
Distributed Algorithms for Biobjective Assignment Problems

Chendong Li, Chulwoo Park, Krishna R. Pattipati, Fellow, IEEE, and David L. Kleinman, Fellow, IEEE

Abstract— In this paper, we study the biobjective assignment
problem, a NP-hard version of the classical assignment problem.
We employ an effective two-phase method with certain en-
hancements: in Phase I, we use a distributed auction algorithm
to solve the single objective assignment problems to obtain
the so-called supported Pareto optimal solutions; we apply a
ranking approach with tight upper/lower bounds in Phase II to
obtain the non-supported Pareto optimal solutions. Moreover,
a randomized algorithm for Phase II is proposed that supports
finding the approximation on a polynomial time basis. Extensive
experiments are conducted using SGI Altix 3700 and compu-
tational results are reported based on a large set of randomly
generated problem instances. Also, some experimental results of
the distributed auction algorithm on large data-size assignment
problems are provided.

I. INTRODUCTION

A. Motivation

This research is motivated by the mission planning and

monitoring activities associated with the Navy’s maritime

operations center (MOC), in which multiple decision makers

(DMs) with partial information and partial control over assets

are involved in the development of operational level plans.

The MOC emphasizes networked distributed planning capa-

bilities, and decentralized execution for assessing, planning

and executing missions across a range of operations [8].

Motivated by the distributed planning problems and asset-

task allocation in large-scale organizations, where informa-

tion processing and decision making are distributed among

DMs, a novel variation of assignment problem, wherein each

of DMs knows only a part of the weight matrix and/or con-

trols a subset of the assets, is introduced in [5]. Furthermore,

the auction algorithms were extended to realistic settings

with various information, communication and organizational

structures to quantify the impact of structures on planning

delays [6] [7]. In this paper, we apply distributed auction

algorithm to solve the biobjective assignment problem in the

same context.

The primary focus of a single objective optimization

problem is to find the global optimum, which achieves the

best objective function value. However, real-world scenarios

usually involve more than one objective, which might conflict

with each other. In the context of mission planning, a com-

mander needs to trade-off task accuracy, asset usage cost, and

This work was supported by the U.S. Office of Naval Research under
Grant N00014-09-1-0062.

C. Li is with the Computer Science Engineering Department, Uni-
versity of Connecticut, Storrs. C. Park and K. R. Pattipati are with
the Electrical Engineering Department, University of Connecticut, Storrs,
CT 06029, USA {chendong.li; chp06004; krishna}@
engr.uconn.edu

D. L. Kleinman is with the Department of Information Sciences, Naval
Postgraduate School, Monterey, CA 93943, USA dlkleinm@nps.edu

mission risk. In this scenario, instead of a global optimum,

we have a set of alternative trade-offs, termed the Pareto

front. In this paper, we are exploring how the distributed

auction algorithm can cope with biobjective functions, i.e.,

reward (benefit, accuracy) and risk, in the context of an

assignment problem.

B. Background on the Assignment Problem

As a fundamental combinatorial optimization problem in

operations research, the assignment problem (AP) appears as

a subproblem of the transportation problem [34], minimum

cost flow problem [3] and the traveling salesman problem

[23]. There are specialized efficient algorithms to solve the

assignment problem, such as the well-known Hungarian

method [30] (an updated version as [31]) and the auction

algorithm [12] [13] [21], which are designed to make use

of the particular structure of APs. Moreover, forward and

reverse auction algorithms were developed in [15] and they

were extended to solve the transportation problem [15],

the shortest path problem [19] and the minimum cost flow

problem [16] [17] [18]. Early parallelized versions of these

specialized algorithms for the assignment problem are pre-

sented in [14] [22] [20].

Here, we consider a simple extension of the AP, viz., the

biobjective assignment problem (BAP). Solving the BAPs

efficiently is of significant importance in that it is the sim-

plest version of the more general multi-objective assignment

problem. Unfortunately, this problem is NP-hard [25].

The rest of the paper is organized as follows: Section II

provides a literature review. Section III presents the problem

formulation of BAPs as well as the two-phase algorithm. The

distributed auction algorithm is described in Section IV and

computational results are reported in Section V. Section VI

concludes with a summary and future research directions.

II. LITERATURE REVIEW

In the early stages of research, a majority of papers

on multi-objective assignment problems sought to identify

the supported efficient solutions (as shown in Fig. 1) [37]

by utilizing convex combinations of the objective functions

or via goal programming [44]. The non-supported efficient

solutions are usually ignored in the computation. In order to

compute the non-supported efficient solutions, one employs

branch-and-bound methods, such as in [29] and [39]. Meta-

heuristics, such as simulated annealing [45] [24], tabu search

[28], and genetic algorithm [11] have also been proposed.
Ulungu and Teghem [26] described the first exact and

complete solution approach for the BAP by employing a two-

phase method: in Phase I, it computes the complete set of

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5893

0

X2

X3

X5

X6

X8

X7

Supported efficient solutions

Non-supported efficient solutions

X4

Δ(X2, X3)

Δ(X3, X4)
Δ(X4, X5)

Δ(X1, X2)z1

z2

X1

Fig. 1. Supported and non-supported efficient solutions in the objective
space Z .

all the supported efficient solutions; in Phase II, it computes

the complete set of non-supported efficient solutions (refer

to section II for details). In [35], this method was employed

to solve the biobjective knapsack problems. Tuyttens et al.

implemented this two-phase method and reported the results

in [10]. Degoutin and Gandibleux did similar experiments

by using a mixed integer programming (MIP) solver and

reported their empirical results in [27]. An improvement

to this method was presented in [1] by utilizing a ranking

approach in Phase II. A population-based heuristic using path

relinking was proposed in [38]. Later, a more comprehensive

and improved two-phase method was proposed in [9], which

is, to our best knowledge, the state-of-the-art algorithm for

identifying the exact and complete set of the supported and

non-supported efficient solutions.

The two-phase method can efficiently solve not only

the BAPs [36], but also a large number of combinatorial

optimization problems, such as biobjective network flow [3],

knapsack [35], spanning tree [43], and traveling salesman

problems [23]. A comprehensive survey of these problems

are given in [40]. The basic idea here is to solve the

single objective problem with efficient algorithms to obtain

supported efficient solutions in Phase I, and enumerate the

non-supported efficient solutions in Phase II. Moreover, the

two-phase method was recently extended to solve the three-

objective assignment problem [2]. Some papers also focus

on identifying the feasible solutions of the multi-objective

assignment problem, such as [4].

III. BIOBJECTIVE ASSIGNMENT PROBLEM

The biobjective assignment problem can be described as

one of assigning n workers to m jobs or assigning n assets

to m tasks with the minimum overall cost and the maximum

benefits (or minimum negative benefits). If m equals n, the

problem is called a symmetric assignment problem and this

is the problem considered here.

A. Problem Formulation

Generally, the biobjective assignment problem can be

formulated as follows:

Minimize z1 :
n∑

i=1

n∑

j=1

c1ijxij

z2 :

n∑

i=1

n∑

j=1

c2ijxij

Subject to

n∑

i=1

xij = 1, j = 1, 2, ..., n

n∑

j=1

xij = 1, i = 1, 2, ..., n

xij ∈ {0, 1}, i, j = 1, 2, ..., n

where c1 and c2 are the coefficient matrices composed of

integers and x is the matrix of decision variables. Each entry

xij is a binary variable: xij equals one if i is assigned to

j and equals zero otherwise. To simplify the representation,

we introduce the following notation:

Min z1 : c1x
z2 : c2x
s.t. x ∈ X

where x is the decision variable and X is called the decision

space or solution space. Similarly, the objective space or

criterion space, denoted by Z , can be represented as follows:

Z = {(z1, z2)|z1 = c1x, z2 = c2x, x ∈ X}.
A feasible solution is a solution that satisfies all the

constraints of the BAP. A feasible solution x∗ is called

efficient if no other feasible solution x′ can be found in the

decision space that satisfies the following conditions:

z1(x
′) ≤ z1(x

∗); z2(x
′) ≤ z2(x

∗), with at least one

inequality strictly holding.

z(x∗) is called a non-dominated Pareto point. In the objective

space, the set of efficient solutions Xe can be expressed as

Xe = {x ∈ Xf | ∄x′ ∈ Xf , z1(x
′) < z1(x) and z2(x

′) <
z2(x)}, where Xf is the set of feasible solutions. The set of

efficient solutions Xe can be mapped to the non-dominated

set Znd in the objective space Z , where

Znd = {(z1, z2)|z1 = c1x, z2 = c2x, x ∈ Xe}.
The set of non-dominated points can be grouped into

supported and non-supported points. Correspondingly, the set

of efficient solutions can be partitioned into supported and

non-supported efficient solutions, where supported efficient

solutions are optimal solutions of the weighted sum single

objective problems. Solutions x, x∗ are said to be equivalent

if zk(x) = zk(x
∗) where k = 1, 2.

Here is a brief summary of notation in the rest paper.

• The set of efficient solutions is denoted by Xe and its

image in Z is the non-dominated frontier Znf .

• Supported efficient solutions Xse are optimal solutions

of weighted sum of single objective assignment prob-

lems. Non-supported efficient solutions are efficient

solutions that are not optimal for BAPλ (λ > 0).

• Supported extreme solutions are efficient solutions with

(z1, z2) located on extreme points of the vertex set of Z .

Supported non-extreme efficient solutions (z1, z2) are

5894

not located on the extreme point of vertex set of Z . As

shown in Fig. 1, X1, X2, X3, X5 are supported extreme

solutions while X4 is a supported non-extreme efficient

solution because it is located on the line segment joining

X3 and X5.

In general, the biobjective assignment problem is NP-hard

[42] [32] because an exponential number of optimal solutions

may exist. The process of solving the BAP is to compute

the complete set of supported and non-supported efficient

solutions, which are identified separately with the two-phase

algorithm.

B. The Two-phase Algorithm

The general idea of the two-phase algorithm is to compute

the set of supported efficient solutions in Phase I, and in

Phase II employ an enumeration procedure to compute the

set of non-supported efficient solutions with the information

obtained from supported efficient solutions identified by

Phase I.

There are two important steps in Phase I: First computing

the lexicographical efficient solutions (as shown in line 1

and 2 in algorithm 1). In lines 1 and 2, the algorithm solves

the assignment problem with the auction algorithm, which is

easy to parallelize. The second step, as shown in lines 9 to

18 in algorithm 1, is to identify the complete set of supported

solutions with a search procedure, while lines 3 to 8 setup

the search procedure in the while loop.

The weighted sum of single objective assignment problems

can be expressed as zλ(x) = (λc1 + c2)x where λ ∈ R+

and λ is the slope of the line determined by two efficient

solutions (z1, z2) and (z′1, z
′

2) in the objective space Z . This

expression is used to compute the new λ when two efficient

solutions are known, as shown in line 10 in algorithm 1.

Algorithm 1 Phase One()

Require: c1, c2

1: zu = auction Solve(c1); // xu is optimal solution

2: zl = auction Solve(c2); // xl is optimal solution

3: if zu = zl then

4: return 0;

5: else

6: S = {zu, zl};

7: end if

8: Let z+ = zu, z− = zl;
9: while z+ 6= z− do

10: λ = λ(z+, z−); //update λ
11: z∗ = auction Solve(λc1); //x∗ is optimal solution

12: if zλ(x
∗) < λz+1 + z+2 then

13: S = S ∪ {z∗};

14: else

15: z+ = z−;

16: z− = S.next(z+);
17: end if

18: end while

The two-phase algorithm determines the supported effi-

cient solutions first and then computes the non-supported

efficient solutions in Phase II. The main idea in Phase II is

to make use of the supported efficient solutions identified in

Phase I to reduce the search space where the non-supported

efficient solutions may exist. Specifically, Phase II explores

the triangles defined by two consecutive supported efficient

solutions in the objective space Z . As shown in Fig. 1, the tri-

angles ∆(X1, X2),∆(X2, X3),∆(X3, X4), and ∆(X4, X5)
are explored, respectively, in Phase II. To search for the

non-supported efficient solutions in an effective manner,

Lower Bound (LB) and Upper Bound (UB) and heuristics are

employed to reduce the search space during the enumeration

process. A ranking approach is usually used to achieve better

performance [1] [9]. The recent paper [9], which utilizes the

two-phase method, outperforms the algorithms presented in

[1]. One of the important reasons is that the algorithm in [9]

applies a tight upper bound proposed in [1] and keeps on

updating the lower bound within each iteration of Phase II.

Compared to Phase I, Phase II is a more complicated

procedure because it explores all the triangles defined by

two consecutive supported efficient solutions to obtain the

non-dominated supported points located inside the triangle

∆. The original method used the LB and UB as well as

the variable fixing method to enumerate all the possible

assignments. Recent papers, such as [26] [10] [1], have

presented tightened UB and LB to speedup the Phase II

solution process.

Formally, let x+, x− be the two consecutive supported

efficient solutions that correspond to z+ and z−, specifically

(z+1 , z
+

2) and (z−1 , z−2) in the objective space Z . As in Phase

I, λ is the weight for which both x+ and x− are optimal

solutions of the weighted sum, i.e., BAPλ. To simplify, we

use ∆(z+, z−) to denote the interior of the triangle of z+

and z− in the objective space Z .

The essential part of Phase II is the while loop shown from

lines 5 to 17 in Algorithm 2, which employs two procedures

to compute the non-supported efficient solutions inside the

∆(z+, z−). The first procedure is Kbest() (line 6), which is

to compute the Kth best solution zK ([9] provides a detailed

process for computing the Kth best solution). If it is not

dominated by other points in the current efficient solution set,

it will be added to the set (lines 8 and 9). Another important

procedure is line 10, which is to update the Upper Bound

(UB). This UB is first proposed in [1], and rephrased in [9].

IV. THE DISTRIBUTED AUCTION ALGORITHM

In the early parallelization of the auction algorithm, each

processor adjusts its own dual prices on the basis of local

information communicated by adjacent nodes and these im-

plementations did not provide large speedups [16]. Multiple

bids were carried out in parallel in the later parallelization

algorithms, while the calculation of each bid was shared

among several processors, which were able to achieve better

speedups [14]. Recently, different distributed auction algo-

rithms were proposed in [5] [41], where [5] assumes that

each decision maker only knows part of the benefit matrix

and needs to coordinate with the rest of the decision makers

to arrive at a globally optimal assignment.

5895

Algorithm 2 Phase Two()

Require: z+, z−

1: λ = λ(z+, z−);
2: S = {zu, zl};

3: UB = max{λz+ + z−, λz− + z+};

4: LB = λz+1 + z+2 ;K = 1;

5: while LB ≤ UB do

6: zK = Kbest(K,λ);
7: if Non Dominated(zK) then

8: S = S ∪ {zK};

9: for i = 1...q − 1 where zq = z− do

10: UB = max{λ(zi+1

1 − 1) + (zi2 − 1)}
11: end for

12: else {Dominated case}
13: do nothing;

14: end if

15: LB = λzK1 + zK2 ; //update LB

16: K = K + 1;

17: end while

To achieve the speedup in the solution process of BAPs,

we utilize the distributed auction algorithm to solve the single

objective assignment problem. Specifically, in Phase I, we

employ the auction algorithm to solve the lexicographical

and weighted sum of the BAP. In the following section, we

first provide a brief description of coordination structures

for the distributed auction algorithm and then present the

distributed auction algorithm in detail. To achieve further

speedup in Phase II, we propose a randomized algorithm.

A. The Coordination Structures

1) Information Structure: Based on the computational

results reported in [5], here we consider the horizontal

information structure only. In this structure, each decision

maker only knows certain rows of the cost and benefit

matrix corresponding to a set of tasks. Also, the decision

makers cannot exchange information with each other. The

information structure for the normal sequential assignment

problem is termed the centralized information structure.

2) Communication Structure: We consider blackboard

communication structure wherein decision makers send their

bids, as well as the best and the second best profits to the

blackboard; decision makers may choose to update their bids

after observing the bids on the blackboard.

3) Organization Structure: We consider a parallel struc-

ture, where there is one root decision maker who supervises

and coordinates the rest of the decision makers.

B. Distributed Auction Algorithm for the Single Objective

Assignment Problems

The distributed forward auction with horizontal informa-

tion structure can be described as follows: for each task, each

decision maker (DM) finds the best asset, best profit and

the 2nd best profit. Then, for each task from the task set,

all DMs send their bids to the blackboard. The coordinator

(blackboard) assigns an asset to certain task to attain the

maximum and posts the bid back to the blackboard. In the

following, each DM updates the bid based on the bid on the

blackboard. The pseudo code of this algorithm is given in

Algorithm 3.

Algorithm 3 auction Solve(c)

Require: c, BB
1: //each DM bids for his tasks Given DM k, each task ik
2: for each task i ∈ T do

3: find the best asset, best and 2nd best profit

jik = argmax{ci,j − pj};

4: compute bid;

5: end for

6: for each task i ∈ T do

7: for each DM Dk ∈ K do

8: send(bid, BB) //their bids are sent to the blackboard

BB

9: end for

10: end for

11: the coordinator assigns an asset j to task i attaining the

maximum pj and posts the bid back to the blackboard.

12: each DM updates the bid based on the best bid on the

blackboard.

C. Randomized Algorithm for Phase II

To speedup Phase II, we propose a randomized algorithm

for Phase II. The intuition of the randomized algorithm

comes from the Pareto optimal front. To make this frontier

convex, after computing the supported efficient solutions in

Phase I and instead of going through Phase II, the algorithm

randomly picks one of the successive assignments from the

supported efficient solutions. This yields efficient solutions

without exploring the inside of the triangle formed by the

two consecutive supported efficient solutions. A significant

advantage of this randomized algorithm is that it could

guarantee a better optimal value than the non-supported

efficient solutions identified in Phase II because the objective

values (z1, z2) are located on the convex frontier in the

objective space Z . In the context of military planning, this

also provides an element of surprise and unpredictability.

Specifically, given probability P1 ∈ [0, 1], for the two

consecutive supported efficient solutions (xl, xl+1) (where

l = 0, 1, 2...|Xe|), we can interpret the efficient solutions

P1 × xl + (1 − P1) × xl+1, as the linear combination of

the two consecutive supported efficient solutions (xl, xl+1).
Similarly, the corresponding points in the objective space Z
can be expressed as Z ′ = {(z′1, z

′

2)|z
′

1 = P1 × zl1 + (1 −
P1)× zl+1, z

′

2 = P1× zl2+(1−P1)× zl+1

2 , l = 0, 1, ..|Xe|}.

The randomized process could be interpreted as follows:

Suppose in 1000 executions of the biobjective assignment

problem, the team chooses xl 1000 × P1 times and xl+1

1000 × (1 − P1) times, where l = 0, 1, ..|Xe| and xl, xl+1

denote the consecutive supported efficient solutions from the

set Xe obtained from Phase I. Evidently, the randomized

solutions are on the supported Pareto front.

5896

V. COMPUTATIONAL RESULTS

A. Experimental Setup

The algorithms are implemented in C++ with MPI (Mes-

sage Passing Interface) library and tested in a Unix environ-

ment on the SGI Altix 3700 (sgi1.engr.uconn.edu). The pro-

gram is compiled using icc version 9.0 with the arguments

-lrt and -lmpi. Each processor is from GenuineIntel

Itanium 2 family with 1500 MHz. This shared memory

supercomputer is configured with 60G RAM. The source

code package is composed of three parts:

- Part 1: The matrix generator. It generates the random

matrix given the size of the matrix and the range of the

elements of the matrix (typically [100, 1000]).

- Part 2: The distributed auction algorithm in a master-

slave paradigm with 1 master process and (n−1) slave

processes in an n-processor system.

- Part 3: The two-phase algorithm and the randomized

algorithm.

B. Computational Results on SGI Altix 3700

1) Results for Distributed Auction Algorithm: Speedup

and efficiency are normally used to evaluate the paralleliza-

tion process. Speedup is equal to Tsequential/Tparallel, where

Tsequential and Tparallel denote the execution time of the

sequential and parallel algorithm respectively. Efficiency is

used to estimate how well-utilized the processors are in

computing the results, which is compared to how much

time is used in communication and synchronization. It can

be calculated by Speedup/Proc where Proc denotes the

number of processors used in parallel computing.

TABLE I

PERFORMANCE OF THE DISTRIBUTED AUCTION ALGORITHM

CPU time in Milliseconds
.
Problem #Run Sequential Distributed Speedup Efficiency

API-10
1 0.501 0.481 1.042 26.04%
2 0.546 0.473 1.154 28.86%
3 0.618 0.454 1.361 34.03%

API-50
1 0.776 0.613 1.266 31.65%
2 0.803 0.562 1.429 35.72%
3 0.769 0.524 1.468 36.70%

API-100
1 19.176 6.496 2.964 74.12%
2 19.140 6.348 3.015 75.38%
3 19.114 6.373 2.999 74.98%

API-500
1 482.193 214.296 2.250 56.25%
2 479.933 218.468 2.197 54.92%
3 479.501 202.510 2.368 59.19%

API-1000
1 1917.294 790.498 2.425 60.64%
2 1920.200 801.553 2.396 59.89%
3 1922.038 813.919 2.361 59.04%

API-3000
1 18997.489 7397.399 2.568 64.20%
2 18418.097 7140.541 2.579 64.48%
3 19054.572 7937.026 2.403 60.07%

API-5000
1 59739.896 20447.697 2.922 73.04%
2 60326.417 20521.972 2.940 73.49%
3 64561.193 20710.660 3.117 77.93%

Table I presents the detailed simulation results, including

speedup and efficiency on problem sizes ranging from 10

× 10 to 5000 × 5000. The distributed computation time

in Table I is obtained by using 4 processors on SGI Altix

3700. As shown in Table I, the problem instance is termed

“API-XX”, where “API” stands for the assignment problem

instance and “XX” denotes the dimension of the matrix. In

Table I, the efficiency of the processors is slowly increasing

with the growth of problem size.

2) Distributed Auction Algorithm with Two-phase Algo-

rithm: This section presents the preliminary computational

results for the proposed methods. The BAP problem instance

is generated randomly given the dimension of the matrix and

the interval of its elements. The range of each element of the

matrix is [10, 300] and the time unit is in milliseconds.

Randomized assignment results are also presented in the

table. The problems in Table II are named in the form of

“BAPI-XX”, where “BAPI” denotes the biobjective assign-

ment problem instance and “XX” denotes the data size,

which is the dimension of the cost matrices C1 and C2

in the biobjective assignment problem. Table II shows the

significant speedup of the randomized algorithm with the

increase in problem size.

TABLE II

PRELIMINARY RESULTS FOR THE BAPS

CPU time in Milliseconds
-
Problem #Run Two-phase Randomized Speedup

BAPI-10
1 0.906 0.714 1.269
2 0.694 0.630 1.012
3 0.792 0.425 1.864

BAPI-30
1 147.276 0.832 177.014
2 144.658 0.944 153.239
3 140.282 0.746 188.046

BAPI-50
1 2305.643 60.728 37.967
2 2285.278 61.330 37.262
3 2280.254 61.972 36.795

BAPI-70
1 13840.763 192.213 72.007
2 13473.118 186.032 72.424
3 13980.725 196.477 71.157

BAPI-90
1 30761.456 320.195 96.071
2 30860.169 286.217 107.821
3 30980.364 300.702 103.027

VI. CONCLUSIONS AND FUTURE WORK

We present an enhanced two-phase algorithm to compute

the complete set of efficient solutions for biobjective as-

signment problems. Specifically, our approach employs the

effective two-phase method with certain enhancements: in

Phase I, we use a distributed auction algorithm to solve the

single objective assignment problem, and in Phase II, apply a

ranking approach with tight upper/lower bounds. Moreover,

a randomized algorithm for Phase II is proposed to achieve

further speedup. We conducted empirical studies on SGI

Altix 3700 and reported computational results based on a

set of randomly generated BAP instances. We also provided

test results of the distributed auction algorithm for reasonably

large-size assignment problems, i.e. 5000 × 5000.

Our future work seeks to generalize the enhanced two-

phase method to solve the general multi-objective assignment

5897

problems. Moreover, we could extend our methodology

to solve general multi-objective combinatorial optimization

problems, such as planning and scheduling problems, net-

work flow problems, traveling salesman problems, and so

forth.

REFERENCES

[1] A. Przybylskia, X. Gandibleuxa, M. Ehrgotta, “Two phase algorithms
for the bi-objective assignment problem”, European Journal of Oper-

ational Research, Vol. 185, Issue 2, pp. 509–533, March 2008.

[2] A. Przybylski, X. Gandibleux and M. Ehrgott, “A two phase method
for multi-objective integer programming and its application to the
assignment problem with three objectives”, Discrete Optimization

7(3): 149–165, 2010.

[3] A. Sedeo-Noda and C. Gonzlez-Martn, “An algorithm for the biobjec-
tive integer minimum cost flow problem”, Computers & Operations

Research 28 (2), pp. 139–156, 2001.

[4] A. Bufardi. “On the Efficiency of Feasible Solutions of a Multicriteria
Assignment Problem”. The Open Operational Research Journal, 2,
pp. 25–28, 2008.

[5] C. Park, W. An, K. R. Pattipati, and D. L. Kleinman, “Quantifying the
impact of information and communication structures via distributed
auction algorithm”. In proceedings of the 2010 IEEE International

Conference on Systems Man and Cybernetics, pp. 2200–2207, 2010.

[6] C. Park, W. An, K. R. Pattipati, and D. L. Kleinman, “Quantifying
the impact of information and organizational structures via distributed
auction algorithm: Blackboard communication structure”, IEEE Trans.

Syst., Man, Cybern. A, submitted for publication.

[7] C. Park, K. R. Pattipati, W. An, and D. L. Kleinman, “Quantifying
the impact of information and organizational structures via distributed
auction algorithm: Point-to-point communication structure”, IEEE

Trans. Syst., Man, Cybern. A, to be published.

[8] Commander United State Fleet Forces Command, “Maritime Head-
quarters with Maritime Operations Center Concept of Operations”,
Rev. A, Initial draft vol. 2, Jan. 2008.

[9] C. R. Pedersen, L. R. Nielsen, K. A. Andersen, “The Bicriterion Multi-
modal Assignment Problem: Introduction, Analysis, and Experimental
Results”, INFORMS Journal on Computing, Vol. 20, No. 3, pp. 400-
411, Summer 2008.

[10] D. Tuyttens, J. Teghem, Ph. Fortemps and K. Van Nieuwenhuyse,
“Performance of the MOSA method for the bicriteria assignment
problem”, Journal of Heuristics, 6, pp. 295-310, 2000.

[11] D. E. Goldberg, Genetic Algorithm in Search, Optimisation and
Machine Learning, Reading, MA: Addison–Wesley, 1989.

[12] D. P. Bertsekas, “A Distributed algorithm for the assignment problem”,
Lab. for Information and Decision Systems, Working Paper, M.I.T.,
Cambridge, MA, March 1979.

[13] D. P. Bertsekas, “A New algorithm for the assignment problem”, Math.

Programming, vol. 21, pp. 152-171, 1981.

[14] D. P. Bertsekas and D. A. Castanon, “Parallel synchronous and
asynchronous implementations of the auction algorithm”, Parallel

Computing, vol. 17, pp. 707-732, 1991.

[15] D. P. Bertsekas and D. A. Castanon, “The auction algorithm for
transportation problems,” Analysis of Operation Research, vol. 20, pp.
67-96, 1989.

[16] D. P. Bertsekas and J. Eckstein, “Distributed asynchronous relaxation
methods for linear network flows problems,” in Proc. IFAC’87, Mu-
nich, Germany, Jul. 1987.

[17] D. P. Bertsekas and D. A. Castanon, “The auction algorithm for
minimum cost network flow problem,” Lab. For Information and
Decision Systems, Technical Report LIDS-P-1925, M.I.T., Cambridge,
MA, 1989.

[18] D. P. Bertsekas and D. A. Castanon, “A generic auction algorithm for
the minimum cost network flow problem,” Lab. For Information and
Decision Systems, M.I.T., Cambridge, MA, 1991.

[19] D. P. Bertsekas, “An Auction algorithm for shortest paths,” SIAM

Journal on Optimization, vol. 1, pp. 425-447, 1991.

[20] D. P. Bertsekas and D. A. Castanon, “Parallel Asynchronous Hun-
garian Methods for the Assignment Problem”, ORSA Journal on

Computing, Vol. 5, No. 3, Summer 1993.

[21] D. P. Bertsekas, “Auction Algorithms”, Encyclopedia of Optimization

pp. 128–132, 2009.

[22] E. Balas, D. Miller, J. Pekny, P. Toth, “A parallel shortest augmenting
path algorithm for the assignment problem”, Journal of the ACM

(JACM), Vol. 38, Issue 4, pp 985-1004, Oct. 1991.
[23] E. L. Lawler, “The quadratic assignment problem”, Management

Science, Vol. 9, No. 4, pp. 586–599, Jul. 1963.
[24] E. L. Ulungu, “Optimisation Combinatoire multicritère: Détermination

de l’ensemble des solutions efficaces et méthodes intéractives”, PhD
thesis, Université de Mons-Hainault, Faculté des Sciences, 1993.

[25] E. L. Ulungu and J. Teghem, “Multi-objective Combinatorial Opti-
mization Problems: A Survey”, Journal of Multi-Criteria Decision

Analysis, Vol. 3, 83–104, 1994.
[26] E. L. Ulungu and J. Teghem, “The two phases method: An efficient

procedure to solve bi-objective combinatorial optimization problems”,
Foundations of Computing and Decision Sciences, 20, pp. 149-165,
1995.

[27] F. Degoutin, X. Gandibleux, “Un retour d’expérience sur la résolution
de problèmes combinatoires bi-objectifs”, 5e journée du groupe de

travail Programmation Mathématique MultiObjectif (PM2O), 2002.
[28] F. Glover, M. Laguna, D. De Werra., and E. Taillard, “Tabu search”,

Ann. Oper. Res., 41. 1992.
[29] G. Mavrotas and D. Diakoulaki, “A branch and bound algorithm for

mixed zero-one multiple objective linear programming”, European

Journal of Operational Research, 107 (3), pp. 530-541, 1998.
[30] H. W. Kuhn, “Variants of the Hungarian method for assignment

problems”, Operations Research, vol. 3, pp. 253–258, 1956.
[31] H. W. Kuhn, “The Hungarian method for the assignment problem”,

Naval Research Logistics, 52(1):7–21, 2005.
[32] J. B. Mazzola and A.W. Neebe, Resource-constrained assignment

scheduling, Operations Research, 34 (4), pp. 560-572, 1986.
[33] K. Fukuda and T. Matsui, “Finding all the perfect matchings in

bipartite graphs”, Networks, 22 (1992), pp. 461-468, 1992.
[34] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network”,

Canadian Journal of Mathematics, vol. 8, pp. 399-404, 1956.
[35] M. Vise, J. Teghem, M. Pirlot and E.L. Ulungu, “Two-phases method

and branch and bound procedures to solve the bi-objective knapsack
problem”, Journal of Global Optimization 12, pp. 139-155, 1998.

[36] M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer Science
& Business Media, 2005.

[37] M. Ehrgott, X. Gandibleux, “Multiobjective combinatorial optimiza-
tion”, In: Ehrgott, M., Gandibleux, X. (Eds.), Multiple Criteria Opti-

mization: State of the Art Annotated Bibliographic Surveys, Kluwers
International Series in Operations Research and Management Science,
vol. 52, pp. 369-444, 2002.

[38] M. Ehrgott, X. Gandibleux, “Hybrid Metaheuristics for Multi-objective
Combinatorial Optimization”, Hybrid Metaheuristics, pp. 221–259,
2008.

[39] M. Ehrgott and D.M. Ryan, “The method of elastic constraints
for multiobjective combinatorial optimization and its application in
airline crew scheduling”, In: T. Tanino, etc., Editors, Multi-Objective

Programming and Goal-Programming, pp. 117-122, Springer 2003.
[40] M. Ehrgott, X. Gandibleux, “A survey and annotated bibliography of

multiobjective combinatorial optimization”, OR Spektrum, 22: 425-
460, 2000.

[41] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction
algorithm for the assignment problem,” In Proc. 47th IEEE Conf.

Decision and Control, Cancun, Mexico, pp. 9–11, 2008.
[42] P. Serafini, “Some considerations about computational complexity

for multiobjective combinatorial problems”, In Recent Advances and

Historical Development of Vector Optimization, Lecture notes in
Economics and Mathematical Systems vol. 294, 1986.

[43] R. M. Ramos, S. Alonso, J. Sicilia and C. Gonzlez, “The problem of
the optimal biobjective spanning tree”, European Journal of Opera-

tional Research, 111, pp. 617-628, 1998.
[44] S. M. Lee, and M. J. Schniederjans, “A multicriteria assignment

problem: a goal programming approach”, Interfaces, 13, (4), 75–81,
1983.

[45] V. Laarhoven, P. J. M. and E. H. L. Aarts, Simulated Annealing:
Theory and Applications, Amsterdam: Reidel, 1988.

[46] X. Gandibleux, H. Morita and N. Katoh, “Use of a genetic heritage
for solving the assignment problem with two objectives”, In Proc.
of Evolutionary Multi-Criterion Optimization, Lecture Notes in Com-
puter Science, vol. 2632, pp. 43-57, 2003.

5898

