
  

  

Abstract— A decentralized approach is proposed to solve a 

cooperative multi-vehicle search and coverage problem in 

uncertain environments. Two different types of vehicle are used 

for search and coverage tasks. The search vehicles have a priori 

probability maps of targets in the environment and they update 

these maps based on the measurement of their sensors during 

the search mission. They use a limited look-ahead dynamic 

programming algorithm to find their own path individually 

while their objective is to maximize the amount of information 

gathered by the whole team. The task of service vehicles is to 

spread out over the environment to optimally cover the terrain. 

A locational optimization technique is used to assign Voronoi 

regions to vehicles and the stability of coverage system is 

guaranteed using LaSalle’s invariance principle. The service 

vehicles modify their configuration using the updated 

probability maps which are provided by the search vehicles. 

Simulations show that the proposed approach offers improved 

performance compared to conventional coverage methods. 

I. INTRODUCTION 

Deployment of a group of vehicles over an environment to 

carry out sensing, surveillance, data collection, or distributed 

servicing tasks is a principle problem in cooperative multi-

vehicles decision making and control. This topic has 

received considerable attention over the last decade because 

of technological advances and development of relatively 

inexpensive communication, computation, and sensing 

devices [1]-[4].  

The cooperative multi-vehicles search and coverage 

approach is useful for many applications involving 

distributed sensing and distributed actuation. This 

framework can be used by groups of vehicles to carry out 

tasks such as environmental monitoring and clean-up, or 

search and rescue [5]-[6]. For example, consider a team of 

Unmanned Aerial Vehicles (UAVs) charged with detecting 

and extinguishing multiple fires in a partially known 

environment like a forest. The fire detector UAVs with on-

board sensors search the environment to find the centre of 

fires. Then by using this information, the fire fighter UAVs 

aggregate in the perimeter of fires. Similarly, consider a 

group of water-borne vehicles which are in charge of 
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monitoring and cleaning up an oil spill. The monitoring 

vehicles find the areas where the spill is most severe, while 

cleaning vehicles distribute themselves over the spill and 

concentrate their efforts on those most severe areas, without 

neglecting the areas where the spill is not as severe. In 

general, any application in which a group of automated 

mobile agents is required to provide collective sensing and 

actuation over an environment can be considered as an  

example of this framework. 

In this paper, we consider the case in which some service 

vehicles deploy to cover an uncertain environment. They are 

expected to spread out over an environment while 

aggregating in areas of high service needs. Furthermore, the 

service vehicles are uncertain about the exact areas of 

service needs beforehand. In order to decrease the level of 

uncertainty, the environment is searched by some search 

vehicles which are equipped with sensors to detect the exact 

areas of service needs. As mission goes on, the service 

vehicles use the updated information of search vehicles to 

change their configuration and cover the environment more 

efficiently. 

In the recent years, search theory has paid attention to the 

problem of having a team of cooperative searchers. The 

problem of multi-vehicle search in an uncertain environment 

has been studied, and a number of approaches have been 

formulated [1], [4], [8]-[10]. Centralized decision making 

for a fleet of vehicles is not usually practical due to 

communication limits, robustness issues, and scalability. 

Therefore different methods for decentralized decision 

making are proposed in the literature [4], [8]-[12].  

Plenty of research works have been done on the coverage 

problem as one of the main applications of cooperative 

control. Normally, the agents move to an optimal 

configuration to minimize an objective function [13]. The 

approach is based on Voronoi tessellation and Lloyd 

algorithm. A decentralized control law is designed for 

mobile sensors to cover an area partitioned into Voronoi 

region, in the sense that continually driving the agents 

toward the centroids of their Voronoi cells [2], [14].  

Most of the prior works in the area of Voronoi-based 

coverage control assume the distribution of sensory 

information in the environment is required to be known a 

priori by all agents. However, the problem of the online 

learning of the distribution density function, and estimation 

of density function using neural networks while moving 

toward the optimal locations is addressed in [3], [15] 
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respectively. 

In the aforementioned studies, it is assumed that the 

density function is measurable and can be measured by each 

agent at its position. In our work, the density function is still 

unknown, but it is not directly measurable at each point. 

Inspired from many real applications, the distribution 

density function is assumed to be a function of position of 

some unknown targets which can be detected by appropriate 

sensors. In order to let service vehicles do their task more 

efficiently, the task of finding the targets is done by some 

search vehicles. This idea leads to the covering an uncertain 

environment more effective and improving the coverage 

performance. 

This paper is organized as follows. In the next section the 

problem is introduced. Section III deals with the search 

problem. The probability map updating, dynamic 

programming formulation and cooperative decision making 

method are discussed in this section. In section IV, the 

coverage problem, and derivation of distribution density 

function based on the probability map is presented. Then the 

control law for service vehicles is proposed and its stability 

is proved. Numerical simulation results show the 

effectiveness of the proposed approach in Section V. Finally, 

conclusion is provided in Section VI.  

 

II. PROBLEM STATEMENT 

This paper addresses the cooperative multi-vehicle search 

and coverage problem in an uncertain environment. 

Consider the scenario that some search vehicles are 

deployed to search and detect some targets in the terrain. 

There are also some service vehicles that their duty is to 

spread out over the environment to provide coverage. The 

search vehicles broadcast their information about the 

environment to the service vehicles. This information allows 

the service vehicles to find where in the environment they 

are most needed and to aggregate in those areas. 

For the search problem, the environment is discretized in 

cells that are described by a probability of target existence. 

There is an uncertainty region corresponding to each target. 

Each target is assumed to lie somewhere within its 

uncertainty region, but its exact position is unknown. Each 

search vehicle stores a probability map, which contains the 

probability of existence of all targets in any given cell. 

During the mission, sensors of search vehicles can detect 

targets in their footprints. The probability map is updated 

during the mission based on whether or not the target is 

detected by the sensors.  The objective of the cooperative 

search mission is to maximize the amount of information 

about the environment. 

The objective of service vehicles is to spread out over the 

area to cover the entire environment. However, in most 

cases, all points in the environment do not have the same 

level of importance. We can consider a density function 

which reflects a measure of relative importance of different 

points in the environment. The density of each point is a 

decreasing function of the distance between that point and 

position of targets. Therefore, closer points to targets have 

more value and more level of importance in the 

environment. Since our information about the position of 

targets improves during the search mission, the density 

function is changed and gets more accurate as mission goes 

on.  

III. SEARCH PROBLEM 

In the search problem, the state of the system consists of 

the search status and the vehicle status. The search vehicles 

can communicate with each other so they can form a 

comprehensive view of the state. The control input, comes 

from a set of possible assignments such as: turn left, turn 

right, or go straight.  

A. Updating the Probability Map 

An initial probability map of the environment, which is 

uncertain and incomplete, is created based on the a priori 

knowledge about the environment. During the mission, the 

probability map is updated based on whether or not the 

target is detected by the sensors. We define the events ��,�� : Target i is in the cell (�, 	) 
    ���   : Target i is detected in the region Ω 

where Ω is the collection of cells that the vehicle sensor 

covered during its last step. 

1) Target not detected 

When the sensor has not detected the target during the last 

step of the mission, the probability of existence of the target 

for each cell can be updated as follows, using the Bayes’ 

Rule ����,�� ����� � = ����,�� ������� |��,�� ������� �   

where an overbar on the events represents the complement 

of the events. The probability of true positive and false 

positive measurement of sensors are assumed to be  � ≜�(��� |��� ) and  ≜ �(��� |�!�� ) respectively. Therefore, the 

probability map can be updated as follows 

����,�� ����� � = "#
$����,�� �%������� � ,									(�, 	) ∈ Ω

����,�� �(!������ � ,							(�, 	) ∉ Ω *  
In the derivation of second equation, we used the fact that 

existence of target i in a cell outside of coverage region Ω 

means there is no target inside that region. The probability 

that target i is not detected in the last step of the 

mission,	�(���� ), can be calculated as follows 
 ������ � = ������ |��� ������ � + ������ |�!�� ����!�� � 

     			= �̅�∑ ���.,/� �∀(�,�)∈� � +  �̅1 − ∑ ���.,/� �∀(�,�)∈� �  

Therefore, if we define the total probability of finding target 

i in the collection of cells Ω as	3�� = ∑ ���.,/� �∀(�,�)∈� , the 

posterior probability of existence of target i in each cell can 

be computed as follows 
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����,�� ����� � = 4 ����,�� �%�%�	5�� 6(!(785�� ) 	,				(�, 	) ∈ Ω
����,�� �(!%�	5�� 6(!(785�� ) 	,					(�, 	) ∉ Ω*  

In the case of informative sensors, it is easy to show that 

when a target is not detected, the probability of existence of 

that target in the cells inside the footprint of sensor will be 

decreased, while the probability of the cells outside the 

sensor footprint will be increased. 

2) Target detected 

Using a similar procedure, when the sensor has detected 

the target, the posterior   probability of existence of target i 

in each cell can be computed as follows 

����,�� ���� � = 4 ����,�� �%%5�� 6((785�� ) 	 , (�, 	) ∈ Ω
����,�� �(!%5�� 6((785�� ) 	,				(�, 	) ∉ Ω*  

B.     Dynamic Programming Formulation 

The search vehicles must choose a control signal such that 

it results in the best possible paths, in the sense that the team 

of search vehicles finds maximum number of targets over 

the decision process planning horizon. To make the problem 

tractable and solvable in real-time, Dynamic Programming 

(DP) approach with a rolling horizon limited look-ahead 

policy can be utilized [1]. This rolling horizon 

approximation defines a horizon of time steps T, and then 

replaces the value of final gain with the gain at T-steps 

ahead. The optimal decisions can be found by taking the 

arguments of the maximization of the DP recursion. 

 The single step gain which is the gain that a 

search vehicle will receive at one time step 

(specifically at time step k) can be written as 
 9(�: , ;:, <:) = =:>:?:                      (1) 

 

where ?: 	is the search gain for the vehicle at time step @ 
which is the expected value of the number of targets 

detected during the mission from time step @		to time 

step	@ + 1, >: is the probability that the planning vehicle is 

operational at time	@, and =	(0 ≤ = < 1) is the time discount 

factor. The search gain 	?: can be calculated by adding up 

the probabilities of existence of targets in all cells that the 

vehicle covers them during its mission from time step	@ to 

time step		@ + 1, i.e. ∑ ∑ ���.,/� �∀(�,�)∈�D∀� .  

C. Cooperative Decision Making 

The objective of search mission is to search the terrain to 

gain as much information about the environment as possible. 

To achieve this goal, we use a decentralized method where 

each vehicle makes a decision about its next action 

individually. It is desired to obtain localized objective 

function for each vehicle that aligns with the global 

objective function. Therefore, when the search vehicles want 

to make decisions on their next actions, they must simply 

optimize their own objective functions which also optimize 

the global objective. 

Assume that each vehicle knows the probability of 

presence of other vehicles in each cell over the future look-

ahead horizon. Then the modified search gain of the vehicles 

can be defined as follows ?E: = ∑ ∑ �F�,�: 	����,�� ��∀(�,�)∈ΩGH∀� 																 (2)  

where Ω:I  is the collection of cells that the search vehicle j 

covers during its mission from time step	@ to time step	@ +1, and	F.,/:  is a discount factor which is always between zero 

and one. This discount factor is a decreasing function of the 

probability that other vehicles also decide to search the cell (�, 	) at the next k
th

 step. Now, we can modify the single 

step gain of vehicles in (1) by replacing ?: with ?E: .  
Evaluating the probability of presence of other vehicles 

requires each vehicle to expand the planning tree of every 

other vehicle which is impractical when the number of 

vehicles or the search horizon increases. To reduce the 

computational burden, we provide all search vehicles with a 

look-up table that contains the probability of presence of a 

search vehicle in each cell at the next k
th

 step, given its 

current position and heading, i.e.	K(�, 	, @|�L, 	L, ML), where (�, 	) is the position of vehicle at k-steps ahead and (�L, 	L , ML) is its current position and heading. This table is 

made off-line and can be produced analytically by using 

different estimation algorithms or simply through reasonable 

amount of simulations. It is obvious that since the search 

vehicles neglect the probability map of targets in the 

approximation of the next position of other vehicles, the 

method is not optimal, but it dramatically decreases the 

computational demand and processing time. This 

probability, then, can be used to define an appropriate 

function F.,/:  such that the single step gain decreases when 

the probability of presence of other vehicles increases. 

IV.  COVERAGE PROBLEM 

For the coverage purpose, the environment is denoted by N which is a convex polytope in ℝP including its interior. 

An arbitrary point in N is denoted as	Q, the position of the i
th

 

service vehicle is denoted as	K� , and the set of all service 

vehicle positions is denoted as	R = SK7, KP, … , KUV. The 

function W: N → ℝ6 is a distribution density function that 

defines a weight for each point. Thus, the higher the value of W(Q) the more attention the group has to pay to	Q.  

Let Y = SY7, YP, … , YUV be the Voronoi partition of	N, for 

which the service vehicles positions are the generator points. 

The Voronoi region,	Y�, of a given service vehicle is the 

region of points that are closer to that vehicle than to any 

other, that is Y� = ZQ ∈ N|	‖Q − K�‖ ≤ \Q − KI\, ∀] ≠ _`, _ ∈S1, … , aV, Moreover, two service vehicles	Y� and YI 	are 

(Voronoi) neighbors if		Y� ∩ YI ≠ 0. 

As a measure of the system performance, the coverage 

function is defined as:  ℋ(R) = ∑ d 7P ‖Q − K�‖Pe� W(Q)fQ																	(3)U�g7   

where it is assumed that the i
th

 service vehicle is responsible 

for its Voronoi region	Y�. Note that the function (3) measures 
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the ability of the coverage provided by the network of 

service vehicles in	N. Qualitatively, a low value of function 

(3) corresponds to a good configuration for coverage of the 

environment	N. Therefore, it is desired to minimize it. 

Each Voronoi region has mass	he�, and centroid 	ie� 
which are defined as: he� = d W(Q)fQe� ,										ie� = 7jk� d QW(Q)fQe� 						(4)  

respectively. Remarkably, one can show that lℋlm� = −d (Q − K�)W(Q)fQ = −he��ie� − K��e� 					(5)  

So the partial derivative of ℋ with respect to the position of 

the i
th

 service vehicle only depends on its own position and 

the position of its Voronoi neighbors. Clearly, the extremum 

points of ℋ are those in which every vehicle is at the 

centroid of its Voronoi region,		K� = ie�	, ∀_. The resulting 

partition of the environment is commonly called a 

Centroidal Voronoi Tessellation (CVT). More thorough 

discussions were given in [1]. 

A. Distribution Density Function 

The precise definition of the distribution density function W(Q) depends on the desired application. It defines a weight 

for each point in the environment which is a measure of 

relative importance of that point. In many applications, there 

are some critical points and the level of importance of each 

point in the terrain is inversely proportional to the distance 

between the point and the critical points. For instance, the 

critical points can be hotspots in a forest fire or the source of 

gushing in an oil spill. Let W(Q) = ∑ n(Q, Qo�)Up�g7  where Qo�  is 

the i
th

 critical point and ao is the number of critical points. 

Function n(Q, Qo�) is known a priori and it has a maximum 

at the critical point	Qo� . Therefore, knowing the exact location 

of critical points, we can find the weight of all points (W(Q)). 
In many cases, the location of critical points is not known 

precisely but it is known that they are lied somewhere inside 

some uncertainty regions.  Knowing the probability 

distribution of each critical point i in its uncertainty 

region,	�(Qo�), distribution density function W(Q) can be 

obtained as follows W(Q) = ∑ d n(Q, Qo�)Λ�Up�g7 �(Qo�)fQo� 																		(6)  

where Λ�  is the uncertainty region of the i
th

 critical point. 

Indeed, d n(Q, Qo�)r� �(Qo�)fQo�  is the expected value of 

function n(Q, Qo�) with respect to	Qo� . 
These critical points are in fact the targets of search 

problem. Since the search is done in a discrete environment, 

the probability of all points inside a cell is assumed to be 

equal. Therefore, (6) can be modified as follows W(Q) = ∑ ∑ ����,�� � d n(Q, Qo�)sp�∈(�,�)∀(�,�)∈Λ�Up�g7 fQo�   
B. Distributed Coverage Controller 

In this section the coverage control for a group of service 

vehicles is investigated. These service vehicles are assumed 

to fly at different levels. Each service vehicle is modeled as 

a double-integrator point mass moving on a two-

dimensional (2-D) plane as follows 

Kt� = ;�																																															(7)	
 

Equation of motion of a broad class of vehicles can be 

expressed by a double-integrator dynamic model. In 

addition, dynamics of many vehicles can be feedback 

linearized to double integrators. 

Consider that the position of the i
th

 service vehicle is 

denoted by		K�, and ie�	is the center of Voronoi that 

corresponds to the i
th

 service vehicle. We propose the 

following position control law for the i
th

 service vehicle: 

 ;� = @7�he��ie� − K�� − @P�Ku� 																									(8)	        

where @7� 	and @P� 	are the positive gains.  

Theorem: Consider a group of n service vehicles whose 

dynamic models are described in (7). Under control law (8), 

it is guaranteed that the whole system is asymptotically 

stable and the planar positions of service vehicles converge 

to a centroidal Voronoi configuration.    

Proof:  Consider the Lyapunov function candidate as: v = w7ℋ +∑ 7P Ku�PU�g7 																												(9)  

where w7 is the vector of controller gains, and the coverage 

performance ℋ is defined in (3). The candidate Lyapunov 

function v is bounded below by zero since ℋ is a sum of 

integrals of strictly positive functions. By substituting (5) 

and (7)  into time derivative of v along the trajectories of 

systems, and using control input (8), the time derivative of 

Lyapunov function can be obtained as follows 

vu = xy�@7�he��K� − ie��z + Kt�z� Ku�{U
�g7 = x�−@P� 	Ku�P�U

�g7 	(10) 

which is clearly non-positive. Let | be the set of all points in N where vu = 0. Due to the convexity of the region	N, one 

can conclude that each of the Voronoi centroids	ie� lies in 

the interior of the i
th

 Voronoi region and so in the interior of 

the region	N. So the vehicles move toward the interior of the 

region N and never leave it. Therefore, N is a positive 

invariant set for the trajectories of the closed loop system. 

Since this set is closed and bounded, one can make use of 

LaSalle’s invariance principle to conclude that K� =ie� , ∀_ ∈ 3 is the largest invariant set corresponding to the 

set of centroidal Voronoi configurations. Therefore, under 

control law (8), the closed-loop system is asymptotically 

stable and the planar positions of service vehicles converge 

to a set of centeroidal Voronoi configuration.  

V. SIMULATION RESULTS 

The proposed distributed search and coverage algorithm 

has been demonstrated via numerical simulations in 

MATLAB® environment.  

The environment used in this simulation is a 1	@} ×
1	@}		square. Since the search problem has discrete nature, 

the environment is divided to 10000		cells which make a 

100×100		square grid. There exists three targets known to be 

in the square areas as shown in Fig 1, but their exact 

positions are unknown. The a priori probability of existence 
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of these targets is uniformly distributed in their uncertainty 

region while their real positions are marked by the * marker. 

A group of three fixed-wing search UAVs and ten qua

rotors service UAVs are deployed to search and cover the 

environment. Each search UAV is equipped with a sensor 

that can detect targets in its footprint. All three search UAVs 

start their mission from the south west corner of the

while service UAVs start their mission from their individual 

bases which are located on the border of the environment as 

shown in Fig 1. For the purpose of collision avoidance, the 

UAVs fly in different levels. 

 At each decision time step, search UAVs must decide to

go straight, turn 15 degrees left or turn 15 degrees right. The 

speed of search UAVs assumed to be constant. In order to 

execute the simulation in a reasonable amount of time, we 

set the look-ahead horizon of the DP algorithm to 5 time 

steps. The model of service UAVs are assumed to be a 

double integrator and their control law is denoted in (

Probabilities of true positive and false positive

of sensors are set to be 0.9 and 0.1 respectively.

In this simulation, we used the following Gaussian dens

function  

n(Q, Qo�) = 1?√2� ��8�s8sp���P��
 

where ? = 70	}. The initial and final probability maps and 

their corresponding distribution density function

in Fig 2.  

 We consider the scenario in which, at the beginning, 

service vehicles spread over the terrain based on the 

imprecise initial distribution density function

derived from the a priori probability maps. 

configuration of planar position and the trajectories 

UAVs are shown in the left of Fig 3-a. The exact 

density function is also shown in that figure. This 

distribution is calculated based on the actual position of 

critical points (targets). The color intensity is proportional to

the value of distribution density function

Corresponding distribution density function

probability maps is depicted in the right of Fig

seen from this figure that the configuration of service UAVs 

in the environment is optimal according to available 

function. 

Next, search UAVs start their mission to explore the 

terrain. During the mission, they update the probability maps 

of targets and transmit these updated maps to the service 

vehicles on a regular basis. The position and trajectory

UAVs and the exact distribution density function

in the left of Fig 3-b, c, and d for three different time steps. 

For each figure, the position of service UAVs

corresponding distribution density function

most updated probability maps are shown in the right. It is 

worth to mention that as search UAVs explore the

environment, the probability maps get more precise, and 

therefore the current distribution density function

similar to the exact one. Especially in Fig. 3

functions in the left and right figures are almost the same.

s is uniformly distributed in their uncertainty 

region while their real positions are marked by the * marker.  

wing search UAVs and ten quad-

rotors service UAVs are deployed to search and cover the 

environment. Each search UAV is equipped with a sensor 

. All three search UAVs 

start their mission from the south west corner of the terrain, 

om their individual 

bases which are located on the border of the environment as 

on avoidance, the 

At each decision time step, search UAVs must decide to 

traight, turn 15 degrees left or turn 15 degrees right. The 

search UAVs assumed to be constant. In order to 

execute the simulation in a reasonable amount of time, we 

ahead horizon of the DP algorithm to 5 time 

ice UAVs are assumed to be a 

double integrator and their control law is denoted in (8). 

positive measurement 

of sensors are set to be 0.9 and 0.1 respectively. 

In this simulation, we used the following Gaussian density 

��� 

The initial and final probability maps and 

distribution density functions are shown 

We consider the scenario in which, at the beginning, 

vehicles spread over the terrain based on the 

function which is 

probability maps. The final 

the trajectories of all 

. The exact distribution 

is also shown in that figure. This 

distribution is calculated based on the actual position of 

The color intensity is proportional to 

distribution density function at each point. 

distribution density function based on the 

probability maps is depicted in the right of Fig 3-a. It can be 

seen from this figure that the configuration of service UAVs 

in the environment is optimal according to available density 

Next, search UAVs start their mission to explore the 

terrain. During the mission, they update the probability maps 

of targets and transmit these updated maps to the service 

and trajectory of all 

distribution density function are shown 

b, c, and d for three different time steps. 

For each figure, the position of service UAVs and the 

distribution density function based on the 

most updated probability maps are shown in the right. It is 

worth to mention that as search UAVs explore the 

environment, the probability maps get more precise, and 

distribution density function gets more 

exact one. Especially in Fig. 3-d, the density 

functions in the left and right figures are almost the same. As 

Fig. 1. The problem environment; the grey rectangles are the uncertainty 

regions of different targets and * denotes the actual position of 

Search UAVs and service UAVs are shown by

respectively. 

expected, deployment of search UAVs helps service vehicles 

to improve their performance to cover the most needed 

areas. The value of coverage function which is a measure of 

the system performance is reported in the table 1 for five 

different times, using the exact density function.

seen that the coverage performance is improved about %25 

by using this approach. 

In order to evaluate the average performance of this 

approach, different simulations have been done 25 times and 

the average number of detected targets and the value of 

coverage function are depicted in Fig 4. The uncertainty 

regions and actual positions of targets are randomly chosen 

for each repetition of simulation. As expected, the value of 

coverage function decreases and the coverage performance 

improves when the number of detected targets increases.

TABLE 1. THE COVERAGE FUNCTIONT	(s)	 0 120 160ℋ 2.4339 0.6771 0.6235

VI. CONCLUSION

In this paper, the problem of searching and covering an 

uncertain environment using multi vehicles is presented. A 

group of vehicles called service vehicle deploys to service

the points or areas where they are most needed in the 

environment based on the Voronoi tessellation. Since the 

high service areas are not known beforehand, we use a group

Fig. 2. The initial and final probability maps and their corresponding 

distribution density functions. Left figures: initial; right figures: 

figures: probability maps; bottom figures: density function
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 FOR DIFFERENT TIMES 

0 200 240 

0.6235 0.5948 0.5443 

ONCLUSION 

In this paper, the problem of searching and covering an 

uncertain environment using multi vehicles is presented. A 

group of vehicles called service vehicle deploys to service 

the points or areas where they are most needed in the 

sed on the Voronoi tessellation. Since the 

high service areas are not known beforehand, we use a group  

 

 
The initial and final probability maps and their corresponding 

. Left figures: initial; right figures: final; top 

figures: probability maps; bottom figures: density functions. 
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of search vehicles to explore the environment based on the 

DP method. This approach leads to the covering an uncertain 

environment more effective and improving the coverage 

performance. The proposed method has been successfully 

verified by numerical simulations. 
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