
Model Predictive Control of Remotely Operated Underwater Vehicles

A. Molero, R. Dunia, J. Cappelletto and G. Fernandez

Abstract— This paper describes the implementation of a
model predictive controller novel in an underwater robot
vehicle. This work also shows the development of an underwater
vehicle model that accounts for physical, hydrodynamic and
restorative effects, while the damping coefficients are neglected
in the prediction of the vehicle position and orientation.
The vehicle kinematic and dynamic models are linearized
and arranged into the state space form inside the predictive
controller. The model helps to determine the future position
and orientation of the vehicle to track a predefined underwater
trajectory in an optimal way. The results show that the
predictive controller offered significant benefits compared to
PID controllers by reducing the MSE and RMS by 40% and
76% respectively.

I. INTRODUCTION

A Remote Operated Vehicle (ROV) is a type of Unmanned

Underwater Vehicle (UUV) connected to the surface through

a cable or umbilical line. ROVs can perform important under-

water tasks that include assisting the offshore exploration and

production of oil and gas [1] and studying marine life and

collecting deep water samples [2]. Improving ROVs involves

not only researching their design, but also the reliability of

their operation and maneuverability [3].

The design, implementation and testing of the guidance

and control systems for ROVs have been addressed by several

researchers during the last decade [4],[5]. The design of

robust tracking controllers using proportional and derivative

action with nonlinear compensation has proved to be stable,

converging the tracking error exponentially [6]. Model-based

closed loop trajectory tracking control has been successfully

deployed in several ROVs in the United States and the

United Kingdom [7]. Soylu, Buckham and Podhorodesky

have proposed the use of Chattering-free sliding mode and

l∞ controllers for the trajectory control of ROVs to incor-

porate the thruster saturation limits as part of the controller

design [8].

The control techniques mentioned above have significantly

improved the operation reliability and task accuracy of ROVs

[5]. Nevertheless, these control algorithms do not consider

the effect of forecast perturbation and out-coming tracking

maneuvers that can be well predicted by a dynamic model.

Model Predictive Control (MPC) [9], [10] is a model-

based control algorithm that solves a finite horizon optimal
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control problem, using the current state of the system as

the initial state. The optimization results in a sequence of

optimal control actions where only the first control move is

implemented [11].

This paper demonstrates the development of a ROV non-

linear model and its use to apply MPC. Such a novel

application requires the use of reliable and fast real time

optimization algorithms inside the controller [12]. PoseiBoT,

the vehicle prototype depicted in figure 1, is used in this

application. It represents a second generation of ROVs de-

veloped for multivariable control applications.

Fig. 1. Remotely Operated Underwater Vehicle, PoseiBoT.

In MPC the accuracy of the ROV translation, speed and

trajectory tracking depends of the quality of the model. The

model presented and used in this work considers: physical

features (inertia and Coriolis), hydrodynamic effects (added

mass) and restorative forces (gravity and buoyancy).The iner-

tia tensor and center of gravity of PoseiBoT were determined

using 3D CAD software. PoseiBoT was approximated to

a prolate ellipsoid [15] to calculate the added mass terms.

Finally the damping effect is negligible for the ROV speed

range considered in this work [15]. A linearized state space

model was used in the implementation of MPC.

Predictive control with conditional penalties [12] in the

cost function is implemented to manage the position and

orientation of PoseiBoT. The performance of the controller

is determined by using the control signal (RMS) and the

tracking error (MSE). The simulation and successful im-

plementation of MPC in this novel application proves the

advantages of such a type of controller when compared to

feedback controllers.

This paper is organized as follows: Section II describes

the kinematic and dynamic modeling of the ROV. Predictive

control with penalty costs is introduced in Section III. Sec-

tion IV introduces the calculation of the model parameters.

Section V demonstrates the simulation and validation of the

ROV underwater performance using a Linear Segment with
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Parabolic Blend (LSPB) trajectory. Finally, conclusions and

future work are provided in Section VI.

II. MODELING OF UNDERWATER VEHICLES

Modeling permits to simulate the effect of the control

actions on the position and velocity of the ROV. The fi-

nal goal is to predict the optimal control action to apply

along a tracking trajectory that the vehicle is expected to

follow. These models are based on dragging and gravitational

physical laws in a three dimensional space, similar to those

obtained for flight vehicles. Nevertheless, traveling across a

dense fluid with appreciable buoyancy requires more engine

power and velocity than air traveling. Such conditions also

allow a better use of all six Degrees of Freedom (DOF) of

a rigid object.

Kinematic and dynamic laws provide the mathemati-

cal expressions necessary to relate the vector of forces

[X Y Z]T and torques [K M N ]T along the spatial

coordinates [x y z]T . This nomenclature is widely used

in the published literature of marine vehicles [15] and is

illustrated in figure 2. The position and velocity of the ROV

are defined by the position of a reference point in the ROV

rigid body and its translational movement, respectively. The

rotational movements are determined by the rotational angles

and their rate of change over time. The following sections

provide a detailed description of the first principle equations

considered for the kinematic and dynamic modeling of the

ROV.

Fig. 2. Body and earth fixed reference frames [16].

A. Kinematics

The motion of underwater vehicles in six DOF is described

from two coordinate frames as shown in figure 2. The moving

coordinate frame xbybzb is fixed to the vehicle and is called

Body-fixed Reference Frame (BRF). The subindex b denotes

the origin of the BRF, and is usually chosen to match the

center of gravity of the vehicle, CG.

It is suggested that for underwater vehicles, the BRF axis

coincide with the principal axes of inertia, usually named

as longitudinal, transverse and normal axis, and denoted by

xb, yb and zb, respectively. The earth fixed reference frame is

considered as the inertial frame. Based on this nomenclature,

the general movement of an underwater vehicle with six DOF

can be described by

• The position (η1) and orientation (η2) vectors, with

coordinates in the inertial reference system fixed on the

ground

η1 =
[
x y z

]T
, η2 =

[
φ θ ψ

]T
.

For convenience these vectors can be concatenated to

form,

η =
[
ηT1 ηT2

]T
.

Notice that η provides a snapshot of the rigid vehicle

with no reference of moving direction.

• The translation velocity (ν1) and angular velocity vec-

tors (ν2) in BRF,

ν1 =
[
u v w

]T
, ν2 =

[
p q r

]T
which are also concatenated to form

ν =
[
νT1 νT2

]T
and represents the velocity vector.

• The force (τ1) and torque (τ2) vectors

τ1 =
[
X Y Z

]T
, τ2 =

[
K M N

]T
which are also concatenated to form the control action

vector, τ
τ =

[
τT1 , τT2

]T
where τ is manipulated by the controller.

Finally, the vectors η and ν are related by the velocity

transformation across the reference system,

η̇ = J (η) ν (1)

where

J (η) =

[
J1 (η2) 0

0 J2 (η2)

]
(2)

and the matrices J1 (η2) , J2 (η2) represent the linear and

angular velocity transformations, respectively.

B. Dynamics

The following nonlinear dynamics governs the behavior

of the ROV,

Mν̇ + C (ν) ν +D (ν) ν + g (η) = τ, (3)

where

• M � is the inertia matrix, which includes the water

mass effect.

• C (ν) � is the Coriolis and centripetal matrix with the

water mass effects.

• D (ν) � is the hydrodynamic damping matrix.

• g (η) � is the vector of forces and moments due to

gravity and buoyancy (hydrostatic restoring forces).

The physical meaning of such matrices can be found in

[15], [16], where

M =MRB +MA, (4)

MRB and MA are the associated inertia matrices of

the ROV and added (water) mass of the PoseiBoT. Their
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calculation is based on the ROV symmetrical planes. In a

similar manner,

C (ν) = CRB (ν) + CA (ν) , (5)

where CRB (ν) and CA (ν) are the associated matrices of

the Coriolis-centripetal terms of the ROV and added mass,

respectively.

The hydrodynamic damping of the ROV can be highly

nonlinear and coupled. Nonetheless, an assumption of ve-

hicle independent movement is here considered to neglect

high damping coefficients. This assumption results in a

matrix structure D (ν) with linear and quadratic damping

coefficients in the main diagonal. The procedure for esti-

mating the theoretical and real values for the hydrodynamic

coefficients can be found in [17], [18], [19], [20], [21]. Under

low speed considerations and well controlled conditions, the

linear and quadratic damping hydrodynamic coefficients are

invariant [15] and can be also neglected. Restorative forces

and moments are directly described through the gravitational

and buoyancy forces.

III. MODEL PREDICTIVE CONTROL

The classic problem of the predictive control [9], [10], lays

in minimizing the cost function:

J = Jy + Ju + JΔu, (6)

where each term is explained as follows:

• Jy is the cost function associated with output errors,

based on the difference of the controlled variables

(outputs) and the reference variables (set-points) along

the prediction horizon NP [12], [9], [10]:

Jy (k| k) = 1

2

NP∑
i=1

‖ŷ (k + i| k)− ry (k + i| k)‖2
Q

(7)

where k is the current sample, ŷ (k + i| k) is the pre-

dicted output vector, ry (k + i| k) s the expected value

of the reference output/set-point evaluating i samples in

the future, and Q is a positive semi-definite matrix of

weights, that allows one to penalize the output errors

ry − ŷ. The notation ‖A‖2B means‖A‖2B = ATB A.

• Ju is the cost function associated to the input errors,

based on the differences between the action of the

control (inputs) and its reference/set-point along the

control horizon NC [12], [9], [10]:

Ju (k| k) = 1

2

NC∑
i=1

‖u (k + i| k)− ru (k + i| k)‖2N (8)

where u (k + i| k) is the input vector calculated and

evaluated i times in the future, ru (k + i| k) is the

expected input value evaluated i times in the future,

and N is a positive semi-definite matrix of weights,

that allows one to penalize the output errors ru − u.

The term Ju is many times ignored in the cost function

[9].

• JΔu is the cost function associated to the control

action, based on the change in the control action (input

movement) along the horizon control NC [12], [9], [10]:

JΔu (k| k) = 1

2

NC−1∑
i=0

‖Δu (k + i| k)‖2R (9)

where Δu (k + i| k) is the change in the control action

evaluated i times in the future and R is a positive

definite matrix of weights, that allows to penalize the

control action.

The minimization of the cost function J is subject to the

following linear constraints,

E

[
ΔU (k)

1

]
≤ 0 , F

[
U (k)
1

]
≤ 0

G

[
Y (k)
1

]
≤ 0 (10)

where U (k) =
[
û (k| k)T . . . û (k +NC − 1| k)T

]T
.

û (k| k) is equal to u (k). Similar expressions represent the

linear constraints for ΔU (k) and Y (k).
Solving the quadratic programming problem does not

guarantee a deterministic, real-time implementation of the

controller. Nevertheless, constraints based on barrier function

penalties are adjoined to the cost function and permit the

deterministic execution of the predictive controller given the

response delay required by the ROV (to the controller). This

is desirable for systems with fast dynamic responses, like

the one in study. The penalty associated to the constraint j
is given by the following expression [12]:

Bj (k) = B (lj , pj , tj , zj (k)) , (11)

where B is a scalar function with constant parameters l, p
and t while z is a time dependent variable. These parameters

and the scalar function are best described in [12]. The penalty

constraint term is represented by the sum of all possible

penalties defined in the control problem. Therefore, the cost

function J provided in equation (6) is adjusted to take into

account M penalty functions, which express all possible

constraints defined by the system in study,

JC = J +

M∑
j=1

Bj = Jy + Ju + JΔu +

M∑
j=1

Bj , (12)

where JC is the objective function with the adjoined

constraints and Bj is the accumulative penalty for the jth

constraint along the prediction horizon

Bj =

NP∑
j=1

Bj (k + i) . (13)

Quadratic-type penalties are used to simplify the calcula-

tion of Δu. The implementation of the predictive controller

requires the linearization of the model obtained in Section

II, which is omitted in this publication. The deployment of

the predictive controller is depicted in figure 3.
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Fig. 3. Predictive control scheme implemented in this application. The
main subsystems required for this application were: trajectory generator,
model linearizer and predictive controller.

IV. MODEL PARAMETERS

The modeling of PoseiBoT is characterized by each com-

ponent piece with its respective mass, the reference system

centered at the underwater vehicle’s CG, and a coherent

orientation. Figure 4 demonstrates a CAD representation of

PoseiBot, which provides a useful insight of each control

action effect. Table I provides the calculated distance from

the robot’s CG to the CG of the thrusters/motors,

Fig. 4. Three dimensional CAD made for PoseiBoT. Notice the location,
translation direction and thrusters enumeration.

TABLE I

DISTANCE [M] BETWEEN POSEIBOT CG AND THE DIFFERENT

THRUSTERS CG.

Thruster x (m) y (m) z (m)

T1 -0.0288 -0.3126 0.0016
T2 0.0197 0.3339 -0.0061
T3 -0.4673 0.0373 0.0579
T4 0.4621 -0.0381 0.0471

The inertia tensor for the reference system x,y,z is repre-

sented by the following matrix:

IG =

⎡
⎣ Ix −Ixy −Ixz

−Ixy Iy −Iyz
−Ixz −Iyz Iz

⎤
⎦ .

PoseiBoT’s mass is about 85 Kg. Because only four DOF

are used in this system instead of six (one per each thruster),

a mapping between the thrusters and the force-torque vector

τ is necessary. Such a mapping is defined by the constant

matrix L, where τ = LT and

T =
[
T1 T2 T3 T4

]T
.

The Appendix provides the numerical values obtained

for IG, L and the linearization of the under water vehicle

model when only translation in the x and z directions are

considered. The state vector for the linearized model is

defined in terms of deviation variables,

x =
[
u− u0 w − w0 x− x0 z − z0

]T
,

and Cl is the identity matrix.

y = x =
[
u− u0 w − w0 x− x0 z − z0

]T
,

where
(
x0, z0

)T
are given by the desired trajectories and(

u0, w0

)T
are calculated using equation (1). The vector(

u,w, x, z
)T

is measured by the ROV instrumentation.

Finally, the LTI model is given by

ẋ = Arx+Bru

y = Clx

where u = Δτ = τ − τ0, and the matrices Ar, Br are given

in the Appendix.
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Fig. 5. Trajectory profile in the z coordinate. The ROV trajectory overlaps
the desired trajectory in the simulation framework.

V. RESULTS

A LSPB was traced along the z axis to test the MPC

controller. No tests were performed along the x and y
axis because the current platform doesn’t provide instru-

mentation for such coordinates. Therefore, the variables

Pitch, Roll and Y aw were set to zero. Figure 5 illustrates

the reference-desired trajectory, MPC + PD trajectory and

PD performance trajectory in z. Figure 6 is obtained by

zooming into an area of interest, which demonstrates that

the system performs better with both a predictive controller

and a proportional-derivative controller than it does with a

proportional-derivative controller alone. Such a qualitative
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result is quantified in Table III, which shows the RMS values

required for the thrusters.
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Fig. 6. Detailed response from figure 5 for the time frame given by 14 ≤
t ≤ 34.

TABLE II

CONTROLLER PERFORMANCE COMPARISON BASED ON MSE VALUES

(SIMULATION).

Controller Trajectory MSE (m)

PD z 0.0066
MPC+PD z 0.0040

TABLE III

RMS VALUES OF THE REQUIRED THRUSTERS FORCES (SIMULATION)

Thruster
RMS value

using PD (N)
RMS value using

MPC+PD (N)

T3-T4 4.1139 0.9578

As observed in figures 5 and 6, and tables II and III the

amount of force required by the thrusters to perform the

desired trajectory using predictive control is significantly less

than it was when using the proportional-derivative control.

It was practically possible to reduce the tracking error by

40% with a 76% reduction in the stringent control signal.

This shows that the predictive control described in [12] offers

excellent performance.

The z position is estimated through the use of four

pressure sensors located on the underside of PoseiBoT. To

achieve better accuracy in the z measurement, a median

filter was used for the pressure sensors, and the intermediate

outputs of this filter were averaged. The depth sensor is

calibrated for a maximum pressure equal at 5 m (depth

maximum of the pool used).

The following factors were considered during testing:

• Dynamics of the submarine -fast- vs. controller -slow-

• Slow implementation of controllers

• Communication errors between the microprocessor and

pressure sensors, yielding poor estimate of the distance in z
(depth).
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Fig. 7. Trajectory profile in the z coordinate: desired and performed
trajectories followed by PoseiBoT using the MPC+PD and PD controllers.
The MPC controller acts promptly to follow the desired trajectory.

A PI controller was implemented to eliminate a small

inclination in the Pitch of the ROV. This controller was

implemented outside the control scheme described in figure

3 and its output was added to the thruster forces T3 and T4.

Figure 7 shows the results obtained by testing the model in

closed loop with a PD controller and using the predictive

controller developed in section III, in addition to the desired

trajectory. As it was noted, the MPC controller + PD offers

better results, because it follows the trajectory in the desired

time, which does not happen using the PD controller. This

proves that the predictive controller can follow trajectories

that are relatively fast, and also a better tracking.

Table IV shows the MSE for the trajectories performed

by the PoseiBoT. In this case the predictive controller offers

better performance compared to the PD along the defined

trajectory in z.

TABLE IV

MSE PERFORMANCE COMPARISON FOR THE DIFFERENT CONTROLLERS

(IMPLEMENTATION)

Controller MSE z (m) MSE Pitch (°)

PD 0.4869 0.1360
MPC+PD 0.0969 0.1367

Table V shows the RMS values of the forces required by

the thrusters T3 and T4, where the MPC + PD controller

achieved the desired trajectory. The PD did not perform at

the specified time, and it a less effective inclination control

with greater control effort. The results show that MPC can

reduce the tracking error (MSE) by 80% while reducing the

control action (RMS) by 13.91%.

TABLE V

RMS VALUES OF THE REQUIRED THRUSTERS FORCES. (VALIDATION)

Thruster
RMS using the
PD controller

RMS using the
MPC+ PD controller

T3 83.3950 72.3631
T4 88.2674 75.3926
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VI. CONCLUSIONS

This work demonstrates that MPC provides better tracking

with less control effort than classical feedback controllers.

The results show that MPC can reduce the tracking error

by 40% with 76% reduction in the control action compared

to a PD controller. The approximations made during the

vehicle model development provides an acceptable prediction

for the controller. Minor difference obtained between the

simulations and validation tests are due to added mass

coefficient approximations, an inacurate linearized model,

estimation of the elements configured in the CAD model

towards property calculations and the inertia tensor matrix

approximation. It is important to determine and validate

all the parameters of the model in a rigorous way, and to

test them accordingly. For this reason the use of system

identification techniques are expected to assist developing

future improvements of this application.

APPENDIX

The inertia tensor matrix is given by [kg.m2],

IG =

⎡
⎣ 2.835 −1.81× 10−3 −2.47× 10−1

−1.81× 10−3 8.122 −3.16× 10−3

−2.47× 10−1 −3.16× 10−3 6.117

⎤
⎦

while the mapping matrix between the forces-torques and the

trusters in given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 0 0
0 0 1 1
0 0 0.0373 −0.0381

0.0016 −0.0061 0.4673 −0.4621
0.3126 −0.3339 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrices obtained from the linearized model are given

by:

Ar =

[ −M−1
r [Cr +Dr] −M−1

r Gr

Jr 02×2

]

Br =

[
M−1

r

02×2

]

where

Mr =

[
m−Xu̇ 0

0 m− Zẇ

]

=

[
113.0572 0

0 136.5692

]

Cr = Gr = 02×2

Jr = −Dr = I2×2

Substitution into the system matrices Ar and Br gives

Ar =

⎡
⎢⎢⎣

0.0088 0 0 0
0 0.0073 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

Br =

⎡
⎢⎢⎣

0.0088 0
0 0.0073
0 0
0 0

⎤
⎥⎥⎦

which provides a controllable pair (Ar, Br).
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