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Abstract— In this paper, we consider linear networked es-
timation strategies using the results from structured systems
theory. We are interested in estimating a linear dynamical
system where the observations are distributed over a network
of agents. In this context, we devise both state fusion and obser-
vation fusion strategies that guarantee a stable estimator. We
assume global observability, i.e., given all of the observations,
the dynamical system is observable. To derive our results, we
employ the genericity properties of dynamical systems that
are studied in the structured systems theory. The genericity
properties rely on the graphical properties of the dynamical
systems and their outputs, and thus, depend on the zero
and non-zero pattern of the system and output (observation)
matrices. In particular, we study the generic observability of
networked estimators and derive results on the topology of the
agent communication graph to ensure a stable estimator. We
then focus on the design of local estimator gains that results
into iterative procedures to solve a Linear Matrix Inequality
(LMI) with structural constraints.

I. INTRODUCTION

Networked estimation theory is essential in the study of
autonomous and multi-agent systems that are deployed to
estimate a physical phenomenon and/or monitor the behavior
of a hazardous environment. Such networked systems typi-
cally consists of power-constrained, relatively cheap sensors
and/or robots that can implement local communication and
have limited measurements of the underlying system. The
goal of the agents is to implement a reasonable estimator of
the underlying dynamics under such constraints.

A variety of solutions exist for networked estimation. The
literature on this subject exists from earlier work in [1], [2]
and references therein, where parallel Kalman filter archi-
tectures are considered, generally, for all-to-all connected
networks, to more recent work in [3], [4], [5], [6], where
consensus-based strategies are discussed for sparsely con-
nected networks. Consensus-based schemes are challenged
with a large number of consensus iterations in between
every two time-steps of the dynamics, and, in general, are
impractical as a large number of local communication is
resource-heavy at the agents.

Recently, distributed estimators with a focus on single
consensus-step, only one information exchange among the
agents, is considered ranging from scalar systems [7] to vec-
tor systems [8], [9], [10]. In general, none of the related work
has addressed the notion of network observability as single-
step observability [8], [10] and/or local observability [11]
(each agent observable with its measurements) is assumed.
The problem of observability, in the most general setting, is
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non-trivial in networked estimation as it requires knowledge
the exact agent communication graph and the exact fusion
rule (weights assigned to each neighbor) in order to construct
the observability Gramian. Furthermore, when the parameters
of the underlying system depends on their operating point,
for example, in linearized models, an apriori computation of
observability is not possible.

In this paper, we use the structured systems theory [12],
[13], results to address the generic observability of a system
where the emphasis is on the sparsity pattern of the system
matrices and the non-zero elements are considered as free
parameters. If such generic properties are true for one choice
of free parameters, they are true for almost all choices
of free parameters; the space where they are not true is
some proper algebraic variety in the parameter space with
Lebesgue measure zero [14], [12]. Hence, the generic proper-
ties provide a novel technique to address observability and/or
controllability of networked estimators/controllers, as they
are a departure from the conventional algebraic rank-based
methods to structural graph-based techniques. Related work
on using structured systems theory for distributed systems
can be found in [15] where a global system is divided into
subsystems and generic subsystem properties are considered.
On the other hand, this paper concerns with networked
systems that result from inter-agent communication.

The next question after formulating the observability of
networked estimators is to design the local estimator gains.
Since the estimation is distributed, the local observer gains
constitute a block-diagonal global gain matrix. This structure
on the gain matrices prevents us from directly using stan-
dard Linear Matrix Inequality (LMI) and Lyapunov-based
arguments. A particular approach that we employ is to use
a linear approximation of the underlying non-convex trace
objective [16]. An iterative procedure can be implemented
on this linear approximation resulting into structured gain
for the networked system [16]. A similar technique is used
in [17] to study a wireless control network.

We now describe the rest of the paper. Section II provides
preliminary material on basic dynamical system estima-
tion and structured systems theory, whereas, Section III
presents the problem formulation. We present the generic
observability in Section IV and consider the estimator gain
design in Section V with simulations in Section VI. Finally,
Section VII concludes the paper.

II. BACKGROUND AND PRELIMINARIES

Consider a discrete-time linear dynamical system repre-
sented by the following state-space model,

xk+1 = Axk + vk, (1)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2112



xk ∈ Rn is the state vector, A = {aij} ∈ Rn×n is the system
matrix, and vk ∼ N (0, V ) is the system noise. We assume
that the dynamical system in (1) is monitored by a network
of N agents such that agent i has the following observation
model,

yi
k = Cixk + rik, (2)

where yi
k ∈ Rpi is the output vector at agent i, rik ∼

N (0, Ri) is the output noise, and Ci is the output matrix
at agent i.

A. Centralized Kalman filter

We use the following notation,

yk =

 y1
k
...

yN
k

 , C =

 C1

...
CN

 , rk =

 r1k
...
rNk

 , (3)

where rk ∼ N (0, R) is the global observation noise, R =
blockdiag[R1, . . . , RN ], and C = {cij} is the global output
matrix. Let x̂c

k|k be the centralized Kalman estimator [18] at
time k given all the observations, yk, up to time k. It can
be shown that the error in the centralized Kalman estimator,

êck|k = xk − x̂c
k|k, (4)

is given by

êck|k = (A−KCA)êck−1|k−1 + ηk, (5)

where Kc is the centralized Kalman gain and the vector
ηk collects the remaining terms that are independent of
êck−1|k−1. It is well known that the centralized Kalman error,
êck|k can be made stable if and only if (A,C) is observable.
In other words, a Kalman gain matrix, Kc, exists such that
ρ(A−KCA) < 1, if and only if (A,C) is observable, where
ρ(·) is the matrix spectral norm.

B. Structured systems theory

Conventional notion of n-step (A,C)-observability is
where the following Gramian,

O =
[
CT ATCT . . . (An−1)TCT

]T
, (6)

has full rank or the matrix OTO is invertible. Checking for
full rank or invertibility relies on the exact values of each
element in the matrices A and C. However, in many practical
applications, only the sparsity (zero and non-zero pattern) of
these matrices is known and non-zero elements are subject
to change.

Structured systems theory studies the zero and non-zero
pattern of system matrices, A and C, and consider the non-
zero elements as free parameters. For a number of system
theoretic properties, e.g., controllability and observability
among others, it turns out that if a property is true for
one particular choice of these free parameters, it is true for
almost all choices of the free parameters, and, therefore, is
called a generic property of the system. The choices of free
parameters where such generic properties do not hold lie in
some proper algebraic variety in the parameter space, see

[14], [12]. A proper algebraic variety has Lebesgue measure
zero, justifying the use of almost all, for more details, see
[12], and the references therein. In the following, we will
review the generic observability of linear systems. Other
generic properties are elaborated in [12] and in the references
therein. Below, we present the structured system theoretic
approach to generic observability.

Generic observability: To describe the generic observabil-
ity, we first revisit some basic graph theoretic definitions.
Let X = {x1, . . . , xn} denote the state set, and let Y =
{y1, . . . , yp} (where p = p1 + . . . + pN ) denote the output
set of the system in (1)-(3). Let G = (V,E) define the
system digraph, where V = X ∪ Y is the vertex set, and
E is the edge set containing directed edges, (v1, v2) ∈ E,
of the form v1 → v2 with v1, v2 ∈ V . The edge set E
is defined as EA ∪ EC , where EA = {(xj , xi) | aij 6=
0} and EC = {(xj , yi) | cij 6= 0}. A path of length
` from v1 ∈ V to v` ∈ V is such that there exists a
sequence of vertices, v2, v3, . . . , v`−1 with each subsequent
edge, (v1, v2), (v2, v3), . . . , (v`−1, v`) ∈ E. Here v1 is the
begin-vertex of the path and v` is its end-vertex. A path is
simple if each vertex contained in a path occurs only once. A
path is disjoint from another path if they consist of disjoint
set of vertices. A set of paths is mutually disjoint when each
two of them are disjoint. A simple path is said to be a Y -
topped path if the path has its end-vertex in Y . A set of
mutually disjoint Y -topped paths is called a Y -topped family.
A cycle is a simple path that begins and ends with the same
vertex. A set of mutually disjoint cycles is called a cycle
family. With these definitions, we now describe the generic
observability.

Theorem 1: A dynamical system is generically observable
if and only if: (i) every state vertex is the begin-vertex of a
Y -topped path; and (ii) there exists a disjoint union of a Y -
topped path family and a cycle family that covers all of the
states vertices.
The above theorem is provided for generic controllability
in [12], where other equivalent graph-theoretic conditions to
generic controllability (observability) are also defined that
we omit here. The generic controllability theorem1 has been
proved in [13]. Following is an immediate corollary to the
above theorem.

Corollary 1: A dynamical system with each diagonal en-
try being non-zero in the system matrix, A, is generically
observable if and only if every state vertex is the begin-
vertex of a Y -topped path.
It can be easily verified that a non-zero diagonal leads to
a disjoint cycle family with (x1, x1), . . . , (xn, xn) as its
elements. This cycle family covers all of the state vertices
and the condition (ii) of Theorem 1 is implied by a system
matrix with a non-zero diagonal.
Examples: We now provide some examples to illustrate the
concepts described before. Consider the following tridiagonal

1We are not familiar with a reference where a generic observability
theorem is proved. Nevertheless, since observability and controllability are
dual to each other, the theorem can be readily established as (A,C)-
observability is implied by (AT , CT )-controllability.
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Fig. 1. (a) A generically observable system. (b) An unobservable system.

system (n = 3) with a single scalar observation, i.e.,

A =

 × × 0
× × ×
0 × ×

 , C =
[
× 0 0

]
. (7)

The system digraph, G, is shown in Fig. 1(a). From Corol-
lary 1, we only need to verify the condition (i) in Theo-
rem 1. To this end, note that (x1, y1), {(x2, x1), (x1, y1)},
and {(x3, x2), (x2, x1), (x1, y1)} are three Y -topped paths
satisfying the condition (i). Hence, the above system is
generically observable. In fact, it can be easily verified that
any multi-diagonal system is generically observable with a
single scalar observation.

As another example, consider the following lower trian-
gular system,

A =

 × 0 0
× × 0
0 × ×

 , C =
[
× 0 0

]
, (8)

whose digraph, G, is shown in Fig. 1(b). Here, again we
only need to verify the condition (i) in Theorem 1, and we
note that a Y -topped path does not exist with both x2 and
x3 being the begin-vertices. It can be verified that the only
single scalar observation that makes this system observable
is through the output matrix C = [0 0 ×]T . These examples
can also be verified using the conventional observability
definition.

III. PROBLEM FORMULATION

Consider the discrete-time linear dynamical system of (1)
monitored by a network of N agents (2). We assume that
the agents are able to communicate according to a topology,
i.e., i ↔ j implies that agent i and agent j are connected.
Let the agent communication graph be denoted by, Ga =
(Va, Ea), where Va = {1, . . . , N} is the vertex set and Ea =
{(i, j) | i↔ j} is the edge set. Let Di = {i} ∪ {j | (i, j) ∈
E} denote the extended neighborhood of agent i.

Let x̂i
k|m be the state estimate at time k and agent i given

the outputs until time m from agent i and its neighbors, j ∈
Di.. We implement the following (Kalman-type) estimator at
agent i:
Predictor and state fusion: The local predictor at agent i is
given by

x̂i
k|k−1 =

∑
j∈Di

WijAx̂
j
k−1|k−1, (9)

where the state fusion is carried out by the diagonal weight
matrix Wij ∈ Rn×n that agent i assigns to each element
j ∈ Di, such that Wij ≥ 0 (≥ represents an element-wise
operation) and

∑
j∈Di

Wij = In. Clearly, for no state fusion,
we can choose Wii = In.
Estimator and output fusion: The local estimator at agent i
is given by

x̂i
k|k = x̂i

k|k−1 +Ki
k

∑
j∈Di

uijC
T
j (y

j
k − Cjx̂

i
k|k−1), (10)

where Ki
k is the local estimator gain and the output fusion

is carried out by the weight uij ∈ R. Clearly, for no output
fusion, we can choose uii = 1 and uij = 0 for j 6= i.

We assume that the dynamical system is globally observ-
able, i.e., (A,C) is observable (with C defined in (3)). If
Wii = In for each agent i (this implies Wij = 0,∀j 6= i
as they add to identity), i.e., there is no state fusion, then
each local Kalman filter (9)-(10) is observable if and only if
(A,
∑

j∈Di
uijC

T
j Cj) is observable at each agent i. Clearly,

global observability of the system does not imply this local
observability through output exchange alone.

In this paper, we are interested in the observability of local
Kalman filters by choosing appropriate local weight matrices
Wij . In other words, what communication strategy should the
agents employ to implement the local predictor in (9) such
that the networked estimator is observable.

We next consider the design of local estimator gain
matrices, Ki

k, at each agent, i. In particular, this is equivalent
to solving a (Lyapunov thoeretic) Linear Matrix Inequality
(LMI) with structural (block-diagonal) constraints on the
objective. Observability (controllability) guarantees an un-
constrained solution to the related LMI, but a constrained
(structured) solution prevents one to directly apply these re-
sults. In Section V, we provide a method to solved structured
LMIs that is based on a iterative procedure after a linear
approximation of the underlying non-convex trace objective.

IV. GENERIC LOCAL OBSERVABILITY

In this section, we show that the local Kalman filters,
not observable through output fusion alone, can be made
observable by using state fusion. To this end, we derive the
error dynamics at each local estimator (9)-(10) and then build
the networked estimator error. Define

eik = xk|k − xi
k|k, (11)

to be the estimation error at agent i and ek =
[(e1k)

T , . . . , (eNk )T ]T to be the network estimator error, then
it can be verified that

ek = (W (I ⊗A)−KkDCW (I ⊗A))ek−1 + qk, (12)

where W = {Wij} is the global weight matrix, i.e., a
collection of the local weight matrices,

Kk = blockdiag[K1
k , . . . ,K

N
k ],

DC =


∑

j∈D1
u1jC

T
j Cj

. . . ∑
j∈DN

uNjC
T
j Cj

 ,

2114



Fig. 2. System digraphs at agent 1, 2, and 3.

and qk collects the remaining terms, a weighted linear
function of the system and output noise alone. Note that
when Wii 6= In, each local error process, eik, is coupled
with the error processes at the rest of the agents through the
agent communication graph, Ga.

A. Illustration

We now show that the addition of state fusion by choosing
a non-identity Wii at each agent can lead to the stability of
the networked estimator error assuming the system is glob-
ally (A,C) (with C defined in (3)) observable. Comparing
(12) to (5), we note that the stability of the networked esti-
mation error is given by the observability of the following:

(W (IN ⊗A), DC). (13)

Note here that the only constraint on the local weight
matrices, Wij , is that they are diagonal and stochastic (non-
negative and sum to identity). For the sake of clarity, we
assume that uij = 0, ∀ i 6= j, to specifically study the effect
of fusion on local predictors in the following discussion.

Consider N = 3 agents and the system matrix, A, to be
of the form,

A =

 × × 0
0 × 0
0 × ×

 , (14)

with the output matrices given by C1

C2

C3

 =

 × 0 0
0 0 0
0 0 ×

 . (15)

The system digraph corresponding to each agent is shown
in Fig. 2. Clearly, none of the agents is observable with the
given observation matrices. This is because agent 2 has no
observation and x3 at agent 1 and x1 at agent 3 are not
the begin vertices of any Y -topped path. We now allow the
following agent communication graph, Ga: 1↔ 2↔ 3; i.e.,
choose the following weight matrix, W ,

W =

 × × 0
× × ×
0 × ×

⊗ In. (16)

With this W , the networked system now becomes nN
dimensional and the observability is according to (13). The
new system matrix is now given by W (IN ⊗A) and has the

Fig. 3. System digraph for the networked system in Fig. 2 with agent
communication graph, 1 ↔ 2 ↔ 3.

following sparsity pattern,

W (IN ⊗ A) =



× × 0 × × 0 0 0 0
0 × 0 0 × 0 0 0 0
0 × × 0 × × 0 0 0
× × 0 × × 0 × × 0
0 × 0 0 × 0 0 × 0
0 × × 0 × × 0 × ×
0 0 0 × × 0 × × 0
0 0 0 0 × 0 0 × 0
0 0 0 0 × × 0 × ×


(17)

and the digraph is shown in Fig. 3, where the new links added
because of the W are shown in black-dashed and the original
links are greyed out. Note that the previous un-observable
networked estimator of Fig. 2 is now observable as each state
is the begin-vertex of some Y -topped path. For the sake of
clarity, we have omitted some of the redundant links added
by state fusion.

B. Main results

With the help of the above discussion, we now provide
the following results.

Lemma 1: Let the system be globally (A,C) observable
with each diagonal entry being non-zero in the system
matrix, A. If the agent communication graph, Ga, is strongly
connected then the networked estimator in (9)-(10) is gener-
ically observable.

Proof: From Corollary 1, we only need to verify the
condition (i) of Theorem 1. To this end, note that a strongly
connected communication graph on the agents implies that
each lth state variable is strongly connected among the
agents. In other words, there exists a path from each xil to
any other xjl . Since (A,C) is observable, xjl from some j is
the begin-vertex of a Y -topped path that makes xjl at every
j = 1, . . . , N to be the begin-vertex of some Y -topped path.
Since the previous is true for all l = 1, . . . , n, the network
estimator in (9)-(10) is generically observable.
The above lemma leads to a general theorem given below.

Theorem 2: Let the system be globally (A,C) observable
such that there exists a disjoint union of cycle family that
covers all of the n states vertices in A. Then the networked
estimator in (9)-(10) is generically observable, if the agent
communication graph, Ga, is strongly connected.

Proof: The proof follows from Corollary 1 and
Lemma 1.
Similar results can be extended when the matrix A has other
structures.
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C. Discussion

The results provided in the previous section are indepen-
dent of what fusion rule (e.g., Metropolis-Hastings [19]) is
chosen in (9). This is because using structured system the-
oretic arguments, it is possible to consider the observability
problem generically such that it is true for almost all possible
choices of the fusion rule (weight matrices). Nevertheless,
the structure of the underlying agent communication remains
relevant and leads to infrastructure or network design ques-
tions. Furthermore, generic properties are, in general, easily
verified, see [13], [20], [21], [22] for related algorithms.

V. ESTIMATOR GAIN DESIGN

We now consider the design of the local estimator gain in
(10). Notice that observability guarantees a full gain matrix
such that the estimation error is a stable process, in particular,
if (W (IN⊗A), DC) is generically observable then for almost
all non-zero elements in the corresponding matrices, there
exists a full matrix, K, such that

ρ(W (IN ⊗A)−KDCW (IN ⊗A)) < 1. (18)

It is well-known that a full gain matrix, K, can be obtained
by solving the following Linear Matrix Inequality (LMI)
(after some manipulation)

X −AT
XA � 0, (19)

for some X � 0 (‘�’ denotes positive-definiteness) with an
appropriate A. However, this LMI cannot be directly solved
when the gain matrix has a structure.

In the case of networked estimation, the gain matrix, K, is
not full, but is given by Kk, see (12), that is block-diagonal
with N , n×n blocks. For the rest of this section, we assume
that a constant estimator gain matrix is applied, i.e., the
matrix Kk is independent of time, k, and denote it by K.
Hence, we would like to find X � 0 such that

X − ÂTXÂ � 0, (20)
Â = (W (IN ⊗A)−KDCW (IN ⊗A)), (21)

or equivalently, [
X ÂTX,

XÂ X

]
� 0, (22)

with X � 0. Since the above is non-linear in the design
parameter (product of X and K), we note that ρ(Â) < 1
[17], if and only if there exists X,Y � 0 such that[

X ÂT ,

Â Y

]
� 0, (23)

with X = Y −1. The LMI in the above theorem is linear
in the design parameter K but the constraint involved X =
Y −1 is non-convex. Here, we use the approach in [16] to
approximate X = Y −1 with a linear function. In particular,
the matrices, X,Y � 0, satisfy X = Y −1, if and only if they

are optimal points of the following optimization problem
[16].

min tr(XY ) subject to
[
X I
I Y

]
� 0, (24)

with X,Y � 0. The above discussion can be summarized in
the following lemma.

Lemma 2: If the networked estimator (9)-(10) is gener-
ically observable, then a structured gain matrix, K, is the
solution of the following optimization.

min tr(XY ), (25)[
X ÂT ,

Â Y

]
� 0,

[
X I,
I Y

]
� 0,

K is block-diagonal, X, Y � 0.
Notice that since the second LMI is equivalent to X = Y −1,
the minimum trace is achieved at X = Y −1 and the optimal
value is nN .

Furthermore, the trace operator over the product of X and
Y can be replaced with a linear approximation [23], [16]

φlin(X,Y ) = tr(Y0X +X0S), (26)

and an iterative algorithm can be used to minimize tr(XY ),
under the block-diagonal constraints on the estimator gain
matrix, K. The iterative algorithm [16] is as follows:

(i) Find feasible points X0, Y0,K. If no such points exist,
Terminate.

(ii) Find Xt+1, Yt+1 by minimizing tr(YtX+XtY ) under
the constraints in (25).

(iii) Terminate when ρ(Â) < 1 or according to a desirable
stopping criterion.

A. Discussion
Let

st+1 = tr(YtX(t+ 1)) +Xt+1Y ), (27)

then it is shown in [16] that st is a decreasing sequence
that converges to 2nN ; the convergence to 2nN is because
as t ↑, Xt+1 → Y −1. However, a characterization on the
convergence rate is a topic of further research. A stopping
criterion in (iii) of the above iterative procedure can also
be established in terms of reaching within 2nN + ε of the
trace objective. The iterative procedure given above, similar
to the cone-complementarity linearization algorithm in [16],
is a centralized algorithm and has to be implemented at a
center. However, the center has to implement this process
only once, off-line, and then it may broadcast appropriate
estimator gains to each agent. Afterwards, the center plays
no role in the implementation of local estimators at each
agent; each agent, subsequently, observes and performs in-
network operations to implement the estimator.

A same time-scale algorithm can also be implemented,
where the above iterative procedure is implemented at the
same time-scale k as of the dynamical system in (1). With
this approach, the estimator gain, Kk+1, becomes a function
of k and may be transmitted to each agent at each time-step
k. This is helpful when the implementation is assumed in
real-time.
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Fig. 4. (left) The linearized trace objective function. (right) Spectral radius
corresponding to the error dynamics with block-diagonal gain.

VI. SIMULATIONS

We consider the dynamical system evolved with the sys-
tem matrix in (14) with N = 4 agents with Ga given by 1↔
2↔ 3↔ 4. We assume the output matrices at C1 and C4 to
be the same as C1 and C3 in (15) with no outputs at agents
2 and 3. We further choose the same fusion rule for each
state, xl, l = 1, . . . , n, at each agent, and generate Wij with
random positive numbers such that the resulting local weight
matrices, Wij , are positive, diagonal, and sum to identity, I4.
Note that with N = 4 agents, none of the agent is either inde-
pendently observable, (A,Ci), or locally observable through
output fusion, (A,

∑
j∈Di

uijC
T
j Cj), alone. However, since

the agent communication graph, Ga, 1 ↔ 2 ↔ 3 ↔ 4, is
strongly connected and A has non-zero elements on all of
its diagonals, the resulting networked system is generically
observable. This can also be verified by computing the rank
of the underlying observability Gramian after putting any
elements in A and W such that the sparsity pattern is not
violated.

We then implement the iterative procedure to compute
structured gains and the results are shown in Fig. 4, where we
have used a stopping criterion of st < 24.01. Note that the
optimal value of the linearized trace objective is 2nN = 24.
Fig. 4 (left) shows the spectral radius of Â as a function of the
iterations of the iterative procedure, whereas, Fig. 4 (right)
shows the cost of the objective linearized trace function.
The block-diagonal estimator gain matrices that constitute
K can now be made available to the agents to implement
the networked estimator.

VII. CONCLUSIONS

In this paper, we use the results from structured systems
theory to formulate generic observability for networked
estimators. We show that a strongly connected agent commu-
nication graph suffices the networked generic observability
when the underlying system matrix have particular structures.
For other system matrix, our theory is easily extendible
to similar generic arguments. We then consider the design
of local estimator gains that is the equivalent to structured
LMI solutions that can be solved using well-known iterative
procedures. Our approach provides a foundation to build and
further explore the networked systems theory.
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