes the
matrix A(θ) in (1) with θ+δ instead of θ and matrices U, V ∈
Rn×n are non-singular matrices satisfying V U + YX = S,
makes the closed-loop system Gcl(θ, θ + δ) asymptotically
stable and satisfies (4) for all combinations of admissible
trajectories (θ, θ+) ∈ Λθ and uncertainties δ ∈ Ωδ .

Proof: Lemma 4 is applied to (10), then one gets the
following inequality:

Υ∞(θ, θ+, θ + δ)

+




0 0 0 ∗
0 0 0 0

0 0 0 0

Y (A(θ)−A(θ + δ))X 0 0 0

 0

0 0

 > 0.
(15)

1 [14] considers the design problem with the direct term DK(θ) being
set to zero. Thus, a slight extension is conducted.
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Υ∞(θ, θ+, θ + δ) =


−
[
P(θ) J (θ)
∗ H(θ)

]
+ He

{[
X In
S Y

]}
∗ ∗ 0

ΥA(θ, θ + δ)

[
P(θ+) J (θ+)
∗ H(θ+)

]
0 ΥB(θ, θ + δ)

ΥC(θ, θ + δ) 0 γ∞Inz ΥD(θ, θ + δ)
0 ∗ ∗ γ∞Inw

 (11)

[
ΥA(θ, θ + δ) ΥB(θ, θ + δ)

ΥC(θ, θ + δ) ΥD(θ, θ + δ)

]
=

 A(θ)X A(θ) B1(θ)
0 YA(θ) YB1(θ)

C1(θ)X C1(θ) D11(θ)

 +

 0 B2

In 0

0 D12(θ)

K(θ + δ)

[
In 0 0
0 C2 D21(θ)

]
(12)

Υ(θ, δ) Γ(θ, δ)

(a)
[
E(θ, δ)X 0 0 (A(θ + δ)−A(θ))T YT

]
E(θ, δ)

(b)
[
(A(θ + δ)−A(θ))X 0 0 E(θ, δ)YT

]
E(θ, δ)

(c)

[[
E(θ, δ)X

0

]
0 0

[
0

(A(θ + δ)−A(θ))T YT

]]
diag(E(θ, δ), E(θ, δ))

(d)

[[
(A(θ + δ)−A(θ))X

0

]
0 0

[
0

E(θ, δ)YT
]]

diag(E(θ, δ), E(θ, δ))

(13)

K̄(θ + δ) :=

[
AK(θ + δ) BK(θ + δ)
CK(θ + δ) DK(θ + δ)

]
=

[
V YB2

0 Inu

]−1 (
K(θ + δ)−

[
YA(θ + δ)X 0

0 0

])[
U 0
C2X Iny

]−1

(14)

From (14), the matrix K(θ+ δ) is represented as follows:

K(θ + δ) =

[
V YB2

0 Inu

]
K̄(θ + δ)

[
U 0

C2X Iny

]
+ diag (YA(θ + δ)X ,0) .

After substituting this matrix into (15), one gets

T T (left hand side of (7)) T > 0, (16)

where T = diag (T, T, Inz , Inw) with T =

[
In YT
0 V T

]
,

in a similar way to [14]. As long as matrix T is
nonsingular, (16) implies that (7) holds with Xcl(θ +

δ) = T−T
[
P (θ) J(θ)

∗ H(θ)

]
T−1 and G(θ) = G =

T−T
[
X In
S Y

]
T−1. The nonsingularity of T is equivalent to

that of V , which is always possible with slight perturbations
for decision matrices X ,Y,S if necessary.

Remark 2: Theorem 1 has four different formulations for
the same assertion. At the current stage, it is not sure
which is the best with respect to conservatism. However,
the formulations using (a) and (b) are always better than
the others with respect to the numerical complexity of the
controller design process, because the row numbers of those
LMIs are smaller than the others by n.

Remark 3: Theorem 1 introduces additional terms to ad-
dress the gap between A(θ) and A(θ+ δ). If only either B2

or C2 is parameter-dependent, then we can obtain similar
formulations exposed in Theorem 1. However, the term
addressing the gap of those matrices is further introduced.
This increases conservatism and numerical complexity. Thus,
matrices B2 and C2 are supposed to be constant in this paper.

If we minimize γ∞ for Theorem 1, then we can obtain
optimal GSOF controllers.

B. Recovery of Conventional Design Method

Here, we claim the following: (i) When exact scheduling
parameters are available our method recovers the method
in [14] in which PDLFs are used but exact scheduling

parameters are supposed to be available, and (ii) our method
encompasses the method in [13] in which uncertainties on
scheduling parameters are supposed but PiDLFs are used.

To do that, we first present a method in [14]. The following
lemma is slightly extended from the result in [14].

Lemma 5: Suppose that δ = 0 and Ωδ = {0} hold.
For a given positive number γ∞, suppose that there ex-
ist parameter-dependent symmetric matrices P(θ),H(θ) ∈
Sn, parameter-dependent matrices J (θ) ∈ Rn×n,K(θ) ∈
R(n+nu)×(n+ny), and constant matrices X ,S,Y ∈ Rn×n
such that Υ∞(θ, θ+) > 0, ∀(θ, θ+) ∈ Λθ, where Υ∞(θ, θ+)
is the same as in (11) but with δ being set to be 0,
holds. Then, the controller K(θ) whose state-space matrices
are given in (14) but with δ = 0 makes the closed-loop
system Gcl(θ) asymptotically stable and satisfies (4) for all
admissible trajectories (θ, θ+) ∈ Λθ.

We make the following assertion.
Theorem 2: Let any performance level γ∞, the following

two propositions are equivalent:

-1- A solution (P(θ),H(θ),J (θ),K(θ),X ,S,Y) exists to
the condition of Lemma 5.

-2- A solution (P(θ),H(θ),J (θ),K(θ),X ,S,Y, E(θ)),
i.e. with uncertainties δ being set to zero, exists to the
condition of Theorem 1.

Proof: It is obvious that if the condition of Theorem 1
holds then the condition of Lemma 5 holds with the same
solution (P(θ),H(θ),J (θ),K(θ),X ,S,Y) of Theorem 1.

Let us next prove that -1- implies -2-. The condition
Υ∞(θ, θ+) > 0 holds for all (θ, θ+) ∈ Λθ, i.e. on a compact
set. Thus, there exists a sufficiently small positive scalar ε
such that for all (θ, θ+) ∈ Λθ

Υ∞(θ, θ+) > diag(εX TX , 0, 0, 0, 0, 0). (17)

Take E(θ) = εIn, the right-hand term of (17) can be fac-
torized either as

[
εX 0 0 0 0 0

]T
(εIn)−1

[
εX 0 0 0 0 0

]
or

as
[
εX 0 0 0 0 0

0 0 0 0 0 0

]T [
εIn 0

0 εIn

]−1 [
εX 0 0 0 0 0

0 0 0 0 0 0

]
. A Schur

complement applied to (17) with either these factorizations
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gives (10) for the two possible choices, i.e. (a) and (c), of
the pair (Υ(θ),Γ(θ)) in (13).

Similar discussion can be done for choices (b) and (d) of
the pair (Υ(θ),Γ(θ)) but starting from the existence of ε > 0
such that for all (θ, θ+) ∈ Λθ

Υ∞(θ, θ+) > diag(0, 0, 0, εYYT , 0, 0), (18)

and choosing E(θ) = εIn.
We next show an extended version of the method in [13]

for using E(θ, δ).
Lemma 6: For a given positive number γ∞, suppose

that there exist a parameter-dependent symmetric matrix
E(θ, δ) ∈ Sn, constant symmetric matrices Xc,Zc ∈ Sn, and
a parameter-dependent matrix K(θ + δ) ∈ R(n+nu)×(n+ny)

such that (19) holds.[
Υc
∞(θ, θ + δ) ∗[

Υc(θ, δ) 0 0
]

Γc(θ, δ)

]
> 0, ∀(θ, δ) ∈ Ωθ × Ωδ, (19)

where Υc
∞(θ, θ + δ) is defined in (20) using matrices in

(12) with X and Y being respectively replaced by Xc and
Zc, and (Υc(θ, δ),Γc(θ, δ)) is any pair chosen from (13)
with X and Y being respectively replaced by Xc and Zc.
Then, the controller K(θ + δ) whose state-space matrices
K̄(θ+ δ) are given in (14), in which matrices U and V are
respectively set as Xc − Z−1c and −Zc, makes the closed-
loop system Gcl(θ, θ+ δ) asymptotically stable and satisfies
(4) for all combinations of admissible trajectories θ ∈ Ωθ
and uncertainties δ ∈ Ωδ .

Υc
∞(θ, θ + δ)

=



[
Xc In
∗ Zc

]
∗ ∗ 0

ΥA(θ, θ + δ)

[
Xc In
∗ Zc

]
0 ΥB(θ, θ + δ)

ΥC(θ, θ + δ) 0 γ∞Inz
ΥD(θ, θ + δ)

0 ∗ ∗ γ∞Inw


(20)

We make the following assertion.
Theorem 3: Suppose that GSOF controllers can be de-

signed for G(θ) by using Theorem 1 and Lemma 6, and
that the optimally minimized values of γ∞ are respectively
obtained as γ∞ and γc∞. Then, γ∞ ≤ γc∞ holds.

Proof: Set the decision matrices in Theorem 1 as
follows: P(θ) = P(θ+) = X = Xc, H(θ) = H(θ+) =
Y = Zc, J (θ) = J (θ+) = ST = In, then one gets (19)
from (10). Thus, the inequality holds.

C. Algorithm for Solving PDBMIs

Note that inequality (10) is PDBMI and becomes PDLMI
with a priori defined E(θ, δ). Considering this property, we
show the following simple method for solving (10).

[Algorithm I (line search algorithm)]: Minimize γ∞ under
(10) with single line search parameter ε (E(θ, δ) = εIn).

This algorithm is very simple; however, the numerical
complexity may be huge for fine gridding of ε. In addition,
restricting E(θ, δ) to be εIn introduces conservatism. To
reduce conservatism, the following algorithm is proposed.

[Algorithm II (iterative algorithm)]:
Step 0 Set i = 0, γ∞,i = ∞, and E(θ, δ) = E0(θ, δ) =

ε0In with some given positive scalar ε0, e.g. 1.
Step i.1 Set i = i+1. Minimize γ∞ under (10) with fixed

Ei−1(θ, δ), and set Xi−1 be the optimum of X ((a)
or (c) is chosen for (13)) or Yi−1 be the optimum
of Y ((b) or (d) is chosen for (13)).

Step i.2 Minimize γ∞ under (10) with fixed Xi−1 or Yi−1,
and set Ei(θ, δ) and γ∞,i be the optima of E(θ, δ)
and γ∞, respectively.

Step i.3 If γ∞,i−1−γ∞,i is below some predefined thresh-
old ρ, then stop the iteration. Otherwise, return to
Step i.1.

Although this algorithm does not always converge to the
global optima, conservatism reduction is expected compared
to Algorithm I as the structural constraint for E(θ, δ) is
relaxed.

Those algorithms require solving PDLMIs. In contrast
to solving PDBMIs, one can easily solve them by using
Sum-Of-Squares techniques, e.g. [17] and references therein,
Slack Variable (SV) approach [18], etc.

Remark 4: Suppose that the state-space matrices of LPV
system (1) are affine with respect to parameters, and matrices
D12(θ) and D21(θ) are constant. Under these assumptions,
if parameter-dependent decision matrices in Theorem 1 are
also set to be affine with respect to θi and/or θi+δi, then the
inequality (10) becomes parametrically affine. Thus, we only
have to check the feasibility of the inequality at all vertices
of associated parameters with neither SOS relaxations nor
SV approaches being applied.

IV. NUMERICAL EXAMPLE

Let us consider a discrete-time LPV system with the
following state-space matrices:[
A(θ) B1(θ) B2

C1(θ) D11(θ) D12(θ)

C2 D21(θ)

]
=

µ
 1− θ 0 −2 + θ

2− θ −1 1− θ
−1 + θ 1− 3θ −θ

 0

1− θ
θ

1

0

0

1 1 1 0 0

1 0 0 1

 ,
where µ = 0.4525 and the scheduling parameter θ is
bounded as 0 ≤ θ ≤ 1. This example is borrowed from [19]
with a slight revision.

Hereafter, we set all parameter-dependent matrices to be
affine with respect to associated parameters among θ, θ + δ
and δ, then all inequalities are affine with respect to the
parameters and are solved at all vertices of the parameters.
(See Remark 4.)

The bound of the deviation from θ(k) to θ(k + 1),
i.e. |θ(k+1)−θ(k)|, is set as ∆. We consider 4 cases for ∆,
i.e. ∆ = 0, 0.01, 0.1 and 1.0, and 3 cases for the uncertainty
on scheduling parameter θ, i.e. |δ| ≤ ξ with ξ = 0, 0.01 and
0.2. When ξ is set as 0.5, we couldn’t design any stabilizing
controllers by using our method.

We design GSOF controllers using Theorem 1 with iter-
ative algorithm, Lemma 5, and Lemma 6 with line search
algorithm with YALMIP [20] and SeDuMi [21]. The results
are shown in Tables I ∼ III, where “∞” denotes that no

1942



TABLE I
OPTIMAL γ∞ VIA THEOREM 1 WITH ITERATIVE ALGORITHM

(13) ξ ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 1.0

(a)
0 2.485 2.486 2.503 2.642

0.01 2.490 2.491 2.511 2.907
0.2 5.293 5.377 6.241 ∞

(b)
0 2.484 2.486 2.503 2.617

0.01 2.488 2.490 2.509 2.907
0.2 5.298 5.381 6.241 ∞

(c)
0 2.486 2.486 2.503 2.762

0.01 2.489 2.490 2.510 2.829
0.2 4.325 4.371 4.887 20.347

(d)
0 2.484 2.486 2.503 2.617

0.01 2.487 2.489 2.509 2.824
0.2 4.325 4.367 4.863 19.652

TABLE II
OPTIMAL γ∞ VIA LEMMA 5

∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 1.0

2.484 2.486 2.503 2.616

TABLE III
OPTIMAL γ∞ VIA LEMMA 6 WITH LINE SEARCH ALGORITHM

ξ (a) (b) (c) (d)
0 2.616 2.617 2.616 2.617

0.01 3.148 3.720 3.053 3.485

0.2 ∞ ∞ ∞ ∞

stabilizing controllers can be designed. When Theorem 1
was applied, the threshold ρ for stopping criterion of the
iterations was set as 10−3. When Lemma 6 was applied, line
search for ε (E(θ, δ) = εIn) was conducted with 10 points
linearly gridded over a logarithmic scale in [10−10, 105]. For
reference, we designed a GSOF controller using PiDLFs via
the method in [2]. The optimized γ∞ is obtained as 2.616,
which is exactly the same as the results by Lemma 5 with
∆ = 1.0, and almost the same as the results by Lemma 6
with ξ = 0.

The values of γ∞ in Tables I for ξ = 0 are almost the
same as those in Table II, which indicates that Theorem 2
holds. The values of γ∞ in Tables I apart from the case with
∆ = 1.0 and ξ = 0 are all less than the corresponding ones
in Table III, which confirms that Theorem 3 holds. Thus, our
method produces GSOF controllers which are robust against
the uncertainties on scheduling parameters with conservatism
being reduced by using PDLFs compared to using PiDLFs.

V. CONCLUSIONS

This paper tackles the design problem of discrete-time
Gain-Scheduled Output-Feedback (GSOF) controllers for
discrete-time Linear Parameter-Varying (LPV) systems under
the condition that only inexact scheduling parameters are
available. We propose a design method for our problem
in terms of Parameter-Dependent Bilinear Matrix Inequal-
ities (PDBMIs) using Parameter-Dependent Lyapunov Func-
tions (PDLFs). We also show the following: (i) When the
uncertainties in the provided scheduling parameters vanish,
our method recovers the conventional method via PDLFs
assuming that exact scheduling parameters are available, and
(ii) our method encompasses the conventional method via

Parameter-inDependent Lyapunov Functions (PiDLFs) but
assuming that inexact scheduling parameters are available.
A simple numerical example illustrates those properties and
demonstrates the effectiveness of our method.
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