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Abstract— This paper addresses the problem of set mem-
bership identification of a class of discrete-time affine hybrid
systems, switched affine models, in the presence of sensor
failures. Given a finite collection of input/output measurements
and a bound on the number of subsystems, the objective
is to identify a suitable set of affine models along with a
switching sequence that can explain the available experimental
information. Contrary to existing work, here we allow for
instantaneous failures in the measurement sensors at unknown
times. These failures lead to corrupted input/output data, that
if used in the identification process would result in substantial
identification errors. The main result of the paper shows that,
exploiting the fact that these failures are infrequent, combined
with an algebraic-geometric argument, allows for recasting
the problem into an optimization form where the objective
is to simultaneously minimize the rank of a matrix and the
number of nonzero rows of a second one. While in principle
this is a challenging, non-convex problem, exploiting recent
results on convex relaxations of rank and block-sparsity leads
to an efficient, semi-definite optimization based identification
algorithm. Finally, these results are illustrated using both
simulations and a practical example that arises in computer
vision where the aim is to analyze the activity of a person in
the presence of sensor failures.

I. INTRODUCTION AND MOTIVATION

This paper addresses the problem of robust identification
of a class of discrete-time affine hybrid systems, switched
affine models, in cases where the experimental data is
collected using sensors subject to random instantaneous
outages. Specifically, given a finite collection of input/output
measurements, some of which do not contain information
about the system to be identified, and a bound on the
number of subsystems, our objective is two-fold: (i) identify
the faulty measurements and, (ii) identify a suitable set of
affine models along with a switching sequence that can
explain the experimental data record once the faulty measure-
ments are removed. This problem arises in many practical
situations, typically involving data collected remotely and
transmitted over a channel subject to outages. In particular,
the application motivating this paper, activity recognition,
is drawn from computer vision. The ability to recognize
activities from video sequences is central to many appli-
cations, including detecting contextually abnormal activity
(both for security and assisted living scenarios), and human
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computer interfaces. Formally, this problem can be stated
as: Given a video clip containing several activities, each
one spanning an unknown time length, parse the sequence
into subsequences, each corresponding to a single activity,
classify each of these segments and determine whether or
not the entire sequence contains abnormal activities (defined
as those that are not contained in a given database). As
recently shown in [13], [8], very high recognition rates can
be achieved by postulating that the observed data is the
output trajectory of an underlying switched affine system,
where each submodel corresponds to a sub-activity. In this
context, activity recognition reduces to a switched systems
model (in)validation problem: determine whether or not each
subsystem is contained in a database of models of known
activities and associated uncertainty descriptions.

Clearly, a prerequisite for performing the above invalida-
tion is the ability to robustly identify each of the subsystems
as well as the switching sequence. Identification of switched
affine systems has been an area of intense research in the
past few years. An excellent tutorial and a summary of the
state of the art as of 2007, can be found in [14]. Later
developments include sparsification [12] and polynomial
optimization based approaches [11], [4], [3] that extended
the algebraic ideas originally proposed in [9] to handle
process and measurement noise. However, these methods fail
in scenarios of the type motivating this paper, characterized
by the presence of corrupted or missing measurements, due
for instance to occlusion, or interference or outages in the
communication channel. Indeed, in these situations, existing
algorithms would attempt to capture the faulty data by adding
spurious sub-systems and switches to the overall model
and switching sequence, leading to incorrect models. As
a consequence, in the application of interest here, activity
recognition, admissible data sequences could be labeled
abnormal.

In principle, the problem above can be circumvented by
restricting the identification algorithm to use only those
measurements known to be reliable (note that data records
with gaps pose no particular problems to the algebraic
methods mentioned above). However, the main difficulty
in pursuing this approach is that neither the underlying
dynamics, the switching sequence nor the location of the
faulty measurements are a-priori known1.

1Clearly if the underlying dynamics and switching sequence are known,
faulty measurements can be identified through a model (in)validation step.
Conversely, if the location of the faulty measurements is known, the under-
lying system can be identified by eliminating these from the data record.
The switching sequence can then be identified via model (in)validation.
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To address this difficulty, in this paper we will exploit the
fact that the failures under consideration are sparse. When
combined with an algebraic geometric identification algo-
rithm, this observation allows for recasting the identification
with faulty measurements problem into an optimization form
where the objective is to simultaneously minimize the rank
of a matrix and the number of nonzero rows of a second
one, both generated from the experimental information. Fi-
nally, the use of recently developed convex relaxations for
problems of this type, leads to a computationally efficient
algorithm, based on the solution of a semi-definite optimiza-
tion problem.

These results are illustrated using both simulations and
real data involving an activity recognition example in the
presence of sensor failures.

II. PRELIMINARIES

For ease of reference, in this section we summarize the
notation used in the paper and recall some results that will
be used to recast the identification problem into a convex
optimization form.

A. Notation

By x and M, we, respectively, denote a vector in Rn
and a matrix in Rn×m. ‖x‖∞

.= supi |xi| is the ∞-norm
of a vector. ||M||row,0 is the number of nonzero rows of
the matrix M. I denotes the identity matrix of appropriate
dimensions. M � N means the matrix M −N is positive
semidefinite. Veronese map of degree s, νs, is a mapping

from Rn to Rm with m =
(
s+ n− 1

s

)
, defined by

νs([x1, . . . , xn]T ) = [. . . , ξs, . . .]T

where ξs
.= xs11 x

s2
2 . . . xsn

n ,
∑
si = s, e.g. all possible

monomials of order s, in lexicographical order.

B. The Problem of Moments

Given a sequence of scalars {mi}ni=1, the problem of
moments is to determine whether there exist a probability
measure that has {mi} as its first n moments (see references
[15], [5], [1] for a historical review and details of the
problem). In particular, in the sequel we are interested in
probability measures that are supported on bounded sym-
metric intervals of the real line. In this case, the following
theorem provides necessary and sufficient conditions for the
existence of such a measure.

Theorem 1: Given a sequence {mi : i = 1, 2, . . . , n},
there exists a probability measure supported on [−ε, ε] such
that

mi = Eµ(xi) =
∫ ε

−ε
xiµ(dx)

if and only if
• when n = 2k + 1 (odd case), the following holds

εM(0, 2k) �M(1, 2k + 1) (1)

M(1, 2k + 1) � −εM(0, 2k) (2)

• when n = 2k (even case), the following holds

M(0, 2k) � 0 (3)

ε2M(0, 2k − 2) �M(2, 2k) (4)

where M(i, i+ 2j) is the (j + 1) by (j + 1) Hankel matrix
formed from the moments, that is:

M(i, i+ 2j) .=


mi mi+1 . . . mi+j

mi+1 . . . . . . mi+j+1

... . . . . . .
...

mi+j . . . . . . mi+2j

 , (5)

and where m0 = 1.
Proof: Direct application of Theorem III.2.3 and The-

orem III.2.4 in [5].
The problem of moments, especially its multivariate ex-

tensions, has been used in the optimization community to
convert polynomial optimization problems into a hierarchy of
convex semidefinite programming problems with increasing
size ([6], [7]). In this paper, we apply similar ideas to
feasibility problems involving a combination of polynomial
and rank constraints. By exploiting the problem structure,
we show that it suffices to use one dimensional distributions
for which the moments can be precisely characterized by
fixed sized Linear Matrix Inequalities of the form given in
Theorem 1.

III. PROBLEM SETUP

In this paper we consider the problem of set membership
identification of single input single output, switched autore-
gressive exogenous (SARX) linear models of the form:

yt =
∑na

i=1 ai(σt)yt−i +
∑nc

i=1 ci(σt)ut−i + ηt

ỹt =
{
yt if ft = 0
θt otherwise

(6)

where u, ỹ and η denote the input, output and process
noise respectively; ft is an unknown sparse binary sequence
that represents the reliability of measurements (i.e. ft = 1
for time instances when the measurement sensor fails), θt
denotes the faulty measurements, and σt ∈ {1, . . . , s} is
the discrete state or mode of the system. Different values
of σt correspond to s different hybrid submodels. Given
the number of submodels s and input/output data over the
interval [t0, T ], our goal is to find a model of the form (6)
that interpolates this experimental data within a given process
noise level ‖ηt‖∞ ≤ ε and with as few faulty measurements
as possible.

In the ideal case of noiseless measurements and sensor
faults, Vidal et al. [16], [9] proposed an elegant algebraic
geometric solution to the identification of SARX models.
The case where the system is subject to bounded process
and measurement noise, was recently addressed in [11], [4],
[3], by exploiting a combination of results from the classical
theory of moments and convex optimization. In this paper, we
further extend this framework to accommodate (infrequent)
faulty measurements, due for instance to temporary sensor
faults.
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IV. MAIN RESULTS

In this section we present the main result of the paper, a
semi-definite programming based algorithm for identifying
SARX models in the presence of measurement noise and
sensor faults. Towards this goal, we first recall the main
result in [11] that reduces the SARX identification problem
to a constrained rank minimization. In the absence of sensor
faults (i.e. ỹt = yt), (6) can be rewritten as

b(σt)
T rt = 0 (7)

where rt = [−ỹt + η, ỹt−1, . . . , ỹt−na
, ut−1, . . . , ut−nc

]T

and b(σt) = [1, a1(σt), . . . , ana
(σt), c1(σt), . . . , cnc

(σt)]T .
Next, note that (7) holds for some σt iff

ps(r) =
s∏
i=1

(bi
T rt) = cs

T νs(rt) = 0 (8)

holds for all t independent of which of the s submodels is
active at time t. In the above equality, bi ∈ Rna+nc+1 is the
parameter vector corresponding to the ith submodel, rt is
the regressor vector at time t, and νs(.) is the Veronese map
of degree s2. Rewriting rt explicitly as a combination of the
known regressor vector r̃t of measurements and inputs, and
unknown noise terms ηt; and collecting all data into a matrix
form leads to:

Vscs
.=

 νs(r̃t0 , ηt0)T
...

νs(r̃T , ηT )T

 cs = 0 (9)

Thus, in this context, the identification problem reduces to
finding an admissible noise sequence {ηt} that renders Vs

rank deficient, and a vector cs in its null space, leading to
the following feasibility problem:

find ηt
subject to rank[Vs(r̃t, ηt)] ≤ h

‖ηt‖∞ ≤ ε
(10)

where h is the number of columns of Vs(r̃t, ηt) minus
one. The main result in [11] shows that this problem can
be recast into a rank minimization problem affine in the
optimization variables (via a moments argument) and relaxed
to an SDP optimization. Unfortunately, the reasoning above
breaks down in the presence of sensor failures. In this case,
when a faulty measurement is lifted using the Veronese map,
the rows of the embedded data matrix that contain the faulty
measurement are typically far from the row space of the
“clean” Veronese map, rendering problem (10) infeasible. As
we show in the sequel, this difficulty can be circumvented by
reducing the problem to a rank minimization with additional
sparsity constraints. Briefly, the main idea is to introduce a
(row sparse) error matrix E, with the same dimensions as Vs

that, in a sense to be made precisely later, compensates the
effect of the corrupted measurements. The first step towards
this goal is to reformulate Problem (10) as a feasibility

2This is essentially a noisy version of the hybrid decoupling constraint
proposed in [16].

problem in terms of the moments of an unknown probability
distribution function as follows:

find m(t)

subject to rank[Ṽs(r̃t,m(t))] ≤ h
(1)− (2) ∀m(t) if s is odd
(3)− (4) ∀m(t) if s is even

(11)
where m(t) = [m(t)

1 , . . . ,m
(t)
s ] is the moment sequence

corresponding to ηt and Ṽs(r̃t,m(t)) is a matrix linear in the
moments, obtained by replacing each kth degree monomial
ηkt in Vs(r̃t, ηt) with the corresponding kth order moment
m

(t)
k .
Theorem 2: Problem (10) is feasible if and only if prob-

lem (11) is feasible. Moreover, if c belongs to the nullspace
of Ṽs(r̃t,m(t)) in a solution of (11), then there exists a
noise sequence η∗t with ‖η∗t ‖∞ ≤ ε such that c belongs to
the nullspace of Vs(r̃t, η∗t ).

Proof: If (10) is feasible, then there exists some
sequence η∗t such that Ṽs(r̃t,m∗(t)) with m∗(t) =
[η∗t , (η

∗
t )2, . . . , (η∗t )s] (i.e. all distributions have point sup-

port) has rank r1 ≤ h and m∗(t) satisfies the LMI constraints
(1)-(2) or (3)-(4). Hence, (11) feasible.

Consider now a feasible solution m∗(t) of (11). From
Theorem 1, feasibility of the LMIs guarantees the existence
of T − t0 + 1 measures µ∗(t), each supported on [−ε, ε] and
having m(t) as its moments. Let c be in the nullspace of
Ṽs(r̃t,m∗(t)) (i.e. Ṽs(r̃t,m∗(t))c = 0). Thus, for each row
of Vs, Eµ∗(t)

[
νs(r̃t, ηt)T

]
c = Eµ∗(t)

[
νs(r̃t,m(t))T c

]
= 0.

Since νs(r̃t, ηt)T c is a polynomial function of ηt (hence
continuous) and µ∗(t) is supported on [−ε, ε], from direct
application of the mean value theorem for integration it
follows that there exist η∗t ∈ [−ε, ε] for all t such that
νs(r̃t, η∗t )T c = 0. Thus, whenever the nullspace of the
solution of (10) is non-trivial, so is that of (11), which proves
the theorem.

As indicated before, in the presence of faulty measure-
ments, (11) is typically no longer feasible, since the corrupted
measurements do not satisfy (7), or equivalently, there is
no vector c 6= 0 such that Ṽs(r̃t,m(t))c = 0 for all
t. The effect of the corrupted rows can be eliminated by
introducing an error matrix E such that Ṽs(r̃t,m(t)) + E
is rank deficient. Further, under the assumption that faults
are infrequent, E should be row sparse (that is, only a
few rows, corresponding to the rows in Ṽ affected by
the corrupted measurements, should be non-zero). From the
reasoning above, it follows that faulty measurements can
be accommodated by considering the following optimization
problem:

minimizem(t),E ||E||row,0
subject to rank[Ṽs(r̃t,m(t)) + E] ≤ h

(1)− (2) ∀m(t) if s is odd
(3)− (4) ∀m(t) if s is even.

(12)

Note that if there are k faults, E would have at most k(na+1)
nonzero rows, since a single faulty measurement affects na+
1 rows of Ṽ. Therefore, minimizing the nonzero rows of E
amounts to minimizing the number of faulty measurements.
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Theorem 3: Let the optimum of (12) be e and let {ri}ei=1

be the indices of nonzero rows of E∗ in the optimal solution.
If c is a vector in the null space of Ṽs(r̃t,m(t)∗) + E∗,
then, for t ∈ [t0, T ]\{ri}ei=1, there exists a noise sequence
η∗t with ‖η∗t ‖∞ ≤ ε such that c belongs to the nullspace of
Vs(r̃t, η∗t ).

Proof: Since c is in the nullspace of N .=
Ṽs(r̃t,m(t)∗) + E∗, it is also in the nullspace of the
submatrix N′ that is formed by eliminating the rows of
N that correspond to {ri}ei=1. Note that only Ṽs(r̃t,m(t)∗)
contributes to N′, since the corresponding rows in E∗ are all
zeros. Therefore, N′c = 0 together with the moment con-
straints in (12) implies that, for all t ∈ [t0, T ]\{ri}ei=1, there
exists measures µ∗(t), each supported on [−ε, ε] and having
m(t) as their moments. Hence Eµ∗(t)

[
νs(r̃t, ηt)T

]
c = 0.

Similar to the proof of Theorem 2, we can invoke the
mean value theorem for integration to conclude that there
exist η∗t ∈ [−ε, ε] for all t ∈ [t0, T ]\{ri}ei=1 such that
νs(r̃t, η∗t )T c = 0.

Intuitively, the result above states that, in the presence
of outliers, it is possible to modify just a few rows of the
Veronesi map (precisely those corrupted by the outliers)
in such a way that the modified matrix and the ideal,
uncorrupted Veronesi map have the same null space, for some
admissible noise sequence {η∗}. It follows that, if there are
enough uncorrupted rows to completely characterize this null
space, then it can be identified by solving Problem (12).
Once this null space has been identified, the coefficients of
each submodel can be recovered by proceeding as in [16],
[9]. Note that this approach is capable of handling faulty
measurements of the input sequence as well, since these also
result in corrupted rows in the embedded data matrix.

Remark 1: It is worth emphasizing that in the proposed
approach the matrix E enters linearly the constraints in (12)
and its elements are decoupled from those of the moments
sequence m(t). For comparison, introducing a matrix E in
(10) leads to polynomial constraints involving both the ele-
ments of ηt and E (originating from expanding the constraint
rank[Vs(r̃t, η∗t ) + E] ≤ h), hence necessitating the con-
sideration of the joint moments. Similarly, working directly
with the sequence θt, unknowns yt and ft in (6), requires
considering the joint moments of the sequences {ηt}, {θt},
{yt} and {ft}, substantially increasing the computational
complexity.

A. Convex relaxations for rank and row sparsity

In principle, Problem (12) is generically NP-hard, due to
both, the objective function and the rank constraint. However,
as we show next, efficient convex relaxations can be obtained
by combining recent results on rank minimization and block
sparsification. The main idea is to first replace the objective
function by

rank[Ṽs(r̃t,m(t)) + E] + γ‖E‖row,0

where γ is a suitably chosen Lagrange multiplier. Next, note
that enforcing row sparsity of E is equivalent to enforcing
sparsity of a vector formed by norms of its rows. Following

the arguments in [17], [10], we relax ‖E‖row,0 to
∑
i ‖Ei‖2,

where Ei denotes the ith row of E, and we relax rank to
nuclear norm. Finally, using a semi-definite characterization
of the nuclear norm [2], combined with a re-weighted
heuristic, leads to the following algorithm, based on solving
a sequence of convex optimization problems:

Algorithm 1: SARX Identification with outliers
initialize:
k = 0
W

(0)
y = Im×m

W
(0)
z = In×n

w
(0)
i = 1√

Np

δ = small positive constant
REPEAT

Solve

min
m,Y (k),Z(k),E(k)

Tr
[
W (k)
y Y (k)

]
+ Tr

[
W (k)
z Z(k)

]
+γ(k)

∑Np

i=1 w
(k)
i ‖E

(k)
i ‖2

subject to[
Y (k) Ṽs(m(k)) + E(k)

[Ṽs(m(k)) + E(k)]T Z(k)

]
� 0

and (1)-(2) ∀m if s is odd,
or (3)-(4) ∀m if s is even.

Let Ṽs(m(k)) + E(k) = UDV T .
Set ε = D(m,m).
Set W (k+1)

y = (Y (k) + εI)−1.
Set W (k+1)

z = (Z(k) + εI)−1.
Set w(k+1)

i = 1

‖E(k)
i ‖2+δ

.

Set γ(k+1) = γ(0) ‖W
(k)
y ‖2+‖W (k)

z ‖2
2

‚‚‚[w
(k)
1 ... w

(k)
Np

]
‚‚‚
2

.

Set k = k + 1.
UNTIL (a convergence criterion is reached)
RETURN Ṽs(m(k)),E(k),m(k)

where Ṽs(r̃,m(k)) is denoted by Ṽs(m(k)) for brevity and
where δ > 0 is a small regularization constant. The initial
value of the Lagrange multiplier, γ(0) is a tuning parameter
that controls the number of measurements that are discarded.
A small value of γ(0) will typically result in a large number
of measurements labeled as faulty and dropped. On the other
hand, a large value of γ(0) will result in fewer discarded
measurements and hence may preclude finding a rank de-
ficient solution. Once a suitable value of γ(0) is selected,
the update rule for γ(k) in the algorithm above attempts to
keep the relative weights of the rank minimization and row
sparsity enforcing terms approximately constant throughout
the optimization.

V. ILLUSTRATIVE EXAMPLES

In this section we illustrate the ability of the proposed
method to correctly identify a SARX system in the presence
of outliers using both an academic example and a non-trivial
computer vision application.
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A. Academic Example

Consider a hybrid system that switches among the follow-
ing two ARX subsystems

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 + ηt (Submodel 1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 + ηt (Submodel 2)

modeled as

yt = p1(σt)yt−1 + p2(σt)yt−2 + p3(σt)ut−1 + ηt

ỹt =
{
yt if ft = 0
θt otherwise

(13)
where σt ∈ {1, 2} depending on which model is active at
time t. The system experimental data consists of T = 100
input/output measurements obtained by setting σt = 1 for
t ∈ [1, 25] ∪ [51, 75] and σt = 2 for t ∈ [26, 50] ∪ [76, 100],
corrupted with noise bounded by ‖η‖∞ = 0.23. The mea-
sured input u(t) used to drive the system is randomly drawn
from a zero mean unit variance Gaussian distribution. Sensor
faults were simulated at t ∈ {10, 50, 80} by using values
θt sampled from a zero mean Gaussian distribution with
standard deviation equal to five times the standard deviation
of the sequence y(t). The parameter values used for the
simulation are shown in Table I together with the results
obtained by our method and the original algebraic method
of [16]. Figures 1 and 2 show the clustering of data into
different submodels. As seen there, the proposed method
outperforms the method in [16].

True Moments-based GPCA

Submodel 1
p1 0.2000 0.0725 -0.0876
p2 0.2400 0.2953 0.4065
p3 2.0000 1.9645 2.0644

Submodel 2
p1 -1.4000 -1.2738 -1.3972
p2 -0.5300 -0.4269 -0.3278
p3 1.0000 1.0867 -10.3061

TABLE I
ESTIMATED AND TRUE VALUES OF PARAMETERS

0 10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2
GPCA Clustering

Fig. 1. Clustering via GPCA.

B. Computer vision application: Activity analysis with sen-
sor faults

Next, we illustrate the ability of the method to handle
realistic scenarios by applying it to a non–trivial computer
vision problem: human activity analysis. The goal here is to

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Moment Clustering

Fig. 2. Clustering via moments-based method. The outlying rows detected
are denoted with red stars and the true outliers are denoted by green circles.

segment a video clip containing multiple activities into its
constituent sub-activities and to find a model characterizing
each of these, as a first step towards recognizing contextually
abnormal situations. The data used in this particular example
consists of 55 frames extracted from a video sequence
of a person walking and bending in front of the camera.
Three randomly chosen frames were corrupted with large
amounts of noise to simulate instantaneous sensor failures
(in this case interference in the wireless communication
channel from the sensor to the base station). Figure 3 shows
some sample frames from the sequence. Half way through
the sequence the person bends down, then stands up and
resumes walking. These frames were modeled as the output
of an underlying switched affine system, with 2 submodels,
each corresponding to a given activity. In particular, the
horizontal3 position of the center of mass was modeled as the
output of a first order switched affine autoregressive system:

xt = a(σt)xt−1 + d(σt) + ηt (14)

where a(σt) and d(σt) are unknown parameters. We set
‖ηt‖∞ = 3, allowing ±3 pixels noise.

For the measurements, we use a simple tracker based on
background subtraction to estimate the location of the center
of mass of the person in each frame. Sensor failures were
captured with the following measurement equation:

x̃t =
{
xt if ft = 0
θt otherwise (15)

where ft is an unknown (yet sparse) binary sequence with
ft = 0 for healthy conditions and ft = 1 for times were the
sensors fail, and where θt is random Gaussian noise whose
mean and standard deviation is chosen to be equal to those
of xt.

Figures 4 and 5 compare the results of applying the
proposed identification method and GPCA in this scenario.

3It may seem more natural to use the vertical position. However, this
would have resulted in 3 segments, corresponding to roughly no vertical
motion, downward and upward motion, while there are only two different
activities involved.
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Frame 6 Frame 8 Frame 23

Frame 33 Frame 45 Frame 50

Fig. 3. Sample clean and corrupted frames from the video.
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Moment Clustering

Fig. 4. Activity segmentation via the proposed method. The outlying rows
detected are denoted with red stars and the true outliers are denoted by
green circles.

As illustrated there, while the proposed method is able to
identify the underlying subsystems, the switching sequence
and the corrupted frames, leading to the correct segmen-
tation, GPCA fails to do so. Although proposed method
is computationally more expensive than GPCA (i.e. the
former requires solving an SDP whereas the latter requires
computing a singular value decomposition), it still leads to a
tractable convex problem and performs significantly better.

VI. CONCLUSIONS

In this paper we considered the problem of identifying a
SARX model from noisy, potentially faulty measurements.
This scenario is motivated by several application domains,

0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2
GPCA Clustering

Fig. 5. Activity segmentation via GPCA.

including computer vision, where data is transmitted through
channels subject to interference or outages. Under these con-
ditions, existing algorithms will attempt to identify a model
that also fits the corrupted data, by adding, if necessary,
spurious subsystems, leading to an incorrect overall model.
The main result of the paper shows that this situation can be
avoided by recasting the problem into a rank minimization
form, subject to additional block-sparsity constraints. While
in principle this leads to challenging NP hard optimization
problems, recent results on convex relaxations of rank and
block-sparsity can be exploited to obtain a computationally
tractable algorithm. These results were illustrated both with
synthetic data and a non-trivial computer vision example:
segmentation of a video clip containing multiple activities
in the presence of corrupted frames. Research is currently
underway seeking to extend these results to more general
switched non-linear systems.
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