
 

  
Abstract — An application-motivated system class - 

nonlinearly perturbed regular linear systems (NPRLS) – is 
considered, and the response of the latter to periodic inputs is 
characterized. A recently proposed robust control scheme for 
tracking bandlimited periodic signals by uncertain 
exponentially stable regular linear systems (RLS) is then 
applied to an uncertain system belonging to the NPRLS class, 
whose linearization is an exponentially stable RLS, to reject 
internally generated sinusoids from the system output. 
Assuming the uncertain NPRLS to be unknown, but its gain at 
the frequency of interest known and bounded away from zero, 
and using the aforementioned characterization, the stability 
and disturbance rejection of the resulting topology are shown 
to be guaranteed for sufficiently small nonlinearity.  

     
Index Terms—Internal model principle, regular linear 

systems, nonlinear perturbation, periodic response.  

I. INTRODUCTION 

NTERNAL model principle [1] has been used to track and 
reject periodic signals in finite dimensional linear [2]-[6] 

and nonlinear systems [7]-[9] when the plant model is 
known. When the plant model is unknown, this principle has 
been applied using only the transfer function (TF) gains at 
the frequencies of interest, to track bandlimited periodic 
signals in case of stable linear finite [10], linear infinite [11]-
[13] and nonlinear finite [14] dimensional systems. The 
control schemes in [13] and [14] are similar and are 
motivated by a motion distortion problem in steel casting 
mold oscillation systems that include a servo-beam structure. 
This application can be characterized as a sinusoidally 
excited linear infinite dimensional structure with a small 
finite dimensional nonlinear perturbation causing the 
generation of unwanted harmonics which excite a structural 
resonance. The control objective is to eliminate the harmonic 
at the resonance frequency from the output. In the absence of 
the nonlinear perturbation, [13] addressed the tracking of 
bandlimited periodic signals by exponentially stable regular 
linear systems (RLS), a class which encompasses a large 
number of infinite-dimensional physical models. In the 
presence of nonlinear perturbation [14] addresses rejection 
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of unwanted harmonics only in a stable finite dimensional 
linear system.  

   The present work considers the class of systems - 
nonlinearly perturbed exponentially stable regular linear 
system (NPRLS) – that directly matches the phenomenology 
of the application of interest, and extends the applicability of 
the control scheme in [13] to this class of systems. Namely, 
definition of this system class is given and conditions for 
closed loop stability and rejection of unwanted harmonics 
for systems in this class are rigorously ascertained. This is 
accomplished by first considering the closed loop without 
the nonlinear perturbation and then analyzing the effect of 
the perturbation on stability and performance using a 
detailed characterization of the response of NPRLS to 
periodic excitation.  

II. NOTATION AND BACKGROUND ON RLS AND NPRLS 
The paper uses the following notation: 

( ),X YL  - Space of bounded linear operators from X  to 

Y . Let ( ) ( ),X X X=L L , 

[ )( )2 , ,L t T X  / [ )( ), ,L t T X∞  / [ )( )2 0, ,locL X∞ - Space of 

square integrable / essentially bounded functions from [ ),t T  
to X  with the usual norm / Space of locally square 
integrable functions from [ )0,∞  to X , 

( )D A  / ( )Aρ  - Domain / resolvent set of an operator A , 

Xi  - Norm in space X , 

/R C  - Space of real/complex numbers, 

[ )2 0,L Tx  - Same as ( ) [ )( )2 0, ,L T X
x t , when X is clear, 

,Xx ∞  - Same as ( ) [ )( )0, ,L X
x t ∞ ∞

 and  

[ )( )0, ,BC X∞  - Banach space of continuous bounded 

functions from [ )0,∞  to X  with  ,X ∞i  as norm. 

Regular Linear Systems (RLS). The following definitions 
and background on RLS can be found in [15]-[17] and 
references therein and are reproduced below to enhance the 
clarity of presentation. Let U , X  and  Y  be Hilbert spaces 
and [ )( )2 0, ,L UΩ = ∞  and [ )( )2 0, ,L YΓ = ∞  be input and 
output spaces, respectively. An abstract linear system on Ω , 
X  and Γ  is a quadruple ( ), , ,Σ = ΦT L F  where ( ) 0t t≥=T T  
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is a 0C -semigroup on X , ( ) 0t t≥Φ = Φ , ( ) 0t t≥=L L , 

( ) 0t t≥=F F  are families of bounded linear operators from Ω  
to X  (input to state), X  to Γ  (initial state to output) and 
Ω  to Γ  (input to output), respectively. The operators Φ , 
L and F  can be extended naturally to the Frechet space of 
inputs [ )( )2 0, ,locL UΩ = ∞  and outputs [ )( )2 0, ,locL YΓ = ∞ , 

with the extensions denoted by ∞Φ, ∞L  and ∞F , 
respectively.  

Let A  be the infinitesimal generator of T . The Hilbert 
spaces 1X  and 1X −  are defined as follows: 1X  is ( )D A  

with the norm ( )
1X X

x I A xβ= − , where ( )Aβ ρ∈  is 

fixed and 1X −  is the completion of X  with respect to the 

norm ( )
1

1
X X

x I A xβ
−

−= − . The semigroup T  can be 

extended to a semigroup on 1X −  isomorphic to T  and will 
be denoted by the same symbol. For any abstract linear 
system, there exists an unique ( )1,B U X −∈L  called the 

control operator such that ( )
0

t

t tu Bu dτ τ τ−Φ = ∫T , for all 

inputs u ∈ Ω  and all 0t ≥ . Then, for any initial state 0x  the 
state x  of Σ  at time 0t ≥  is expressed as  

 ( ) ( )0 0
0

t

t t t tx t x u x Bu dτ τ τ−= + Φ = + ∫T T T .         (1) 

The state [ ): 0,x X∞ → , as defined, is a continuous 

function. In general, ( )1
ˆ ,B U X −∈L  is called a T -

admissible control operator if the map 

( ) ( )
0

ˆ  ,
t

t Bu d Xτ τ τ− ∈ Ω∫T L  for each 0t ≥ . 

Associated with every abstract linear system is a unique 
( )1,C X Y∈L  called the observation operator such that 

1x X∀ ∈ , ( )( ) tx t C x∞ =L T . ∞L  is completely determined 
by this equation due to the density of 1X  in X . The Λ -
extension of C  is defined by 

( ) 1' lim 'C x C I A x
λ

λ λ −
Λ →∞

= −  

with λ  real and for all 'x  in the domain  
( ) { }' : the limit above existsD C x XΛ = ∈ . 

The input-to-output operator of any abstract linear system 
can be described by a TF which is an operator valued 
analytic function defined and bounded on some right half 
complex plane. Let G denote the TF of Σ . G is called 
regular if the following limit exists v U∀ ∈ , 

( )lim ,   realDv G v
λ

λ λ
→∞

= . 

Then ( ),D U Y∈L  is called the feedthrough operator of G. 

In this case, the state ( )x t  given in (1) and the output of Σ , 

0y x u∞ ∞= +L F , where 0x  is the initial state and u ∈ Ω  is 
the input, satisfy pointwise almost everywhere (a.e.) in time, 
the equation  
                           ( ) ( ) ( )y t C x t Du tΛ= + .                        (2) 

If G is regular, Σ  is called RLS. ( ), , ,A B C D  as introduced 
are the generating operators (GOs) of Σ . A RLS Σ  is called 
exponentially stable if the associated semigroup T  satisfies 

( )
at

t X Me−≤T L , 0t∀ ≥ , for some 1M ≥  and 0a > .  

In the rest of the paper, an exponentially stable RLS 
( ), , ,PΣ = ΦT L F , with GOs ( ), , ,P P P PA B C D  and TF 

( )PG s  is considered.  
Nonlinearly Perturbed Regular Linear Systems 

(NPRLS). The NPRLS, ,P NΣ , corresponding to the above 
RLS PΣ , is defined as being represented by the differential 
equation 

  ( ) ( ) 0

,

,      0P P P P P P

P P P P

x A x B u g x x x
y C x D u

ε
Λ

= + + =
= +

     (3) 

where ,PC Λ  is the Λ -extension of PC , 0ε >  is a small 
constant, g  is a nonlinear term, and (3) satisfies the 
following: : 
Assumption 1: T , the 0C -semigroup on X  generated by 

PA , is exponentially stable and satisfies 

( )t X
atMe−<T L with 0a >  and 1M ≥ . 

Assumption 2: ( ) :g x X X→  satisfies the Lipschitz 

condition that, for any bounded domain D X⊂ , ( ) :L D∃  

( ) ( ) ( ) XX
g x g y L D x y− < − , ∀ ,x y D∈ and ( )0 0g = . 

Assumption 3: ( ), , ,0P X PA I C  are the GOs of an RLS 

( ), , ,g gΦT L F  with state X  and input and output taking 

values in X  and Y  respectively. XI  is the identity operator 
on X . 
Under Assumptions 1-2, Lemma 3 shows that for a given 

[ )( )0, ,u L U∞∈ ∞  and 0x X∈ , :ε∃ ε ε∀ < , the state 
equation in (3) has a unique continuous solution, bounded in 
X , and satisfying a variation of parameters formula (like  

(1)). The existence proof is along the lines of the proof in 
chapter 6 of [18] and is sketched here since, though 

( )1,PB U X −∈L  it may not belong to ( ),U XL . 
Assumption 3 enables treating the nonlinearity as an input 
and renders the output equation in (3) meaningful.  

III. PROBLEM STATEMENT 
Consider an NPRLS satisfying Assumptions 1-3 that tracks 

the reference sinusoid of frequency ω  satisfactorily, but for 
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the presence of an internally generated small magnitude 
higher harmonic at rω , an r-integer multiple of ω .  
Objective. Design a control scheme that eliminates the 
harmonic at rω  from the NPRLS output without affecting 
system stability and tracking performance at frequency ω .  
This problem statement is motivated by an industrial 
application represented in Fig. 1, where an actuator modeled 
as a linear finite dimensional system perturbed by a smooth 
nonlinearity (Section V.A [14]) is coupled to an infinite 
dimensional beam. In this application, the input is a sinusoid 
of frequency ω  and the output contains small amplitude 
higher harmonics, usually negligible, due to the nonlinearity. 
But, though small, the sinusoid at rω  in the output is 
particularly undesirable and must be eliminated since rω  is 
a resonance frequency of the beam. This was accomplished 
in [14] assuming a finite dimensional plant. Given the 
infinite dimensional dynamics of the beam, in the present 
work the plant model is more appropriately assumed to be a 
NPRLS ,P NΣ  with U Y= = R . 
  

 
 

Fig. 1. Schematic representation of motivating  application 

IV. RESPONSE OF NPRLS TO PERIODIC EXCITATION 
This section contains a series of lemmas that 

characterize the response of NPRLS to periodic excitation. 
Consider PΣ  and its GOs as defined in Section II. Since T  
is exponentially stable (Assumption 1), :t XΦ Ω →  is 

continuous for all t  and ( ) [ ]2 0,t L tX
u N uΦ ≤ , u∀ ∈ Ω  

[19]. For bounded input u , a bound on ( )t uΦ  depending on 

,Uu ∞  is desired and can be given by the following lemma. 

Lemma 1: If [ )( )0, ,u L U∞∈ ∞ , then 

,t UXu N u ∞Φ ≤  for some fixed 0N >  independent of t . 

Proof: Consider the exponentially stable 0C -semigroup 
bt

t t e=T T   generated by PA bI+  with 0 b a< < . Fix any 
0t ≥  and v ∈ Ω . Then, 

( ) ( ) ( )( )
( )

0 0

0

                                       ,

b t
t t P t P

t P t

t t

t

v B v d B e v d

B v d v

τ
τ τ

τ

τ τ τ τ

τ τ

−
− −

−

Φ = =

= = Φ

∫ ∫

∫

T T

T
  

where ( ) ( ) ( ) [ ]( )2 0, ,b tv e v L t Uττ τ−= ∈ . ( ),t XΦ ∈ ΩL , 

since [ ] [ ]2 20, 0,
bt

t t L t L tXX
v v N v Ne vΦ = Φ ≤ ≤  for any 

v ∈ Ω . Since this holds for all t , PB  is a T -admissible 

control operator and ( ),ΦT  is an abstract linear control 

system [19] where ( ) 0t t≥
Φ = Φ . Moreover, since T  is 

exponentially stable, Φ  is uniformly bounded with 

( ),t X
N

Ω
Φ ≤

L
. Therefore,  

          

( ) ( )( ) ( )
[ ]

( )
[ ]

2

2

0,

, ,0,
           

b t b t
t tX L tX

b t
U UL t

u e u N e u

N u e N u

τ τ

τ

τ− − − −

− −
∞ ∞

Φ = Φ ≤

≤ ≤
 

and the lemma is proven.    
Lemma 2: Let [ ): 0,u U∞ →  and [ ): 0,v X∞ →  be 

continuous T-periodic functions. Then under Assumption 1, 

( ) ( )
0

t

u t Pw t B u dτ τ τ−= ∫T  and ( ) ( )
0

t

v tw t v dτ τ τ−= ∫T  

converge in Xi , asymptotically, to continuous T-periodic 

functions. The rate of convergence depends on ,Uu ∞  and 

,Xv ∞  but not on the particular functions.  

Proof: Since ( )1,PB U X−∈L , the integration for uw  is in 

1X − . That ( )uw t X∈ , t∀ , and the continuity of uw  in X  
follows from the properties of RLS. Using Lemma 1 and a 
change of variables, it follows that for n m> , p n m= −  
and [ ]0,s T∀ ∈  

( ) ( )
0 0

nT s mT s

nT s P mT s P
X

B u d B u dτ ττ τ τ τ
+ +

+ − + −−∫ ∫T T  

( ) ( )
0 0

pT pT

nT s P mT s pT P

X X

B u d B u dτ ττ τ τ τ+ − + −= =∫ ∫T T T . 

,
aTm

mT s pT UX
u Me N u−

+ ∞= Φ ≤T . 

Hence the sequence of continuous functions nf  defined as 

( ) ( )n uf s w nT s= + , [ ]0,s T∀ ∈ , is Cauchy in the 

supremum norm. Hence ( )nf s  converges to a function 

( )f s  uniformly [ ]0,s T∀ ∈ , which implies that ( )uw t  
converges to a continuous T-periodic function 
asymptotically. A similar argument establishes the result for 

vw . The claim about the rate of convergence follows from 
the proof.  

Lemma 3, concludes that the state of the periodically 
excited NPRLS in (3) is periodic, asymptotically, with the 
same period.  

Output 

Reference 
input 

Coupled 

Nonlinearly perturbed finite 
dimensional actuator 

Linear infinite 
dimensional beam 
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Lemma 3: Consider the RLS PΣ , the corresponding 
NPRLS ,P NΣ  given in  (3) and the associated nonlinear 

integral map ( )q p= I  defined [ )0,t∀ ∈ ∞  as:  

( ) ( ) ( ) ( )( )0
0 0

t t P t

t t
q t p t x B u d g p dτ ττ τ ε τ τ− −= − − −∫ ∫T T T . 

Let 0 0Xx C<  and [ ): 0,u U∞ →  be a continuous T-

periodic function. Let Assumptions 1-2 hold. Then, since PΣ  

is exponentially stable, [ )2 0,t L tXu N uΦ ≤  and from 

Lemma 1 ,t UXu N u ∞Φ ≤ , for some , 0N N >  and t∀ . 

Hence the map I  is well defined from [ )( )0, ,BC X∞  to 
itself. Assume that ε  is small so that for some 0 1α< <  and 

( )( ) ( ){ }0 00 0: 1XD x X x C MC N u dα∞= ∈ ≤ + + − = , 

( )0ML aε α< . Here 0L  is the Lipschitz constant of ( )g x  

for the domain 0D . Then, [ )( )ˆ, 0, ,P P Bx x C X∃ ∈ ∞  with 

( ) 0PI x =  and ˆPx  a T-periodic function such that for any 

given 0λ > , ∃ ˆ 0 :t >  ) ) ,
ˆ ˆˆ, ,P P X

x t x t λ
∞

⎡ ⎡∞ − ∞ <⎣ ⎣ . 

Proof: The main ideas of the proof are sketched below.  
Step 1 is to establish the existence of a unique solution to 

( ) 0p =I , which would then be the variation of parameters 
solution to (3). This is done by first showing that if the initial 
condition satisfies 0 0Xx d< , a unique solution ( )Px t  

exists for [ ]0,t σ∈ . Next, arguing that ( ) 0P X
x t d< , 

0,t σ∀ ∈⎡ ⎤⎣ ⎦ ,  enables extending the solution to [ ], 2σ σ . 
Repeating this argument shows that ( )Px t  exists  

[ )0,t∀ ∈ ∞ . Step 2 proves asymptotic convergence of ( )Px t  

to a T-periodic function, ( )ˆPx t . Let ( )
0

t

t PB u dτ τ τ−∫T  and 

( )( )0
0

t

t g v dτ ε τ τ−∫T  converge asymptotically to T -periodic 

functions ( )0v t  and ( )1v t , respectively. For 1k > , let kv  
be the T -periodic function to which 

( ) ( )( )0 1
0

t

t kg v v dτ ε τ τ τ− −+∫T  converges asymptotically. 

The sequence of T -periodic functions { }0 kv v+  is shown to 

be Cauchy in [ )( )0, ,BC X∞  and its limit ˆPx  is the function 

to which ( )Px t  converges asymptotically.              

Remark 1: With ( )Px t  and ( )ˆPx t  as in Lemma 3, it can 
be shown that for a fixed 0 1δ< < , a t  can be found  such 

that 2t n t∀ > , ( ) ( )ˆ n
P P X

x t x t δ− <  for every integer 

0n > . Hence ( ) ( ) ( ]( )2ˆ 0, ,P Px t x t L X− ∈ ∞ . 

If ( ),PC X Y∈L  in (3), it follows from Lemma 3 that 

( )y t  is continuous and tends to a T-periodic function 

asymptotically. But when ( )1,PC X Y∈L , as is the case for 

a general RLS, Lemma 4 clarifies the behavior of ( )y t . 
Lemma 4: Let the assumptions in Lemma 3 hold. Then the 

output ( )Py t  of  (3) can be written as ( ) ( ), ,l P nl Py t y t+  

( )0,Py t+  where ,l Py  and , ,l P nl Py y+  are the T-periodic 
components of the output in the absence and presence of the 
nonlinearity, respectively and ( ]( )2

0, 0, ,Py L Y∈ ∞ .   

Proof: From Remark 1 and Assumptions 1-3, since ( )Px t  is 
known and bounded, the NPRLS (3) can be regarded as a 
RLS with 2 inputs, u  and ( )Pg xε . Let n satisfy 

( ) ( ) 1
X

nT <T
L

. Consider the system 

 
( )

( ) ( )( ) ( )( )
,

1

ˆ ,     ,  

ˆ0 .
P P P P P P P P P

g
P nT PnT

x A x B u g x y C x D u

x I nT u g x

ε

ε
Λ

−

= + + = +

= − Φ + ΦT
     (4) 

Since the inputs to this system are T-periodic, with the 
chosen initial conditions (as in finite dimensions), Px  is a T-
periodic continuous function. From the output equation, 
which is valid a.e. it follows that Py  is periodic a.e. and by 
linearity can be written as , ,P l P nl Py y y= +  to distinguish 

the contribution of the 2 inputs: u  and ( )ˆPg xε . Equations 
(3) and (4) differ in the initial conditions and the second 
input. But the difference in the second input is in 

( ]( )2 0, ,L X∞  since ( ) ( ) 0ˆ ˆP P P P XX
g x g x L x x− ≤ − . 

(use Remark 1, 0,
ˆP Xx d∞ ≤ , 0,P Xx d∞ ≤ ). From the 

properties of exponentially stable RLS the difference in the 
outputs of  (3) and (4), 0,P P Py y y= − , must satisfy 

( ]( )2
0, 0, ,Py L Y∈ ∞ . Clearly, the 2L -norm over one period 

of ( )ˆPg xε  and therefore of ,nl Py  is proportional to ε .  

V. CONTROLLER DESIGN 
In Theorem 1, the controller designed in [13] for tracking 

of finite number of sinusoids by RLS is applied to the 
NPRLS in (3) to address the problem statement of Section 
III. In the present section, the input and outputs take values 
in R , i.e.  U Y= = R . For all TFs ( )G s  and τ∀ ∈R , it is 

assumed that ( )G jτ−  is the complex conjugate of ( )G jτ . 
In Lemmas 3 and 4, if u  is a sinusoid of period T, then 
using the theory of TFs for RLS [17], ,l Py , the T-periodic 
component of the output in the absence of the nonlinearity, 
can be shown to be a sinusoid. 
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Fig. 2. Unaugmented system 

 

 
Fig. 3. Augmented system 

 
Theorem 1: Consider the RLS PΣ  and the NPRLS ,P NΣ   
((3)) as in Section II, satisfying Assumptions 1-3. The 
unaugmented system shown in Fig. 2 is a cascade 
interconnection (the feedbacks cancel out) of ,P NΣ  and a 
stable s-dimensional SISO filter R: 

,        R R R R R R R Rx A x B u y C x= + = . 
Also assume the following: 

B1. The input u to ,P NΣ  is a sinusoid of frequency  
2 Tω π=  and amplitude uC . Let the initial 

condition 0x  satisfy 0 0Xx C< . By Lemma 4, for 

sufficiently small ε , the output Py  of (3) is a  sum 

of a 2L -function and  a T-periodic function.  
B2. Consistent with the problem statement, assume that 

,P NΣ  tracks the input sinusoid of frequency ω  
satisfactorily, but for the output Py  containing 
small amplitude higher harmonics of ω , including 

rω , due to nonlinear effects.  
B3. If the input u to ,P NΣ  is 

r
uω , a small amplitude 

sinusoid of frequency rω , the periodic component 
of the output yP contains a sinusoid at rω  (Lemma 
4); let it be ( ), rPyS tω . Let the complex gain from 

r
uω  to , rPyS ω , ( ), rP NG jω , be bounded away 
from zero. 

Choose R so that its strictly proper TF, RG , satisfies 

( ) ( ),1 0P N r R rG j G jω ω− = . In the augmented system        
(Fig. 3), F is the linear stable SISO system with TF  

                       ( )
2

2 2
2

2
r r

F
rr r

s
G s

ss s
ζω ω

ωζω ω
−

=
++ +

              (5) 

with 0 1ζ< , a parameter to be chosen. Let the GOs of F 

be ( )( ), , ,0F F FA B Cζ ζ  where ( )FA ζ  is a linear function 

of ζ , and FB  and FC  are independent of ζ . Then, for 
small ε , ( ]*: 0, *ζ ζ ζ∃ ∀ ∈   the augmented system in Fig. 
3 with ,P NΣ replaced by PΣ  is an  exponentially stable RLS.   

Assuming that  ( ), , ,0P PA B I  are the GOs of an RLS, *ε∃  
such that if *ε ε<  the augmented system  in Fig. 3, now 
with ,P NΣ , is stable for each ( ]0, *ζ ζ∈  and tracks the 
input sinusoid of frequency ω  akin to the unaugmented 
system and possibly contains small magnitude higher 
harmonics of ω  generated by the nonlinear perturbation, 
but the harmonic at frequency rω  is eliminated from its 
output.  
Proof: Let ( )rPG jω  be the TF gain of PΣ  at rω . From 

Lemma 4 ( ) ( ),r rP P NG j G jω ω−  is small for small ε , and 

hence ( ) ( )1 1P r R rG j G jω ω− < . From Theorem 1 in [13] 
(R  is the same as 1-Q in [13]; The additional assumption in 
this paper that R be strictly proper does not alter the results 
in [13]) it follows that ( ]*: 0, *ζ ζ ζ∃ ∀ ∈ , the augmented 
system in Fig. 3 with ,P NΣ  replaced by PΣ , denoted as 

( )c
P ζΣ , is an exponentially stable RLS; the superscript c 

indicates ‘closed loop’. The state space and GOs for ( )c
P ζΣ  

are 3c sX X= × ×R R  and ( ) ( )( ), , ,c c c c
P P P PA B C Dζ ζ  

respectively, with input u  and output Py  where: 

( )
,

0

, 

0

P P F P

c c
P R P R R P F P R P

F R F F F F

A B C B

A B C A B D C B B D

B C A B C Bζ ζ ζ ζ

Λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦

[ ], 0 ,     c c
P P P F P PC C D C D DΛ⎡ ⎤= =⎣ ⎦ . 

Let the exponentially stable semigroup generated by c
PA  be 

( )c ζT . Denote the augmented system in Fig. 3 (now, with 

,P NΣ ) by ,
c
P NΣ . Its differential equation representation is: 

                ( ) ( ) 0

,

ˆ,    0
,

c c c
P P

c c c
P P P

x A x B u g x x x
y C x D u

ε

Λ

= + + =
= +

               (6) 

where [ ], , T
P R Fx x x x= , [ ]0 0ˆ ,0,0 Tx x= , ,

c
PC Λ  is the λ -

extension of c
PC  and ( ) ( ) ,0,0

Tc
Pg x g x⎡ ⎤= ⎣ ⎦ . Using 

Assumption 3, it follows from [16] that 

( ) [ ]( ), ,0,0 , ,0Tc c
P X PA I Cζ  are GOs of a RLS. From 

Lemmas 3 and 4, for each ( ]0, *ζ ζ∈ , ( ) ( ):ε ζ ε ε ζ∃ ∀ < ,  

the NPRLS ,
c
P NΣ  is stable and has a unique output that can 

be written as , , 0,
c c c c
P l P nl P Py y y y= + +  where ,

c
l Py , a sinusoid 

of frequency ω , and , ,
c c
l P nl Py y+ , a T-periodic function, are 

periodic components of the output of ,
c
P NΣ  in the absence 

and presence of the nonlinearity, respectively and 
[ )( )2

0, 0, ,c
Py L∈ ∞ R . The 2L -norm over a period for ,

c
nl Py  

m 
+ u 

+ + - yR 

q

+ 
yP 

,P NΣ

R 

F 

u 

+ + - yR 
+ 

yP 
,P NΣ

R 
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is small (proportional to ε ). Comparing the TFs, from u  to 

Py , of ( )P ζΣ  and ( )c
P ζΣ  and noting that the gain of F at 

all frequencies away from rω  (likeω ) is small (proportional 

to ζ ), it can be shown that , ,
c
l P l Py y−  is small, implying 

that the augmented system tracks the input sinusoid of 
frequency ω  akin to the unaugmented system. The loop 
containing F in Fig. 3 can be replaced by 1/(1-F), which has 
poles at rjω± , with output R R F Fm u C x C x= − +  and input 

Ru y− . Hence the presence of the harmonic at rω  in ,
c
nl Py  

and so in Ry  would lead to m becoming unbounded. Since 
this contradicts the fact that the states of the stable NPRLS 

,
c
P NΣ  are bounded, ,

c
nl Py  must have no harmonic at rω .  

    In Lemma 3, the characterization of stability and periodic 
response depended on the nonlinearity ( ε  and L ) and the 
growth bounds on the semigroup ( M  and a ). Let 

( ) ( ) ( )0
2sup

c
c
t Xt

M ζ ζ
≥

= T
L

 and ( )a ζ  the largest positive 

number such that ( ) ( )c
c
t X

ζT
L

( ) ( )a tM e ζζ −≤ . When  

0ζ ≠ , one can use the perturbation theory of 0C -

semigroups [18] to show that the growth bounds for ( )c
t ζT  

change continuously in the interval ( ]0, *ζ  . Consequently, 

there exists a continuous function of ζ , ( ) 0mε ζ > , such 

that for each ( ]0, *ζ ζ∈  if ( )mε ε ζ< , then the augmented 
system is stable. But at 0ζ = , the perturbation theory 
cannot be used. Instead a transfer function based approach 
can be used to show that in a neighborhood of 0ζ = , 

( ) 0mε ζ ε≥ > . Hence * 0ε∃ >  such that if *ε ε< , then 

for each ( ]0, *ζ ζ∈  the augmented system  in Fig. 3 (with 

,P NΣ ) is stable.   

VI. CONCLUSION 
Nonlinear perturbations are considered in the framework 

of regular linear systems (RLS) and the stability and 
response of the resulting NPRLS to periodic excitation are 
characterized. On this basis, analysis of the stability and 
disturbance rejection performance of a control scheme 
developed for RLS when applied to a NPRLS is carried out. 
It is shown that for sufficiently small perturbations, the 
feedback loop is stable and eliminates the internally 
generated harmonic, while preserving the plant response at 
the input frequency.  
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