
Average Consensus and Gossip Algorithms in Networks with Stochastic
Asymmetric Communications

Duarte Antunes, Daniel Silvestre, Carlos Silvestre

Abstract—We consider that a set of distributed agents desire
to reach consensus on the average of their initial state values,
while communicating with neighboring agents through a shared
medium. This communication medium allows only one agent
to transmit unidirectionally at a given time, which is true,
e.g., in wireless networks. We address scenarios where the
choice of agents that transmit and receive messages at each
transmission time follows a stochastic characterization, and we
model the topology of allowable transmissions with asymmetric
graphs. In particular, we consider: (i) randomized gossip
algorithms in wireless networks, where each agent becomes
active at randomly chosen times, transmitting its data to a single
neighbor; (ii) broadcast wireless networks, where each agent
transmits to all the other agents, and access to the network
occurs with the same probability for every node. We propose
a solution in terms of a linear distributed algorithm based on
a state augmentation technique, and prove that this solution
achieves average consensus in a stochastic sense, for the special
cases (i) and (ii). Expressions for absolute time convergence
rates at which average consensus is achieved are also given.

I. INTRODUCTION
The average consensus problem is a distributed control

problem in which a set of agents aims to agree on the
average of their initial state values by exchanging messages
dictated by a given communication topology. Several multi-
disciplinary applications of average consensus algorithms
have been reported in the literature. These include distributed
optimization [1], [2]; motion coordination tasks, such as
flocking, leader following [3], and rendezvous problems [4];
and resource allocation in computer networks [5].
An elegant theory is now available in the literature to solve

consensus problems using linear distributed algorithms, in
which each agent computes a weighted average between its
state value and the state values of the agents to which it
can communicate (see, e.g, [6], [7]). Many variations of this
problem have been addressed in the literature considering,
e.g., stochastic packet drops and link failures [8], [9], quan-
tized data transmissions [10], and time-varying communica-
tion connectivity [6].
On the other hand, randomized gossip algorithms have

been proposed, e.g., in [11], as a decentralized solution to
the average consensus problem that can deal with several
features such as the absence of a centralized entity, and
the possibly varying topology of the network caused by
agents that join and leave the network. The premise of gossip
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algorithms is that each agent communicates with no more
than one neighbor at each transmission time. In [11], it is
assumed that at each communication time, the sender and the
receiver set their state to the average of their current values,
which subsumes that the communication is bidirectional.
In the present work, we consider the average consensus

problem in scenarios where communication is unidirectional
at each time slot, i.e., at each transmission time a single agent
transmits data to one or several agents, but does not receive
data. Note that at a different time slot receiver and sender
agents may invert their roles, i.e., the word unidirectional
refers only to communication at a given transmission time.
For concreteness, we consider the two following scenarios:
(i) randomized gossip algorithms in wireless networks, where
each agent becomes active at randomly chosen times, trans-
mitting its data to a single neighbor; (ii) broadcast wireless
networks, where each agent transmits to all the other agents,
access to the network occurs with the same probability for
every agent, and the intervals between transmissions are
independent and identically distributed. As we shall see,
the unidirectionality communication constraint precludes in
general the existence of a linear distributed algorithm where
associated to each agent there is a single scalar state, updated
based on the state of the other agents, as in related problems
where the communication topology of the network is also
time-varying, but satisfies different assumptions (see [6], [7]).
We assume a symmetric communication topology, meaning
that if an agent a can communicate with an agent b then
the agent b can communicate with the agent a, although this
does not take place at the same transmission time, i.e., at
each transmission time the graphs modeling communications
are in general asymmetric. Note that this is typically the
case in wireless networks, and therefore this assumption is
reasonable to assume in both scenarios (i) and (ii).
The main contribution of the present paper, is to propose a

linear distributed algorithm using a state augmentation tech-
nique to achieve average consensus when communication
constraints impose time-varying unidirectional transmissions,
and to prove convergence in expectation to average consensus
for scenarios (i) and (ii). Moreover, the stochasticity of the
times between transmissions, in both gossip and broadcast
scenarios considered herein, render non-trivial the compu-
tation of the rates of convergence of the linear distributed
algorithms to consensus in absolute time, as opposed to
discrete-time, i.e., in terms of the number of transmissions.
We provide expressions for the absolute time rates in both
scenarios.
A recent work [12] addresses a similar problem, consid-
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ering gossip algorithms also with asynchronous communica-
tion between the agents. In [12], a method is proposed to
achieve average consensus, also using a state augmentation
technique, and this method is proved to converge almost
surely to consensus. The communication topologies consid-
ered in [12] encompass general directed graphs. Hence, [12]
does not need to assume a symmetric communication topol-
ogy , which is crucial to obtain our convergence results. Note,
however, that in the method proposed in [12], the state up-
dates depend in a nonlinear way of the current state, while the
algorithm that we propose is a linear distributed algorithm,
proving a solution that parallels existing algorithms for the
standard gossip [11] and linear distributed algorithms [7].
The remainder of the paper is organized as follows. We

provide some preliminaries and state the average consensus
problem in Section II. The proposed solution is given in
Section III and our main results are stated in Section IV.
Concluding remarks and directions for future work are given
in Section VI.
Notation : The transpose and the spectral radius of a matrix
A are denoted by Aᵀ and rσ(A), respectively. For vectors
ai, (a1, . . . , an) := [aᵀ1 . . . aᵀn]

ᵀ. We let 1n := [1 . . . 1]ᵀ

and 0n := [0 . . . 0]ᵀ indicate n-dimension vector of ones
and zeros, and In denotes the identity matrix of dimension
n . Dimensions are omitted when no confusion arises. The
vector ei denotes the canonical vector whose components
equal zero, except component i that equals one. The notation
diag([A1 . . . An]) indicates a block diagonal matrix with
blocks Ai. The Kronecker product is denoted by ⊗.

II. PRELIMINARIES AND PROBLEM STATEMENT
We consider that a set of m agents with scalar state

xi(t), 1 ≤ i ≤ m, desire to obtain the average of their initial
states, i.e.,

lim
t→∞

xi(t) = xav :=
1

m

m∑

i=1

xi(0). (1)

We refer to this problem as the average consensus problem.
The communication topology is modeled by a directed graph
G = (V,E), where V is the set of m agents, also denoted
by nodes, and E ⊆ V ×V is the set of communication links.
The node i can send a message to the node j, if (j, i) ∈ E.
If there exists at least one i ∈ V such that (i, i) ∈ E we say
that the graph has self-loops. A standing assumption will be
that G is strongly connected and aperiodic [7]. We associate
to the graph G an adjacency matrix N with entries

Nij :=

{
1, if (i, j) ∈ E

0, otherwise
. (2)

More generally, we can consider al weighted adjacency
matrix W associated with G with entries [W ]ij = wij ∈
R, if (i, j) ∈ E and [W ]ij = 0, otherwise.

A. Previous Work
A linear distributed algorithm is defined by the iteration

x(tk+1) = Wkx(tk), (3)

where {Wk, k ≥ 0} is a set of weighted adjacency matri-
ces associated with the graph G, and tk are the times at
which a transmission occurs, with t0 := 0. It is subsumed
throughout the paper that between transmission times, the
state variables do not change their values, i.e., e.g., ẋ(t) =
0, t ∈ [tk, tk+1). 1 If Wk = Wc is constant for every
k ≥ 0, where Wc is a stochastic matrix (Wc1 = 1), and
the graph is strongly connected and aperiodic, the linear
distributed algorithm (3) converges to consensus (cf. [7]),
meaning that limk→∞ xk = 1c, for a given constant c.
See [7] for conditions under which consensus is achieved
in the case where Wk are time-varying. Moreover, if all
the matrices {Wk, k ≥ 0} are doubly stochastic (Wk1 = 1
and 1ᵀWk = 1ᵀ) and (3) converges to consensus then (3)
converges to average consensus, i.e., (1) is achieved.
A randomized gossip algorithm is a special case of a linear

distributed algorithms. In gossip algorithms, each of the m
nodes has a clock which ticks at a rate 1 Poisson process, i.e.,
inter-tick times are rate 1 exponential distributed. It is clear
that at a given tick time, each node has the same probability
of being the node whose clock ticked. Such node, denoted
by i, chooses a random out-neighbor j (corresponding to
the non-zero entries of column i of the adjacency matrix
N ) according to a given distribution p ij , which denotes
the probability that node j ∈ Nout(i) is chosen, where
Nout(i) denotes the set of out-neighbors of node i and∑

j∈Nout(i)
pij = 1. Both nodes update their current state

values according to the averages of their values, while the
remaining nodes keep their state intact, i.e., if node i ticks
at time tk and chooses node ! to communicate with, then
x(tk+1) = Wkx(tk), where Wk = Mi",

Mi" := I − (ei − e")(ei − e")ᵀ

2

B. Stability and convergence rate

As in gossip algorithms, there are several works in the
literature (see, e.g., [8], [9], and references therein), where
the matricesWk in (3) are assumed to be stochastic matrices,
i.e., Prob[Wk = Mj ] = pj, for some matrices Mj , 1 ≤ j ≤
nM , and probabilities pj ,

∑nM

i=1 pj = 1. This may be due to
several sources of randomness, such as packet drops or link
failures. In such cases the definition of achieving average
consensus (cf. (1)) must be adapted to a stochastic setting.
Definition 1: We say that a linear distributed algorithm

taking the form (3), where {Wk, k ≥ 0} are stochastic
matrices:
(i) converges almost surely to average consensus if

lim
t→∞

xi(t) = xav :=
1

m

m∑

i=1

xi(0) , ∀i∈{1,...,m}

almost surely.

1We use this formulation, instead of simply considering discrete-time
variables zk = x(tk) indexed by the transmission number k, because we
are interested in determining convergence rates to consensus in absolute
time t.
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(ii) converges in expectation to average consensus if

lim
t→∞

E[xi(t)] = xav , ∀i∈{1,...,m}.

(iii) converges in second moment to average consensus if

lim
t→∞

E[(xi(t)− xav)
2] → 0 , ∀i∈{1,...,m}.

In applications it is typically easier to prove convergence
in expectation and in second moment, which are the two
stability definitions we shall focus in the present paper. It
is clear that convergence in second moment to consensus is
stronger than convergence in expectation and also stronger
than almost sure convergence. As argued in [11] it is
sometimes possible to prove that convergence in expectation
implies almost sure convergence. However, we make no such
assertion here.
Provided that consensus is achieved one may ask at

which rate is it achieved. In the present paper we shall
focus on determining the following rate corresponding to the
convergence rate to zero of the second moment of the error
between state and average consensus.
Definition 2: Suppose that the following condition holds

for some γ > 0 and c > 0 and for every x(0) ∈ Rm,

E[(xi(t)− xav)
2] ≤ ce−γt(xi(0)− xav)

2, ∀i ∈ {1, . . . ,m}.
(4)

Then, the second moment convergence rate is defined as

α:=sup{γ : (4) holds for some c>0 and every x(0)∈Rm}.

C. Problem Statement

We consider the following communication constraint, in-
spired by wireless communication constraints:
Communication Constraint 3: At each transmission time

tk, a single agent i sends data to one or various of its out-
neighbors, and cannot receive data from its in-neighbors.
For concreteness, we consider the two following scenarios.
Gossip algorithms: We adapt the set-up proposed in [11]

and described in Section II-A to accommodate the com-
munication constraint 3. In other words, we consider that
each of the m agents has a clock which ticks at a rate 1
Poisson process, randomly choosing one of its out-neighbors
according to the distribution pij associated with node i.
Node j can change its state (not necessary a scalar) at this
transmission time based on the data received from node i.
However, node i does not receive data at this transmission
time. We allow pii to be different from zero, meaning that
at some clock ticks, node i can update its state without
communicating to any other node.
Broadcast wireless networks: At each transmission time

an agent sends data to every other agent in the network. We
consider that nodes have the same probability of accessing
the networks at each transmission time and assume that the
times between transmissions are independent and identically
distributed as it is typical to consider in such networks
(cf. [13]).
The problems we are interested in are the following.

(i) In the setup of scenarios 1) and 2), design a linear
distributed algorithm that achieves average consensus
according to one of the stability notions of Definition 1.

(ii) Compute the second moment convergence rate to aver-
age consensus of this linear distributed algorithm.

Although we shall provide a method to obtain average
consensus that can be applied to any communication topol-
ogy described by (2), our stability results given for scenarios
1) and 2) assume that N is symmetric, which is reasonable
to assume in wireless networks, in which if a node a can
communicate to a node b then typically b can communicate
with a.
The next example illustrates why, in general, it is not

possible to achieve average consensus by using the standard
solution described in Section II-A, where each node updates
a scalar state according to the recursion (3).
Example 4: Suppose thatm = 2 and the adjacency matrix

is given by N =

[
1 1
1 1

]
. When node i ∈ {1, 2} transmits,

node j ∈ {1, 2}, j *= i, updates its information based on
the received state of xi and its own state xj , and node i
can only update its state based on its own state information.
Thus, a linear distributed algorithm using a single scalar state
per node, is described by (3), where Wk ∈ {Z1, Z2}, and
Z1 =

[
α1 α2

0 α3

]
, Z2 =

[
β1 0
β2 β3

]
, where we assume that

α2 *= 0, and β2 *= 0, since otherwise there would be no
communication between the nodes. It is clear thatWk cannot
therefore be doubly stochastic matrices.

!
In the next section, we propose a linear distributed algo-

rithm that solves this problem by using a state augmentation
technique.

III. PROPOSED SOLUTION

We augment the original state x(t) with an auxiliary vector
y(t) ∈ Rny , and define

z = (x, y). (5)

We consider a linear distributed algorithm taking the form

z(tk+1) = Ukz(tk), (6)

where z(0) = (x(0), y(0)), y(0) = 0. Intuitively, the purpose
of y it to assure that at each iteration the total state average
is kept constant, i.e., that
∑m

1 xi(tk+1)+
∑ny

1 yi(tk+1)

m+ ny
=

∑m
1 xi(tk)+

∑ny

1 yi(tk)

m+ ny
.

(7)
If we initialize y to zero and guarantee that y(t) goes to
zero then average consensus is achieved. More specifically,
the proposed algorithm can be described as follows.
Set ny = m. Each component yi ∈ R is kept in memory

and updated by node i along with its state xi. At time tk, a
given node i sends a message containing xi(tk) and yi(tk)
to one or more out-neighbors (corresponding to the non-zero
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entries of column i of the adjacency matrix N ). The node i
does not change its state, i.e.,

xi(tk+1) = xi(tk) (8)

and resets the auxiliary state to zero

yi(tk+1) = 0. (9)

Let nout(i, k) be the number of out-neighbors of node i to
which a message is sent at time tk. A node j receiving this
message, updates its state xj(t) according to

xj(tk+1) = (1− α)xj(tk) + αxi(tk) + βyj(tk) + γyi(tk)
(10)

and updates its variable yj(tk) according to

yj(tk+1) =
yi(tk)

nout(i, k)
+ yj(tk) + xj(tk)− xj(tk+1) (11)

so that the total state average is kept constant, i.e., (7) holds.
The average consensus problem in the two scenarios

considered in the present paper, i.e., gossip and broadcast
algorithms, can be modeled by a linear distributed algorithm
taking the form (6). In fact, the following matrices U k can
model the algorithm (8)-(11), when applied to the commu-
nication assumptions for the gossip and broadcast algorithm
described in Section II-C.
Gossip algorithm G: The matrices Uk are taken from the

set {Qij , 1 ≤ i, j ≤ m, i *= j}, where each Qij corresponds
to a transmission from node i to an out-neighbor node j, and
these matrices are described as follows. Let Λi := diag(ei)
and Ωij := I − (Λi + Λj). Then

Qij =

[
Aij Bij

Cij Dij

]
(12)

where
Aij := I − αΛj + αeje

ᵀ
i

Bij := βΛj + γeje
ᵀ
i

Cij := Λj(I −Aij)

Dij := Ωij + Λj(I + eje
ᵀ
i −Bij).

(13)

The matrices defined in (12) also model the case where a
node i picks itself when there is a clock tick (with probability
pii), in which case we arbitrate that the state update is
described by

xi(tk+1) = xi(tk) + (α+ β)yi(tk)

and
yi(tk+1) = (1− (α+ β))yi(tk),

for which (7) is met. The matrices Uk are by construction
independent and identically distributed, and satisfy

Prob[Uk = Qij ] =
1

m
pij ,

( 1m is the probability that node i is the one whose clock ticks
at tk and pij the probability that i picks its out-neighbor node
j). The times between transmissions tk+1 − tk are indepen-
dent and identically distributed with exponential distribution
with mean 1

m (since m nodes can trigger according to a rate
1 Poisson process).

Broadcast Algorithm B: The matrices Uk are taken from
the set {Ri, 1 ≤ i ≤ m}, where each Ri corresponds to
a transmission from node i to every other node. Let Λ i :=
diag(ei), Ωi = (I − Λi). Then

Ri =

[
Ai Bi

Ci Di

]
(14)

Ai = (1− α)I + α1meᵀi
Bi = Ωi(βI + γ1meᵀi )
Ci = Ωi(I −Ai)

Di = Ωi(I +
1meᵀi
m− 1

−Bi).

(15)

The matrices Uk are independent and identically distributed
due to our assumption that nodes access the network with
the same probability, i.e.

Prob[Uk = Ri] =
1

m
.

The times between transmissions tk+1 − tk are independent
and identically distributed with an arbitrary distribution im-
posed by the network protocol.
Hereafter, we denote by gossip algorithm G the linear

distributed algorithm modeled by (6) and (12), and denote
by broadcast algorithm B the linear distributed algorithm
modeled by (6) and (14). Note that, by construction, for both
gossip and broadcast algorithms the matrices {Uk, k ≥ 0}
are such that

[
1ᵀm 1ᵀm

]
Uk =

[
1ᵀm 1ᵀm

]
, (16)

which means that the total average is preserved at each
iteration, i.e., 1ᵀ2mz(tk+1) = 1ᵀ2mz(tk), and

Uk

[
1m
0m

]
=

[
1m
0m

]
(17)

which means that if consensus is achieved at iteration k, i.e.,
if x(tk) = c1m and y(tk) = 0m, the state remains unchanged
at iteration k + 1, i.e., x(tk+1) = c1m and y(tk+1) = 0m.
Example 5: In the same setup of Example 4 and for α =

1/2, β = 1/2, and γ = 1/2, the matrices (12), for the
proposed gossip algorithm are given by

Q12 =





1 0 0 0
1/2 1/2 1/2 1/2
0 0 0 0

−1/2 1/2 1/2 1/2



 , Q21 =





1/2 1/2 1/2 1/2
0 1 0 0

1/2 −1/2 1/2 1/2
0 0 0 0





and the matrices (14) for the broadcast algorithm are given by
R1 = Q12 andR2 = Q21. Suppose that node i transmits with
probability p1 = 1/2 and node 2 transmits with probability
p2 = 1/2. We will show in the next section (cf. Theorem 6)
that the necessary and sufficient conditions for convergence
in expectation and for convergence in variance are

r1 := rσ(p1A1 + p2A1 −
1

2

[
12
02

] [
1ᵀ2 1ᵀ2

]
) < 1,

r2 := rσ(p1A1 ⊗A1 + p2A2 ⊗A2 − S) < 1,

S := 1
4 (

[
12
02

]
⊗
[
12
02

]
)(
[
1ᵀ2 1ᵀ2

]
⊗
[
1ᵀ2 1ᵀ2)

]
), respectively,

where (A1, A2) should be replaced by (Q12, Q21) for the
gossip algorithm G and (R1, R2) for the broadcast algorithm
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B. Computing r1 and r2 yields, r1 = 0.5 and r2 = 0.542
and therefore we conclude that consensus is achieved in ex-
pectation and second moment (and a fortiori almost surely),
which means that this linear distributed algorithm meets the
desired requirement of the problem of Example 4, i.e., it
achieves average consensus.

IV. MAIN RESULTS
A. Stability
We start by presenting a general result for the converge

analysis of the stochastic linear distributed algorithm (6).
Theorem 6: Consider a linear distributed algorithm (6)

where {Uk, k ≥ 0} are characterized by (16), (17), and
are randomly chosen from a set M := {Bi, 1 ≤ i ≤ np},
according to

Prob[Uk = Bi] = pi,

np∑

i=1

pi = 1. (18)

Then, the linear distributed algorithm converges in expecta-
tion to average consensus if and only if

rσ(

np∑

i=1

piBi −
1

m

[
1m
0m

] [
1ᵀm 1ᵀm)

]
) < 1 (19)

and converges in second moment to average consensus if and
only if

rσ(

np∑

i=1

piBi ⊗Bi − S) < 1, (20)

where

S :=
1

m2
(

[
1m
0m

]
⊗
[
1m
0m

]
)(
[
1ᵀm 1ᵀm

]
⊗
[
1ᵀm 1ᵀm)

]
). (21)

!
Note that both gossip and broadcast algorithm proposed

in Section III comply with the framework of Theorem 6, and
therefore we can use the conditions (19) and (20) to assert
convergence to average consensus of these algorithms.
The next Theorem establishes that the gossip algorithm

G converges in expectation to consensus when the commu-
nication topology is symmetric. The proof is postponed to
Subsection IV-C.
Theorem 7: For a graph with a symmetric adjacency ma-

trix N , described by (2), there always exists a symmetric
doubly stochastic weighted adjacency matrix P (possibly
containing self-loops). Moreover, if we set p ij = [P ]ij ,
α = β = γ = 1/2, the gossip algorithm G converges in
expectation to consensus.

!
Note that the probabilities pij can be any as long as

P : [P ]ij = pij is a symmetric matrix. An interesting
direction for future work is to investigate how to choose the
pij for example, to optimize the convergence rate to average
consensus, in a similar way to the distributed algorithm
proposed in [11].
For broadcast wireless networks, we have the following

result:

Theorem 8: The broadcast algorithm G converges in ex-
pectation to consensus, when α = β = γ = 1/2.

!

B. Convergence rates
The following theorem provides the second moment con-

vergence rate according to Definition 2 of the general
stochastic iteration (6), (18) when the time intervals tk+1−tk
are independent and identically distributed.
Theorem 9: Consider the stochastic iteration (6), (18) and

suppose that the intervals tk+1 − tk are independent and
identically distributed following a distribution ρ. Then, pro-
vided that the linear algorithm converges in second moment
to average consensus, the second moment convergence rate
is given by the unique α that satisfies

∫ ∞

0
eαtρ(dt) =

1

r1
(22)

where r1 := rσ(
∑np

i=1 piBi ⊗Bi − S).
!

The proof uses similar arguments to the ones provided for
results for a class of system known as impulsive renewal
systems [13], and is omitted due to space limitations.
It is possible to prove that r1 is the convergence rate at

which the discrete variable zk := x(tk) converges in second
moment to consensus, i.e., (zk

i − xav) ≤ rk1 (z
0
i − xav)i, for

every component i of z. Thus, (22) relates the convergence
rate in absolute-time t with the convergence rate in discrete-
time k which denotes the number of transmissions.
If we specialize the Theorem 9 to the two scenarios that

we consider in the present paper, we obtain the following
results.
Corollary 10: For the gossip algorithm G the second

moment convergence rate is given by

α =
1 + r1
m

where r1 = rσ(
∑m

i=1

∑
j∈Nout(i)

pij

m Qij ⊗Qij − S).
!

Corollary 11: For the broadcast algorithm B, the second
moment convergence rate is given by the unique α > 0 such
that ∫ ∞

0
eαtµ(dt) =

1

r1

where r1 = rσ(
1
m

∑m
i=1 Ri ⊗Ri − S).

!

C. Proof of Theorem 7
Let R := E[Uk] =

∑m
i=1

∑
j∈Nout(i)

pijQij . Since
E[z(tk+1)] = RE[z(tk)], we have that

E[z(tk+1)] = E[
[
x(tk+1)
y(tk+1)

]
] = Rkz(0) = Rk

[
x(0)
0

]

and therefore it suffices to prove that

lim
k→∞

Rk =
1

m

[
1m
0m

] [
1ᵀm 1ᵀm

]
(23)
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from which we conclude that limk→∞ E[x(tk+1)] = 1mxav,
xav = 1ᵀmx(0). From (12), (13) we notice that we can

partition R into blocks R =

[
R1 R2

R3 R4

]
where each block is

a linear combination of the following three matrices

X =
m∑

i=1

∑

j∈Nout(i)

pijΛj, Y =
m∑

i=1

∑

j∈Nout(i)

pijΛi,

Z =
m∑

i=1

∑

j∈Nout(i)

pijeje
ᵀ
i .

(24)

It is easy to see that Z = P ᵀ = P (since we assume that P
is symmetric) and Y = I . Moreover,

X =
m∑

j=1

∑

i∈Nin(j)

pijΛj =
m∑

j=1

Λj = I,

where we used the fact that
∑

i∈Nin(j)
pij = 1, due to the key

assumption that P : Pij = pij is a doubly stochastic matrix.
Therefore, each Ri is a linear combination of the matrices
P and I and we can write

R = P1 ⊗ Im + P2 ⊗ P.

where for α = β = γ = 1
2 ,

P1 =

[
1− 1

2m
1
2m

1
2m 1− 3

2m

]
, P2 =

[
1

2m
1
2m

− 1
2m

1
2m

]
. (25)

We denote an eigenvalue of a matrix A by λ i(A) and the
set of eigenvalues by {λi(A)}. Let PS(δ) := P1+δP2. Then
one can obtain that

λi(PS(δ)) = 1 +
δ − 2±

√
2− δ2

2m
, i ∈ {1, 2}. (26)

Let wPi be the two eigenvector of PS(δ), and vPj denote the
m eigenvectors of P (note that P is symmetric and therefore
it has m eigenvectors). Then R has 2m eigenvectors wPi ⊗
vPj , since one can show that

R(wPi ⊗ vPj) = λ"(R)wPi ⊗ vPj

where the set of eigenvalues of R is given by

{λ"(R), 1 ≤ ! ≤ 2m} = {λi(PS(ηj)) : ηj ∈ {λj(P )},
1 ≤ i ≤ 2, 1 ≤ j ≤ m}

(27)
Since P is symmetric and doubly stochastic, and it is a
weighted adjacency matrix of a strongly connected and
aperiodic graph, the eigenvalues of P are real, P has a simple
eigenvalue at 1, and all the remaining eigenvalues belong to
the set (−1, 1). Corresponding to the simple eigenvalue 1 of
P , R has two eigenvalues at {λi(P1+P2)} = {1, 1−1/m}.
Corresponding to the eigenvalues of P that belong to the set
(−1, 1), the eigenvalues of R are inside the unit circle. This
can be shown by noticing that (26) is a strictly increasing
function when −1 < δ < 1 for each i and, using this
fact, it is easy to conclude that rσ(P1 + δP2) < 1 for
−1 < δ < 1. Thus R has a single eigenvalue at 1, all
the remaining eigenvalues are inside the unit disk, and the

vectors vR :=

[
1m
0m

]
and wR :=

[
1ᵀm 1ᵀm

]
are left and

right eigenvalues of R, respectively, associated with this
eigenvalue 1. This implies that limk→∞ Rk = 1

wRvR
vRwR,

which is (23).
"

V. CONCLUSIONS AND FUTURE WORK

We addressed average consensus and randomized gossip
algorithms with the constraint that only one node transmits
data at a given time. Our main result is to provide a linear
distributed gossip algorithm, that provably converges to con-
sensus in expectation. Directions for future work include:
(i) extending the results to the stronger stability notion
of convergence in second moment; (ii) considering general
digraphs, i.e., not requiring the communication topology to
be symmetric; (iii) optimizing the probability parameters
of the gossip algorithms with respect to some quantity of
interest as the speed of convergence to consensus.
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