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Abstract— In this paper, a novel congestion control strategy
for mobile networks with differentiated services traffic is
proposed. The switching or changes in the network topology
is modeled by a Markovian process. By utilizing the guaran-
teed cost control approach, a maximum bound on the jump
quadratic cost function is guaranteed for each traffic class with
respect to its specific QoS requirements. The proposed Marko-
vian jump guaranteed cost congestion controller (MJ-GCC) is
shown to be robust to the unknown and time-varying network
delays and the non-stationary network topologies. Numerical
simulation results are presented to illustrate the effectiveness
and capabilities of our proposed MJ-GCC strategies.

I. INTRODUCTION

The congestion control problem is of paramount im-
portance in communication networks. In particular, when
the network nodes are mobile the neighboring set of each
node becomes time-varying, which results in a switching
network topologies. This fact does necessitate the design and
utilization of more robust and effective congestion control
algorithms. On the other hand, the traffic flows in a network
belong to various classes due to the diverse range of ap-
plications. Specifically, the Internet Engineering Task Force
(IETF) has proposed the Differentiated Services (Diff-Serv)
architecture [1] to deliver aggregated quality of service (QoS)
in IP networks. In the Diff-Serv architecture the traffic is
aggregated into different classes of flows and the bandwidth
allocation and the packet dropping rules are applied to
the traffic classes according to their QoS requirements and
specifications.

Recently, several new congestion control schemes for Diff-
Serv networks have been developed by using sliding mode
control [2], robust adaptive control [3], and switching control
[4], [5]. However, the nature of discontinuities of the sliding
mode controller may result and introduce unavoidable and
undesirable oscillations in the closed-loop system [6], and
therefore reduce the effectiveness of the developed conges-
tion control solutions. The approach in [3] is designed for
only a cascade network and the unknown and time-varying
delays are not considered in the design of the congestion
control scheme. On the other hand, the approach in [5] needs
to regulate the traffic compression gains among the network
nodes for guaranteeing stability. However, in some cases this
regulation may lead to conservative results and low quality
of service.

The goal of this paper is to improve the performance
of the switching congestion control approach developed in
[5] by utilizing the guaranteed cost control approach [7],
[8]. The changes and switching of the network topologies
is modeled by a Markov chain and the dynamics of the
mobile network is represented by a nonlinear time-delay
system with Markovian jump parameters. The transmission,
processing, and propagation delays are considered as un-
known and time-varying parameters in the dynamic model.
The bandwidth, buffer size, and the transmission constraints
in the communication network are considered as state and
input constraints of the system model. The guaranteed cost
control approach is then applied for synthesis and design of
congestion control strategies for the differentiated services
traffic in mobile networks.

The organization of this paper is as follows. In Section 2,
the dynamical models of the mobile network is presented.
In Section 3, our proposed Markovian jump guaranteed
cost congestion control (MJ-GCC) strategy is presented. The
stability conditions incorporating all the physical constraints
are derived in Section 4. Simulations results are presented in
Section 5 and the conclusions are stated in Section 6.

II. PROBLEM FORMULATION

A. Dynamical Model of Diff-Serv Networks
In this paper, we assume that the dynamics of a queue is

governed by an M/M/1. The M/M/1 queue is a single-server
queue model where the packets arrives according to a Pois-
son process, and the queuing service time is exponentially
distributed.

The M/M/1 queuing system can be applied to describe a
wide variety of queuing models as found in systems with
a very large number of independent customers/nodes that
can be approximated as a Poisson process. Given an M/M/1
queue the dynamics of a single node can be expressed as
follows [3], [9]

ẋi(t) =−µi
xi(t)

1+ xi(t)
Ci(t)+λi(t) (1)

where xi(t) is the queuing length, Ci(t) is the link capacity,
λi(t) is the average rate of incoming traffic, and 1/µi is
the average length of the packets being transmitted in the
network.

Consider now a general network with n nodes. In a large
scale network the input traffic to each node can consist
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of two parts, namely: (1) the external traffic λi(t) which
in principle could represent the traffic that is being sent
from nodes of other clusters (defined as groups of nodes
not belonging to the nearest neighboring set ℘i) as well as
disturbances or environmental stimuli, and (2) the internal
traffic λ j(t − τ ji(t)) which is the delayed input traffic from
all the neighboring nodes within a given cluster.

Therefore, by using the representation (1), the fluid flow
model corresponding to each node is governed by

ẋi(t) =− f (xi(t))Ci(t)+λi(t)+ ∑
j∈℘i(αt )

λ j(t − τ ji(t))g ji (2)

λ j(t − τ ji(t)) = f (x j(t − τ ji(t)))C j(t − τ ji(t)) (3)

where f (xi(t)) = µixi(t)/(1 + xi(t)), ℘i is the set of the
nearest neighboring nodes associated with the node i, g ji(t)
is the traffic compression gain from node j to node i, τ ji(t)
is the time-varying delay between node j and node i, and αt
is a Markov chain that represents the rule for changes and
switching in the neighboring sets.

The Markov chain αt is defined on a complete probability
space {Ω,F ,P} that takes values in a finite space S =
{1, ...,M} which describes the switching between different
modes, and whose evolution is governed by the following
probability transitions

P[αt+∆ = k | αt = l] =
{

πkl∆+o(∆), k ̸= l;
1+πkk∆+o(∆), k = l. (4)

where πkl ≥ 0 is the transition rate from mode k to mode
l, πkk = −∑M

k=1,k ̸=l πkl , and o(∆) is a function satisfying
lim∆→0

o(∆)
∆ = 0. In this work the modes 1, ...,M correspond

to the topologies that are possible in the network due to the
nodes mobility.

Any communication network is characterized by a number
of physical resources constraints. A typical set of physical
constraints corresponding to the network are now specified
as follows

0 < xi(t)≤ xbu f f er,i 0 ≤Ci(t)≤Cserver,i (5)

where xbu f f er,i is the buffer size and Cserver,i is the link
capacity of node i.

On the other hand, the instantaneous traffic transmission
rate and its rate of change at each node should satisfy

λi(t)≤ λ max
i ≤Cserver,i λ̇i(t) ∈ L∞ (6)

Finally, the following two assumptions are made in this
work

Assumption 1: The time-varying and unknown delays
τ ji(t) are upper bounded and the maximum upper bound
is a known constant, that is

0 ≤ τ ji(t)≤ h ji with h = max{h ji} (7)
Assumption 2: The external incoming traffic to each node

is L2 norm bounded, that is∫ ∞

0
∥λi(t)∥2dt ≤ γi, γi > 0 (8)

B. Guaranteed Cost Control

The guaranteed cost control approach was first introduced
in [10], which is an extension to the classical LQR regulation
problem for linear systems with parametric uncertainties. The
conceptual objective of the GCC is to design a feedback con-
troller such that for all admissible uncertainties the closed-
loop system is asymptotically stable and an upper bound on
the corresponding cost function is guaranteed [12].

In this paper, the transmission, the processing, and the
propagation delays in the mobile network are considered as
unknown and time-varying variables in the dynamical system
model (2). The guaranteed cost control problem for system
(2) is then defined as follows.

Definition 1: [8] For the Markovian jump time-delay sys-
tem (2)-(3), the following jump quadratic cost function is
defined

Ji = E{
∫ ∞

0
[xT

i (t)Qi(αt)xi(t)+uT
i (t)Ri(αt)ui(t)]dt}(9)

where xi(t) is the state, ui(t) is the control input, Qi(αt)
and Ri(αt) are positive definite matrices. Provided there
exists a control law u∗i (t) and a positive scalar J∗i such that
the closed-loop system is stochastically stable and the cost
function Ji satisfies

Ji ≤ J∗i

then J∗i is the stochastic guaranteed cost of the system (2)-(3)
and u∗i (t) is the stochastic guaranteed cost controller of the
system (2)-(3).

III. PROPOSED GUARANTEED COST CONGESTION
CONTROL STRATEGY

In this paper, we consider three kinds of traffic, namely the
premium (denoted by ”p”), ordinary (denoted by ”r”), and the
best-effort according to the definitions proposed by IETF [1].
The dynamic queuing models of the mobile network (2)-(3)
are valid for each traffic class. The control objective of the
premium and the ordinary traffic classes are to maintain their
queuing lengthes as close as possible to the corresponding
reference values, such that the QoS specifications such as the
queuing delay and packet loss rate can be ensured indirectly.

Therefore, based on the dynamical queuing model (2)-
(3), the congestion control strategy for the premium traffic
is to allocate the output capacity Cpi(t) such that the queuing
length of the premium traffic is as close as possible to its
reference value. On the other hand, the strategy for the
ordinary traffic is to simultaneously regulate the incoming
flow rate λri(t) and allocate the capacity Cri(t) such that its
queuing length is as close as possible to its reference value.
Finally, for the best-effort traffic, no explicit active control
is designed in this paper since this traffic does not have any
QoS requirements.

A. Premium Traffic Control Strategy

The control input for the premium traffic is the link
capacity, that is upi(t) = Cpi(t). Based on the nonlinear
system model (2)-(3), the following feedback linearization
scheme is first applied
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upi = f−1(xpi(t))ūpi zpi(t) = xpi(t)− xre f
pi

where ūpi(t) denotes a state feedback controller, zpi(t) de-
notes the new state of the transformed linear system, and
xre f

pi denotes the reference queuing length at node i.
Thus the nonlinear dynamical model (2)-(3) is transformed

into the following equivalent linear one

żpi(t) =−ūpi(t)+λpi(t)+ ∑
j∈℘i(αt )

ūp j(t − τ ji(t))g
p
ji(t) (10)

Due to the presence of the unknown external incoming
traffic λpi(t), the state feedback controller ūpi(t) is now
selected as follows

ūpi(t) = Ki1(αt)zpi(t)+Ki2(αt)λ̂pi(t)

= Ki(αt)z̄pi(t) (11)

where z̄pi(t) = [zpi(t) λ̂pi(t)]T .
The variable λ̂pi(t) is an estimate of λpi(t) and is updated

according to the parameter projection method [13]

˙̂λpi(t) =


δpi(αt)zpi(t)−βpi(αt)λ̂pi(t), if 0 ≤ λ̂pi(t)≤ λ max

pi or
λ̂pi(t) = 0, zpi(t)≥ 0 or
λ̂pi(t) = λ max

pi , zpi(t)≤ 0
−βpi(αt)λ̂pi(t), otherwise

(12)

where δpi(αt)> 0 and βpi(αt)> 0 are design parameters.
Therefore, the dynamical system (10) in the new coordi-

nates z̄pi(t) can be written as

˙̄zpi(t) = Ak
i0(αt)z̄pi(t)+Bi0ūpi(t)+Bλi λpi(t) (13)

+ ∑
j∈℘i(αt )

B jū j(t − τ ji(t))

z̄pi(t) = φi(t); φi(t) ∈ [−h,0]; k ∈ ℵ,ℵ = 1,2;
αt ∈ S ,S = {1, ...,M}

where Ak
i0(αt), Bi0, B j, and Bλi , are the system matrices that

are defined according to

A1
i0(αt) =

[
0 0

δpi(αt) −βpi(αt)

]
; Bi0 =

[
−1
0

]
A2

i0(αt) =

[
0 0
0 −βpi(αt)

]
; B j =

[
gp

ji
0

]
; Bλi =

[
1
0

]
The following jump quadratic cost function is now con-

sidered for the premium traffic

Jpi = E{
∫ ∞

0
(z̄T

pi(t)Qi(αt)z̄pi(t)+ ūT
pi(t)Ri(αt)ūpi)dt} (14)

where Qi(αt) and Ri(αt) are given positive definite matrices
for each mode.

The following lemma is presented to show that the state
feedback controller ūpi(t) = Ki(αt)z̄pi(t) is a stochastic guar-
anteed cost control law [8] for the system (13).

Lemma 1: Given the cost function (14) and under As-
sumption 2, if there exist symmetric positive definite matrices
ΛT

i1(αt), X̄ik(αt), V̄ii(αt), T̄i(αt), and matrices Ui, Ni(αt), ΛT
i3,

and S̄i(αt) for k = 1,2, i = 1, ....n, and αt ∈ S = {1, . . . ,M}
such that the LMI condition Ωik(αt) < 0 is satisfied with
Ωik(αt) given by X̄ik(αt) h2(V̄ T

ik (αt)+ T̄i(αt))B ji +B ji ΛT
i1(αt)

∗ h2BT
ji(Ui +Ni(αt))B ji 0

∗ ∗ −ΛT
i3 − (1−h)S̄i(αt)



then the controller ūpi(t) = Kpi(αt)z̄pi(t) is the stochastic
guaranteed cost controller of system (13), and the decentral-
ized control gains are given by Kpi(αt) = B+

i0Ti(αt)Λ−1
i1 (αt)

(”+” denotes the Moore-Penrose inverse [14]).
Proof: Consider the following stochastic Lyapunov-

Krasovskii functional candidate
Vi(z̄pi(t),αt) =Vi1 +Vi2 +Vi3 +Vi4 (15)

Vi1 = z̄pi(t)T Pi(αt)z̄pi(t)

Vi2 =
∫ t

t−h
z̄T

pi(s)Si(αt)z̄pi(s)ds

Vi3 = h
∫ 0

−h

∫ t

t+θ
˙̄zT
pi(s)Ui ˙̄zpi(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
z̄T

pi(s)Si(αt)z̄pi(s)dsdθ

where Pi(αt), Si(αt), and Ui are positive definite matrices.
Then, for each αt = l ∈ S , the infinitesimal generator [11]
LVi can be obtained as
LVi1 = 2z̄T

pi(t)Pi(αt)[Ak
ic(αt)z̄pi(t)+ ∑

j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))]

+z̄T
pi(t)

M

∑
l=1

παt lPi(l)z̄pi(t)+2z̄T
pi(t)Pi(αt)Bλi λpi(t)

LVi2 = z̄T
pi(t)Si(αt)z̄pi(t)− (1−h)z̄T

pi(t −h)Si(αt)z̄pi(t −h)

+
∫ t

t−h
z̄T

pi(s)
M

∑
l=1

παt lSi(l)z̄pi(s)ds

LVi3 = h2[Ak
ic(αt)z̄pi(t)+ ∑

j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))

+Bλi λpi(t)]TUi[Ak
ic(αt)z̄pi(t)+Bλi λpi(t)

+ ∑
j∈℘i(αt )

B jKp j(αt)z̄p j(t − τ ji(t))]−h
∫ t

t−h
˙̄zT
pi(s)Ui ˙̄zpi(t)ds

LVi4 = hz̄T
pi(t)Si(αt)z̄pi(t)−

∫ t

t−h
z̄T

pi(s)
M

∑
l=1

παt lSi(l)z̄pi(s)ds

where k = 1,2.
Let us define B ji = vec{B j}, K ji(αt) = diag{Kp j(αt)}, and

Z̄p j(t − τ) = vec{z̄T
p j(t − τ ji(t))}, then one can obtain

LVi ≤ ηT
i (t,τ,h)Wik(αt)ηi(t,τ,h)+λ T

pi(t)Ψi(αt)λpi(t) (16)

where ηi(t,τ,h) = [z̄T
pi(t) Z̄T

p j(t − τ) z̄T
pi(t − h)]T , Mi and Ni

are positive definite matrices, Yi(αt) = h2Ak
ic(αt)Ui +Pi(αt),

and the matrix Wik and the variable Ψi are given by

Wik(αt) =

 w1
ik(αt) w2

ik(αt) Ui
∗ w3

i (αt) 0
∗ ∗ −Ui − (1−h)Si(αt)

 (17)

Ψi(αt) = Bλi (h
2Ui +Y T

i (αt)M−1
i (αt)Yi(αt)+h2N−1

i (αt))Bλi

w1
ik(αt) = (2Pi(αt)+h2(Ak

ic)
T (αt)Ui)Ak

ic(αt)

+
M

∑
l=1

παt lPi(l)+(1+h)Si(αt)−Ui +Mi(αt)

w2
ik(αt) = (h2(Ak

ic)
T (αt)Ui +Pi(αt))B jiK ji(αt)

w3
i (αt) = h2KT

ji(αt)BT
ji(Ui +Ni(αt))B jiK ji(αt)

Let us furthermore define W̄ik(αt) = Wik(αt) +
Qi(αt) + KT

pi(αt)Ri(αt)Kpi(αt), Λi1(αt) = P−1
i (αt),

Λi2(αt) = K−1
ji (αt), Λi3 = U−1

i , and Λi(αt) =
diag{Λi1(αt),Λi2(αt),Λi3}, then by pre and post multiplying
the matrix W̄ik(αt) with ΛT

i and Λi, respectively, the
following matrix is obtained

ΛT
i (αt)W̄ik(αt)Λi(αt)

=

 ΛT
i1(αt)Xik(αt)Λi1(αt) h2ΛT

i1(αt)(Ak
ic)

T (αt)UiB ji +B ji
∗ h2BT

ji(Ui +Ni(αt))B ji
∗ ∗
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ΛT
i1(αt)

0
−ΛT

i3 − (1−h)ΛT
i3Si(αt)Λi3



=

 X̄ik(αt) h2(V̄ T
ik + T̄i)B ji +B ji ΛT

i1(αt)
∗ h2BT

ji(Ui +Ni(αt))B ji 0
∗ ∗ −ΛT

i3 − (1−h)S̄i(αt)


where

X̄ik(αt) =Vik(αt)+V T
ik (αt)+Ti +T T

i +h2Ūi(αt)

+(1+h+
M

∑
l=1

παt l)ΛT
i1(αt)+ Q̄i(αt)+ R̄i(αt)

Ak
i0 =VikΛ−1

i1 ; V̄ T
ik =V T

ik Ui; T̄i = T T
i Ui; Si = Pi

Bi0Kpi = TiΛ−1
i1 ; Mi =Ui; Ūi =V T

ik UiVik; S̄i = ΛT
i3SiΛT

i3

Q̄i = ΛT
i1QiΛi1; R̄i = ΛT

i1KT
piRiKpiΛi1

Therefore, if Ωik(αt) < 0, one gets W̄ik(αt) < 0, and hence
Wik(αt)< 0. Now, according to (16), one get

LVi ≤ ηT
i (t,τ,h)[W̄ik(αt)−Qi(αt)−KT

pi(αt)Ri(αt)Kpi(αt)]ηi(t,τ,h)

+λ T
pi(t)Ψi(αt)λpi(t)

≤ −z̄T
pi(t)(Qi(αt)+KT

pi(αt)Ri(αt)Kpi(αt))z̄pi(t) (18)

+λ T
pi(t)Ψi(αt)λpi(t)

Therefore, for any z̄pi(t) that satisfies

∥z̄pi(t)∥2 ≥ λmax{Ψi(αt)}
λmin(Qi(αt)+KT

pi(αt)Ri(αt)Kpi(αt))
∥λpi(t)∥2 (19)

we will have LVi < 0, where λmax and λmin denote the
maximum and minimum eigenvalues of the corresponding
matrices. Consequently, the system (13) is now stochastically
ultimately bounded. It should be noted that since Ψi(αt) is
a scaler, hence λmax{Ψi(αt)}= max{Ψi(αt)}.

Furthermore, from (14) and (18) we have

Jpi ≤ E{
∫ ∞

0
(−LVi +λ T

pi(t)Ψi(αt)λpi(t))dt}

= Vi(z̄pi(0),0,r0)− lim
t→∞

Vi(z̄pi(t), t,αt)+E{
∫ ∞

0
Ψi(αt)λ 2

pi(t)dt}

≤ Vi(z̄pi(0),0,r0)− z̄T
pi(∞)Pi(r∞)z̄pi(∞)+ γimax(Ψi(αt)) (20)

Therefore, the upper bound of the cost function Jpi is given
by (since z̄pi(∞)≥ 0)

Jpi < Vi(z̄pi(0),0,r0)+ γimax(Ψi(αt)) = J∗pi (21)

Therefore, the closed-loop system performance cost incurred
by delays is guaranteed to be less than the scalar J∗pi. Accord-
ing to the Definition 1, the controller ūpi(t) = Kpi(αt)z̄pi(t)
is the stochastic guaranteed cost controller of system (13).

Furthermore, by solving the LMI conditions Ωik(αt) <
0, one can obtain the control gains Kpi(αt) and the sys-
tem matrices as Kpi(αt) = B+

i0Ti(αt)Λ−1
i1 (αt) and Ak

i0(αt) =
Vik(αt)Λ−1

i1 (αt), where ”+” denotes the Moore-Penrose in-
verse. This completes the proof of Lemma 1. �
B. Ordinary Traffic Control Strategy

Since the incoming traffic of the ordinary traffic λri(t) is
measurable and available for control, the control inputs for
the ordinary traffic are the link capacity and the incoming
traffic, namely u1

ri(t) = Cri(t) and u2
ri(t) = λri(t). Similar to

the premium traffic, we first apply the following feedback
linearization scheme to the open-loop system (2)-(3), namely

zri(t) = xri(t)− xre f
ri and uri(t) = F−1(xri, t)ūri(t)

where uri(t) = [u1
ri(t),u

2
ri(t)]

T , ūri(t) = [ū1
ri(t), ū

2
ri(t)]

T , and
F(xri(t)) = diag{ f (xri(t)),1}.

The resulting dynamical model (2)-(3) with respect to the
ordinary traffic becomes

żri(t) = Bi0ūri(t)+ ∑
j∈℘i(αt )

B jūr j(t − τ ji(t)) (22)

where Bi0 =
[
−1 1

]
and B j =

[
gr

ji 0
]

are the system
matrices. The performance cost function for the ordinary
traffic is selected as

Jri = E{
∫ ∞

0
(zT

ri(t)Qi(αt)zri(t)+ ūT
ri(t)Ri(αt)ūri(t))dt} (23)

where Qi(αt) and Ri(αt) are given positive definite matrices.
The following lemma shows that the state feedback con-

troller ūri(t) = Kri(αt)zri(t) is a stochastic guaranteed cost
control law [8] for the system (22).

Lemma 2: Given the cost function (23) and under As-
sumption 2, if there exist symmetric positive definite matrices
ΛT

i1(αt), X̄i(αt), V̄ii(αt), T̄i(αt), and matrices Ui, Ni(αt), ΛT
i3,

and S̄i(αt) for i = 1, ....n, and αt ∈S = {1, . . . ,M} such that
the LMI condition Ωi(αt)< 0 is satisfied and where Ωi(αt)
is given by X̄ik(αt) h2(V̄ T

ik (αt)+ T̄i(αt))B ji +B ji ΛT
i1(αt)

∗ h2BT
jiUiB ji 0

∗ ∗ −ΛT
i3 − (1−h)S̄i(αt)

 (24)

then the controller ūri(t) = Kri(αt)zri(t) is the stochastic
guaranteed cost controller of system (22), and the decentral-
ized control gains are given by Kri(αt) = B+

i0Ti(αt)Λ−1
i1 (αt)

(”+” denotes the the Moore-Penrose inverse).
Proof: Consider the following stochastic Lyapunov-

Krasovskii functional candidate
Vi(zri(t),αt) =Vi1 +Vi2 +Vi3 +Vi4 (25)

Vi1 = zri(t)T Pi(αt)zri(t)

Vi2 =
∫ t

t−h
zT

ri(s)Si(αt)zri(s)ds

Vi3 = h
∫ 0

−h

∫ t

t+θ
żT

ri(s)Ui żri(s)dsdθ

Vi4 =
∫ 0

−h

∫ t

t+θ
zT

ri(s)Si(αt)zri(s)dsdθ

where Pi(αt), Si(αt), Ui are positive definite matrices with
appropriate dimensions. Then, for each αt = l ∈ S we have

LVi ≤ zT
ri(t)(2Pi(αt )Bi0Kri(αt )+

M

∑
l=1

παt l Pi(l)+(1+h)Si(αt ))zri(t)

+h2zT
ri(t)((Bi0Kri)

T (αt )UiBi0Kri(αt )−Ui)zri(t)

+2zT
ri(t)(h

2(Bi0Kri(αt ))
T Ui +Pi(αt )) ∑

j∈℘i(αt )

B jKr j(αt )zr j(t − τ ji(t))

+h2[ ∑
j∈℘i(αt )

B jKr j(αt )zr j(t − τ ji(t))]T Ui[ ∑
j∈℘i(αt )

B jKr j(αt )zr j(t − τ ji(t))]

−zT
ri(t −h)(Ui +(1−h)Si(αt ))zri(t −h)

By defining B ji = vec{B j}, K ji(αt) = diag{Kr j(αt)}, Zr j(t−
τ) = vec{zT

r j(t − τ ji(t))}, we obtain

LVi ≤ ηT
i (t,τ,h)Wi(αt)ηi(t,τ,h) (26)

where ηi(t,τ,h) = [zT
ri(t) Z̄T

r j(t − τ) zT
ri(t − h)]T . The matrix
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Wi(αt) is defined by

Wi(αt) =

 w1
i (αt) w2

i (αt) Ui
∗ w3

i (αt) 0
∗ ∗ −Ui − (1−h)Si(αt)


w1

i (αt) = (2Pi(αt)+h2(Bi0Kri)
T (αt)Ui)Bi0Kri(αt)

+
M

∑
l=1

παt lPi(l)+(1+h)Si(αt)−Ui

w2
i (αt) = (h2(Bi0Kri)

T (αt)Ui +Pi(αt))B jiK ji(αt)

w3
i (αt) = h2KT

ji(αt)BT
jiUiB jiK ji(αt)

Therefore, if Wi(αt)< 0, then we will have LVi < 0 and the
system (22) is stochastically stable.

However, since the matrix inequality W̄i(αt) is not linear
with respect to the control gain Kri let us define

W̄i(αt) =Wi(αt)+Qi(αt)+KT
pi(αt)Ri(αt)Kpi(αt)

Bi0Kri(αt) = TiΛ−1
i1 (αt); T̄i = T T

i Ui

Si(αt) = Pi(αt); Mi(αt) =Ui

Q̄i(αt) = ΛT
i1(αt)Qi(αt)Λi1(αt); S̄i(αt) = ΛT

i3SiΛT
i3

R̄i(αt) = ΛT
i1(αt)KT

ri (αt)Ri(αt)Kri(αt)Λi1(αt)

By pre pre and post multiplying the matrix W̄ik(αt) with ΛT
i

and Λi, respectively, the following matrix is obtained

Ωi(αt ) = ΛT
i (αt )W̄i(αt )Λi(αt )

=

 ΛT
i1(αt )Xik(αt )Λi1(αt ) h2ΛT

i1(αt )(Bi0Kri)
T (αt )UiB ji +B ji

∗ h2BT
ji(Ui +Ni(αt ))B ji

∗ ∗
ΛT

i1(αt )
0

−ΛT
i3 − (1−h)ΛT

i3Si(αt )Λi3


=

 X̄i(αt ) h2T̄iB ji +B ji ΛT
i1(αt )

∗ h2BT
jiUiB ji 0

∗ ∗ −ΛT
i3 − (1−h)S̄i(αt )

 (27)

where
X̄i(αt) = Ti +T T

i +(1+h+
M

∑
l=1

παt l)ΛT
i1(αt)+ Q̄i(αt)+ R̄i(αt)

Bi0Kri(αt) = TiΛ−1
i1 (αt); T̄i = T T

i Ui

Si(αt) = Pi(αt); Mi(αt) =Ui

Q̄i(αt) = ΛT
i1(αt)Qi(αt)Λi1(αt); S̄i(αt) = ΛT

i3SiΛT
i3

R̄i(αt) = ΛT
i1(αt)KT

ri (αt)Ri(αt)Kri(αt)Λi1(αt)

Therefore, if Ωi(αt) < 0, one will also have W̄i < 0. By
solving the LMI conditions Ωi(αt)< 0, one can then obtain
the control gains Kri(αt) = B+

i0Ti(αt)Λ−1
i1 (αt), where ”+” is

the Moore-Penrose inverse.
Furthermore, according to (26), the following inequality

also holds for LVi, namely

LVi ≤ ηT
i (t,τ,h)[W̄ik(αt)−Qi(αt)−KT

pi(αt)Ri(αt)Kpi(αt)]ηi(t,τ,h)

≤ −zT
ri(t)(Qi(αt)+KT

pi(αt)Ri(αt)Kpi(αt))zri(t) (28)

Consequently, in view of (23) and (28) one can obtain
Jri ≤ −E{

∫ ∞

0
(LVi(zri(t),αt))dt}

= Vi(zri(0),0,r0)− lim
t→∞

Vi(zri(t), t,αt)

≤ Vi(zri(0),0,r0) = J∗ri (29)

Therefore, the performance cost of the closed-loop system is
guaranteed for any admissible time-varying delays satisfying
Assumption 1.

According to the Definition 1, the state feedback controller
ūri(t) is therefore the stochastic guaranteed cost controller
of system (22) and the scalar J∗ri is the stochastic guaranteed
cost of (22). This completes the proof of Lemma 2. �

IV. STABILITY CONDITIONS INCORPORATING THE
NETWORK PHYSICAL CONSTRAINTS

In this section, the network physical constraints (5)-(6)
are transformed into mode-dependent LMI conditions. These
complementary LMIs, together with the stability conditions
provided in Lemmas 1 and 2 will be taken into account
for determining a complete solution to the guaranteed cost
congestion control problem.

A. Mode-Dependent Physical Constraints of the Premium
Traffic

The state constraints for system (13) can be expressed as
follows

z̄min
pi ≤ z̄pi(t)≤ z̄max

pi (30)

where z̄min
pi = [−xre f

pi 0]T and z̄max
pi = [xbu f f er

pi − xre f
pi ,λ max

pi ]T

denote the minimum and the maximum bounds of the new
state. By squaring (30) one will have

z̄T
pi(t)z̄pi(t)≤ ∥z̄max

pi ∥2 (31)

Consider the following ellipsoid for a given parameter ε1i > 0

Fi(αt) = {z̄pi(t)|z̄T
piΛ

−1
i1 (αt)z̄pi ≤ ε1i} (32)

According to the definitions of the Lyapunov functional Vi
in (15), since Λ−1

i1 (αt) = Pi(αt), we get

z̄T
piΛ

−1
i1 (αt)z̄pi ≤Vi(z̄pi(t),αt) (33)

By integrating (18), from 0 to t and considering that
Vi(z̄pi(0),r0) = 0, we get

Vi ≤ −
∫ t

0
z̄T

pi(t)(Qi(αt)+KT
pi(αt)Ri(αt)Kpi(αt))z̄pi(t)dt

+
∫ t

0
λ T

pi(t)Ψi(αt)λpi(t)dt

<
∫ ∞

0
λ T

pi(t)Ψi(αt)λpi(t)dt

< γimax(Ψi(αt)) (34)

Therefore, the state z̄pi(t) will belong to the set Fi(αt) for
all the modes αt if

γimax(Ψi(αt))≤ ε1i (35)

Consequently, the right-hand side of the state constraint (30)
is satisfied if

ε1i/||z̄max
pi ||2 ≤ Λ−1

i1 (αt) (36)

By applying the Schur complement to (36), the right-hand
side of the state constraint (30) will hold if the following
LMI conditions are satisfied

Ωp
c1i(αt), γimax{Ψi(αt)} ≤ ε1i (37)

Ωp
c2i(αt),

[
Λi1(αt) ΛT

i1(αt)
Λi1(αt) ∥z̄max

pi ∥2/ε1i

]
≥ 0 (38)

On the other hand, the left-hand side of the state constraint
(30) can be rewritten as z̄pi(t)− z̄min

pi ≥ 0.
According to the definition of non-negative systems [15],

if the above system is non-negative, then the left-hand side
of the state constraint (30) holds. By selecting the matrix
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Λi1(αt) as a diagonal positive definite matrix, the non-
negative condition of the closed-loop system matrices can
be expressed as follows

Ωp
c3i(αt) , (Ti(αt))i j ≥ 0 (39)

Vik(αt) =

[
V 1

ik(αt) V 2
ik(αt)

V 3
ik(αt) V 4

ik(αt)

]
V 1

i1(αt) = V 1
i2(αt) = 0

V 2
i1(αt) = V 2

i2(αt) = 0

V 3
i2(αt) = 0

V 3
i1(αt) > 0 and is diagonal

V 4
i1(αt) = V 4

i2(αt)< 0 and is diagonal

The input constraint of the system (13) can be expressed
as

0 ≤ ūpi(t)≤Cserver,i(αt) (40)

Noting that ūpi(t) = B+
i0Ti(αt)Λ−1

i1 (αt)z̄pi(t), hence the input
constraint (40) becomes

0 ≤ B+
i0Ti(αt)Λ−1

i1 (αt)z̄pi(t)≤Cserver,i(αt) (41)

Consider the ellipsoid (32), so that the right-hand side of the
input constraint is satisfied if

(B+
i0Ti(αt)Λ−1

i1 (αt))
T (εi1/C2

server,i(αt))B+
i0Ti(αt)Λ−1

i1 (αt)≤ Λ−1
i1 (αt) (42)

The above condition can be transformed into the following
LMI condition

Ωp
c4i(αt) ,

[
I KT

i (αt)
Ki(αt) (C2

server,i(αt)/ε1i)Λi1(αt)

]
≥ 0 (43)

The non-negative constraint of the input is satisfied if
the control gain (Kpi(αt))i j > 0. Hence, by using Kpi(αt) =
B+

i0Ti(αt)Λ−1
i1 (αt) and noting that Λ−1

i1 (αt) is set to be a
diagonal positive definite matrix, then Bi0 is negative definite.

The left-hand side of the input constraint can be trans-
formed into the following LMI condition

Ωp
c5i(αt) , (Ti(αt))i j ≤ 0 (44)

Therefore, the above results and the LMI conditions that are
given in Lemma 1 can all be summarized into the following
theorem.

Theorem 1: The decentralized Markovian jump guaran-
teed cost congestion controller (MJ-GCC) for the premium
traffic in a mobile network is determined by ūpi =Kpi(αt)z̄pi,
if the mode-dependent LMI conditions given in Lemma 1
subject to the positive definite diagonal matrix Λ−1

i1 (αt) and
the mode-dependent LMI conditions of Ωp

c1i(αt) to Ωp
c5i(αt)

for i = 1, ...n, αt ∈ S = {1, ...,M}, as given in (37), (38),
(39), (43), and (44), respectively, are all satisfied.

Proof: Follows along the same lines as the derivations in
Lemma 1 and the analysis of the physical constraints. These
details are omitted due to the space limitations. �

B. Mode-Dependent Physical Constraints of the Ordinary
Traffic

The physical constraints for the ordinary traffic in a mobile
network are listed as

zmin
ri ≤ zr(t)≤ zmax

ri ; 0 ≤ ūri(t)≤ cri(αt)

where zmaz
ri = xbu f f er

ri − xre f
ri and zmin

ri =−xre f
ri .

To avoid any confusion, in the remainder of this section
we use the notations Λpi1 and Λri1 to denote the Lyapunov
matrix Λi1 that is used in Lemmas 1 and 2, for the premium
and the ordinary traffic, respectively, and the following
analysis of the physical constraints can be obtained.

For the state constraints, consider the following ellipsoid
for a given parameter εi2 > 0, namely

Si = {zT
ri(P̃ri)

−1(αt)zri < εi2} (45)

From the definition of the Lyapunov function given in (25)
and the stability conditions given in Lemma 2, we will have

zT
r (t)Λ

−1
ri1 zr(t)≤Vi(zri(t),αt) (46)

Now, by integrating (28) on both sides from 0 to t and
considering V (zri(0),r0) = 0, we will have

Vi ≤ −
∫ t

0
zT

ri(t)(Qi(αt)+KT
pi(αt)Ri(αt)Kpi(αt))zri(t)dt < 0 (47)

Therefore, zri(t) belongs to the set Si for all t > 0. Conse-
quently, the right-hand side of the state constraints can be
expressed according to the following LMI condition

Ωr
c1i(αt) ,

[
Λri1(αt) ΛT

ri1(αt)
Λri1(αt) (zmax

ri )2/εi2

]
≥ 0 (48)

On the other hand, the left-hand side of the state constraints
can be considered by the following non-negative constraint

zri(t)− zmin
ri ≥ 0 (49)

Following along the similar lines as those in deriving the
LMI conditions for the physical constraints of the premium
traffic, and noting that the matrix Λri1 is set to be diagonal
and positive definite, and given that Bi0 < 0, the non-negative
constraint of the state can be expressed by the following LMI
conditions Ωr

c2i(αt) , (Ti(αt))i j ≤ 0 (50)

For the constraints on the input ūri, by taking into account
that ūri(t) = Kri(αt)zri(t), it can be stated that

0 ≤ B+
i0Ti(αt)Λ−1

ri1 (αt)zri(t)≤ cri(αt) (51)

Note that cri(αt)=Cserver,i(αt)−Kpi(αt)z̄pi(t), where Kpi(αt)
is the control gain of the premium traffic controller. Conse-
quently, the input constraints of the ordinary traffic can be
expressed as follows

0 ≤ Kri(αt)zri(t)≤Cserver,i(αt)−Kpi(αt)z̄pi(t) (52)

From the right-hand side of (52) one can have

Kri(αt)zri(t)+Kpi(αt)z̄pi(t)≤Cserver,i(αt) (53)

By squaring (53) we obtain[
zri(t)
zpi(t)

]T [
KT

ri
KT

pi

][
Kri Kpi

][ zri(t)
zpi(t)

]
≤ ∥Cserver,i(αt)∥2 (54)

Therefore, by considering the ellipsoid Fi and the set Si, the
right-hand side of the input constraints will be satisfied if
the following LMI conditions hold

Ωr
c3i(αt), γimax{Ψi(αt)} ≤ εi1 (55)

Ωr
c4i(αt),


I Kri(αt) Kpi(αt)

KT
ri (αt)

C2
server,i(αt )

εi1+εi2
Λri1(αt) 0

KT
pi(αt) 0

C2
server,i(αt )

εi1+εi2
Λpi1(αt)

≥ 0

(56)
The model-dependent LMI conditions derived above together
with the stability conditions obtained in Lemma 2 can be
summarized according to the following theorem.
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Theorem 2: A decentralized Markovian jump guaranteed
cost congestion controller (MJ-GCC) for the dynamical
queuing system for the ordinary traffic in each node i is
obtained provided that the mode-dependent conditions that
are given in Lemma 2 are satisfied, subject to the mode-
dependent LMIs Ωr

c1i(αt) to Ωr
c4i(αt) that are governed by

equations (48), (50), (55), and (56), respectively.
Proof: The proof follows along the same lines as those

given in Lemma 2 and the derivations and analysis for the
physical constraints that are given in this subsection. �

V. SIMULATION RESULTS

The simulation results presented in this section are in-
tended to demonstrate the effectiveness and capabilities of
our proposed decentralized Markovian jump guaranteed cost
congestion (MJ-GCC) strategy to mobile Diff-Serv networks.

A. Performance Metrics
In our simulations we denote the link between nodes by

a connectivity parameter ai j(αt) which is defined as

ai j(αt) =

{
1, if nodes i and j are connected
0, otherwise (57)

where αt represents the changes in the network topology.
The packet loss rate (PLR) for the premium traffic in the

mobile network is defined as

PLRpi(t) =
Pp

bi +Pp
ci

λpi(t)+ ∑
j∈℘i

λ p
ji(t)g

p
ji(t)a ji(αt)

(58)

Pbi(t) = max{0,λpi(t)+ ∑
j∈℘i

λ p
ji(t)g

p
ji(t)a ji(αt) (59)

−(xbu f f er,i − xpi(t))}
Pci(t) = ∑

k∈℘i

λ p
ik(t)g

p
ik(t)(1−aik(αt)) (60)

where Pbi is the packet loss induced by the buffer overflow
and Pci is the packet loss due to the network topology
changes. The PLR for the ordinary traffic in the mobile
network is then defined according to

PLRri(t) =
Pr

bi(t)+Pr
f i(t)+Pr

ci(t)

λri(t)+ ∑
j∈℘i

λ r
ji(t)g

r
ji(t)a ji(αt)

(61)

Pr
bi(t) = max{0,λri(t)+ ∑

j∈℘i

λ r
ji(t)g

r
ji(t)a ji(αt) (62)

−(xbu f f er,i − xri(t))}
Pr

f i(t) = λ a
ri(t)−λri(t) (63)

Pr
ci(t) = ∑

k∈℘i

λ r
ik(t)g

r
ik(t)(1−aik(αt)) (64)

where Pr
bi is the packet loss due to the buffer overflow, Pr

f i
is the packet loss due to the inadequate flow rate regulation,
and Pr

ci(t) is the packet loss due to disconnection.
Moreover, the average queuing delay of a mobile network

is defined as

E{T i
q}=

E{xi(t)}
E{λi(t)}+ ∑

j∈℘i

E{λ ji(t)g ji(t)a ji(αt)}
(65)

where E{T i
q} is the average queuing delay and xi(t) is the

present queuing state.

Fig. 1. The schematic of the network topologies and configurations for
three ”typical” modes corresponding to a mobile network.

B. Simulation Scenario

Consider a network with 3 nodes that are supposed to
explore a rectangular planner area from location A to location
B as shown in Fig. 1. The first node moves towards north
first and then towards east, the second node moves towards
northeast directly, and the third node moves towards east and
then towards north. It is assumed that the network is fully
connected at the start. The capacity of each link is considered
to be 10 Mbps, and the maximum buffer size is 5 Mbits. The
simulation time duration is selected to be 30s. A total of 5
switching modes are defined based on the possible network
topologies. In other words we consider the following network
modes M1 = {1,2,3}, M2 = {1,2}, {3}, M3 = {1}, {2,3},
M4 = {1,3}, {2}, and M5 = {1}, {2}, {3}.

The heterogeneous delays among the network nodes are
simulated by a randomly generated signals as h ∼ N(µ ,σ2),
and τ = min{0,max{hmax,h}}, where µ = 10 ms is the mean
value of delay, σ2 = 5 ms is the standard deviation, and
hmax = 20 is the maximum value of transmission delay.

The transition probabilities πkl among different modes are
taken to be random and the following transition probability
matrix is considered for the Markovian jump model of the
switchings in the network topologies, namely

Π =

 π11 · · · π15
...

. . .
...

π51 · · · π55

=


0.2 0.1 0.3 0.3 0.1
0.1 0.4 0.2 0.15 0.15
0.15 0.15 0.6 0.05 0.05
0.2 0.6 0.05 0.1 0.05
0.2 0.2 0.2 0.2 0.2


C. Performance Analysis

A comparative study of our proposed MJ-GCC strategy
with two other congestion control strategies in the literature,
namely the Integrated Dynamic Congestion Control (IDCC)
[16] and the Markovian Jump Switching Congestion Control
(MJ-SCC) [5], are summarized in this section. The IDCC
method is designed for a cascade network of ATM switches
with fixed topology, and has shown effective performance
by the authors in [16]. On the other hand, the MJ-SCC is an
extension of IDCC to the mobile environment and is designed
for a fully connected network topology. In this paper, we
select these two methods for comparison since they are both
developed based on analytical fluid flow model. Especially,
the IDCC method is considered as a bench-mark congestion
control strategy in the control community.

As shown in Tables I and II, one can observe that the
packet loss rate of the ordinary traffic by utilizing the MJ-
GCC strategy is greatly decreased. The reason is that in the
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TABLE I
PACKET LOSS RATE

Premium IDCC [16] MJ-SCC [5] MJ-GCC
Node 1 99.33% 0.029% 0.012%
Node 2 96.15% 0.034% 0.032%
Node 3 93.59% 0.017% 0.011%

Ordinary IDCC [16] MJ-SCC [5] MJ-GCC
Node1 89.51% 9.62% 2.61%
Node 2 96.50% 9.80% 1.32%
Node 3 98.85% 9.94% 1.41%

TABLE II
AVERAGE QUEUING DELAY

Premium IDCC [16] MJ-SCC [5] MJ-GCC
Node 1 ∞ 52.7 ms 42.70ms
Node 2 ∞ 47.2 ms 44.80ms
Node 3 ∞ 25.6 ms 23.70ms

Ordinary IDCC [16] MJ-SCC [5] MJ-GCC
Node 1 ∞ 570.1 ms 65.41ms
Node 2 ∞ 406.3 ms 48.22ms
Node 3 ∞ 205.3 ms 26.10ms

switching congestion control (SCC) strategy [5], one needs
to regulate the traffic compression gains in order to guarantee
that the network is working in the safe operating range (to
satisfy the physical constraints). However, in the guaran-
teed cost congestion control (GCC) strategy, the physical
constraints are expressed as a set of complementary LMIs
that affect the control parameters. Therefore a higher traffic
compression gains are possible, which in turn results in a
lower packet loss rate.

On the other hand, Table III presents the buffer character-
istics of each node for both the premium and the ordinary
traffic services based on different levels of the time-delays
having maximum bounds of h = {20; 40; 80} ms.

By inspecting the above numerical results one can ob-
serve that as the level of the delay increases our proposed
decentralized MJ-GCC approach can still maintain a robust
performance on the packet loss rate and the average queuing
delay, despite the changes in dynamical network topologies.
Indeed, the packet loss rate in the network remains less
than 0.1% for the premium traffic and less than 6% for the
ordinary traffic. The average queuing delay for the premium
traffic remains less than 53 ms and for the ordinary traffic
remains less than 70 ms.

VI. CONCLUSIONS

In this paper, the congestion control problem of mobile
Diff-Serv networks is considered. By utilizing the guaranteed
cost control theory, a novel decentralized Markovian jump
guaranteed cost congestion control (MJ-GCC) algorithm is
developed for the premium and the ordinary traffic in the
presence of changing and switching network topologies as
well as time-varying and unknown delays. The proposed
MJ-GCC strategy is shown to be capable of stabilizing
the buffer queues and maintaining the robustness of the
system with respect to the admissible time-varying delays.

TABLE III
THE QUEUING PERFORMANCE BY UTILIZING THE DECENTRALIZED

MJ-GCC APPROACH HAVING DIFFERENT DELAY LEVELS.

PLR Node 1 Node 2 Node 3
h P O P O P O

20 ms 0.012% 2.61% 0.032% 1.32% 0.011% 1.41%
40 ms 0.012% 2.91% 0.034% 4.66% 0.013% 2.12%
80 ms 0.099% 3.42% 0.037% 5.95% 0.034% 5.57%

Delay Node 1 Node 2 Node 3
h P O P O P O

20 ms 42.70 ms 65.41 ms 44.80 ms 48.22 ms 23.70 ms 26.10 ms
40 ms 51.30 ms 66.56 ms 44.90 ms 49.64 ms 24.80 ms 27.87 ms
80 ms 52.60 ms 67.03 ms 47.70 ms 50.12 ms 25.80 ms 30.48 ms

Furthermore, the mode-dependent physical constraints of
the mobile network are guaranteed by satisfying a set of
complementary LMIs. The simulation results and numerical
comparisons show that the performance of our proposed MJ-
GCC algorithm has great superiority when compared to the
other available methods in the literature.
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